JPS63457B2 - - Google Patents

Info

Publication number
JPS63457B2
JPS63457B2 JP14570879A JP14570879A JPS63457B2 JP S63457 B2 JPS63457 B2 JP S63457B2 JP 14570879 A JP14570879 A JP 14570879A JP 14570879 A JP14570879 A JP 14570879A JP S63457 B2 JPS63457 B2 JP S63457B2
Authority
JP
Japan
Prior art keywords
resin
weight
composition
layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14570879A
Other languages
Japanese (ja)
Other versions
JPS5670880A (en
Inventor
Kikuo Sumyoshi
Kazuo Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP14570879A priority Critical patent/JPS5670880A/en
Publication of JPS5670880A publication Critical patent/JPS5670880A/en
Publication of JPS63457B2 publication Critical patent/JPS63457B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Sliding-Contact Bearings (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、軸受、すべり板、リテーナーなど
に用いられて好適な合成樹脂複層摺動材の製造方
法に関するものである。 従来、とくに熱可塑性合成樹脂摺動部材の耐摩
耗性、耐荷重性を向上させる手段として、金属裏
金に該熱可塑性合成樹脂を薄層として被着させた
複層構成の摺動部材が知られている。 このような複層構成の摺動部材においては、比
較的軟質の合成樹脂であつても、それが鋼などの
裏金上に薄層として被着されていると、樹脂自体
のたわみやへたりを生ずることがないから、結果
として摺動部材としての耐摩耗性、耐荷重性が向
上する。 また摺動面において生じた摩擦熱は、樹脂層が
薄いので裏金に容易に伝わり、そして摺動部材か
ら放散されて温度上昇を低く抑えることができる
から、上述した性能の向上を一層助長する。 このほか、樹脂の膨張収縮あるいは経年変形も
受け難いから、摺動部材として寸法安定性が著し
く向上する。 このように複層構成の合成樹脂摺動部材は、合
成樹脂のもつ特性を生かしながらその欠点を大巾
に改善し得るが、それでも苛酷な摩擦条件下で
は、樹脂層が摺動面において溶融流動したり、裏
金から剥離するなどの問題が残されている。 このような問題はもはや合成樹脂を単に複層と
するという手段だけでは解決できない。 本発明者らは、このような問題について鋭意研
究した結果、合成樹脂のもつ摩擦摩耗特性を生か
し、かつ熱に対する抵抗性を高めると同時に、鋼
などの裏金に対する接着性を向上せしめ、苛酷な
条件下でも効果的に使用することができる複層摺
動部材として、特願昭54−45427「合成樹脂複層摺
動部材」を開発した。 このものは熱硬化性ポリイミド樹脂4〜25重量
%、四ふつ化エチレン樹脂(PTFE)5〜15重量
%、潤滑油剤2〜15重量%そして残部熱可塑性樹
脂からなる組成物が、金属裏金上に一体に被着形
成せしめられてなる合成樹脂複層摺動材に係わ
り、金属裏金上に該樹脂組成物を被着形成せしめ
る手段としても二三の有効な方法を開示した。す
なわち、前処理を施した裏金を加温しておき、こ
れに樹脂組成物の粉末を散布して該裏金上で溶融
させ、該溶融層を加圧板によつて押圧するか、あ
るいは押圧操作を施すことなく所定時間保持した
のち冷却せしめ、所望の複層摺動部材を得るとい
う方法である。 第二の方法は、比較的大量生産に適した方法で
コイル状に捲いてフープ材として提供されかつ前
処理が施された連続条片を裏金として用い、これ
を押出成形機に装着したクロスヘツドダイに供給
し、樹脂組成物を溶融してノズルから押出し、該
裏金表面に連続して一体に樹脂を被着形成させる
という方法である。 そして、第三の方法は、第二の方法と同様に裏
金としてコイル状に捲いてフープ材として提供さ
れかつ同様に前処理が施された連続条片を使用す
る。この条片を予め加温するかあるいは加温する
ことなしに、所定の速度で供給し、裏金上に樹脂
組成物粉末を散布してこれを溶融せしめ、ロール
圧下で該樹脂の被着層を形成せしめるという方法
である。 ここで、前処理とは、裏金表面に予め金属メツ
キを施すかあるいは施すことなしにこれに焼結金
属多孔質層を設けたもの、あるいはシヨツトプラ
ストまたは酸処理によつて適宜表面を荒らしたも
の、あるいはこのように処理した表面を清浄にし
て合成樹脂プライマーを焼付けたものなどを例示
した。 本発明者らは、その後さらに研究開発を重ねた
結果、上述した特願昭54−45427に係わる組成物
を用いて第二、第三の方法を採用する場合は何ん
ら問題はないが、第一の方法において、とくに組
成物樹脂層に押圧操作を施すことなしに福層摺動
材を得る場合に往々にして問題が生ずることを見
出した。 すなわち、量産規模で効率よく複層摺動材を得
ようとするに際し、押圧操作を施さない場合は裏
金もしくは雰囲気温度を急激に昇温させることが
できないこと、被着に要する加温保持時間を短縮
することが困難であること、溶融樹脂の流動性が
劣ることなどである。 あえてこのような点を無視して被着操作を進め
ると樹脂組成物同志の融着が不均一になり、かつ
被着層がいちぢるしく粗になるばかりか被着層と
下地金属との密着性も低下してくる。 そこで本発明者らは、摺動材としての諸性能に
可及的に悪影響を及ぼすことなく、しかも溶融樹
脂層に押圧操作を施すことなく所望の複層摺動材
を量産規模で効率よく得る方法について鋭意研究
の結果、潤滑油剤成分の配合量を変えることな
く、熱硬化性ポリイミド樹脂成分およびPTFE成
分の配合量を共に減ずることによつて達成し得る
ことを見出した。 すなわち、ポリアセタール樹脂、ポリアミド樹
脂、ポリカーボネイト樹脂、ポリオレフイン樹
脂、ポリエチレンテレフタレート樹脂、ポリブチ
レンテレフタレート樹脂から選択した熱可塑性合
成樹脂粉末を76〜96重量%とし、これに熱硬化性
ポリイミド樹脂粉末1.5〜4未満重量%、四ふつ
化エチレン樹脂粉末0.5〜5未満重量%、潤滑油
剤2〜15重量%を配合し、これらを均一に混合し
て粉体流動性を有する合成樹脂組成物を得、つい
で該合成樹脂組成物を金属裏金上に一様に散布供
給して該裏金上で溶融せしめ、該裏金上に該組成
物からなる樹脂層を一体に被着形成せしめること
ができたのである。 この発明では、金属裏金に前処理として合成樹
脂プライマーを焼付けたものを使用する場合にと
くに適しており、しかも樹脂組成物の被着形成時
に溶融樹脂層に押圧操作を施すことなく、効率よ
く複層摺動材を得ることができる。 この発明で使用されるポリイミド樹脂は、ビス
マレイミドAにイソシアヌル酸とブチルグリシジ
ルエーテルとの附加反応生成物Bを附加重合して
得られる重合生成物、たとえば東芝ケミカル社製
の商品名イミダロイ、あるいはビスマレイミドA
とアルキレンジアミドBとの附加重合生成物、た
とえばローヌプーラン社の商品名キネルなど熱硬
化性のポリイミド樹脂である。 これらのポリイミド樹脂は、一般に耐熱性がよ
いこと、接着性にすぐれかつ高温においても接着
強度の低下がきわめて少いこと、寸法安定性にす
ぐれること、摩擦摩耗特性がよいことなどの特長
を有するものである。 組成物中におけるポリイミド樹脂成分の量は
1.5〜4重量%が望ましく、おおむね200メツシユ
を通過する未硬化の状態の粉末が用いられる。ポ
リイミド樹脂成分は、組成物の硬度を高めるほ
か、裏金に対する接着強度を向上せしめ、被着さ
れた樹脂組成物の流動性を抑えるという作用効果
を有し、その結果樹脂層の剥離やへたりを無く
し、かつ耐摩耗性、耐荷重性の向上に寄与する。 なお、このポリイミド樹脂は硬化(附加重合)
が進む過程で水分やその他の揮発分の生成を伴な
わず、しかもこのもの自体吸湿性がきわめて小さ
いから、被着形成される樹脂層に気泡や亀裂を生
ぜしめる恐れもない。 この発明では、その配合量が1.5重量%以下で
はほとんど効果が期待できず、4重量%以上では
形成された樹脂層の融着が不均一となり、かつ粗
になるため靭性を損うばかりか、被着作業性を悪
くする。 PTFEは、微粉末の状態で0.5〜5重量%配合
される。 5重量%以上ではポリイミド樹脂成分と同様に
樹脂層の融着が不均一となり、かつ粗になるので
樹脂層の靭性を損うばかりか、被着作業性を悪く
する。 0.5重量%以下では、潤滑油剤成分との相乗効
果による自己潤滑性の賦与という効果が規待でき
なくなる。 潤滑油剤としては、エンジン油などの鉱油、鯨
油、ヒマシ油などの動植物油、シリコン油などの
合成潤滑油など常温で液体のもの、およびパラフ
インなどの石油ワツクス類、高級脂肪酸およびそ
のエステルなど動植物ワツクス類、そして石けん
など常温で固体であるが、組成物の樹脂層形成温
度までの温度で液体となるものが用いられる。 配合量は2〜15重量%、就中5〜10重量%が望
ましい。 これら潤滑油剤は組成物にすぐれた自己潤滑性
を与え、とくにすべり速度が比較的大きい場合に
も摩擦係数の低下に寄与する。 したがつて摩擦熱の発生も少くなるから、副次
効果として耐摩耗性、耐荷重性が向上する。 2重量%以下の配合量では、ほとんど効果が認
められず、配合量の増加に伴なつて潤滑効果も大
となるが、その反面機械的強度を低下させるばか
りでなく、樹脂層の被着形成および被着強度にも
悪影響を及ぼすから15重量%を上限とした。 潤滑剤としては上述したもののほか、従来一般
に固体潤滑剤として使用されている黒鉛、二硫化
モリブデン、酸化鉛、窒化ホウ素その他軟質金属
などの粉末も必要に応じて配合することができ
る。 この発明に使用される熱可塑性合成樹脂は、ボ
リイミド樹脂の硬化温度、すなわち附加重合が滞
りなく進行する温度200〜280℃で普通に成形する
ことができるものであり、しかも該樹脂自体に良
好な摩擦摩耗特性と相当の機械的強度を有してい
るものであることが必要である。 このような特長を有する熱可塑性合成樹脂とし
ては、第1表に掲げるものがある。 この発明に使用される合成樹脂組成物は、粉末
状のポリイミド樹脂初期重合物(たとえば200℃
の熱板におけるキユアタイムが40〜60秒)、
PTFE粉末、熱可塑性合成樹脂粉末そして潤滑油
剤の所定量を常温もしくは若干加温された状態で
撹拌混合することによつて得られる。
The present invention relates to a method of manufacturing a synthetic resin multilayer sliding material suitable for use in bearings, sliding plates, retainers, etc. Hitherto, as a means of improving the wear resistance and load resistance of thermoplastic synthetic resin sliding members, multi-layer sliding members have been known in which a thin layer of thermoplastic synthetic resin is applied to a metal backing. ing. In sliding members with such a multi-layer structure, even if the synthetic resin is relatively soft, if it is applied as a thin layer on a backing metal such as steel, the resin itself may bend or sag. As a result, the wear resistance and load resistance of the sliding member are improved. Furthermore, since the resin layer is thin, the frictional heat generated on the sliding surface is easily transmitted to the back metal, and is dissipated from the sliding member, thereby suppressing the temperature rise, further promoting the above-mentioned performance improvement. In addition, since it is resistant to expansion and contraction of the resin or deformation over time, the dimensional stability of the sliding member is significantly improved. In this way, synthetic resin sliding members with a multi-layer structure can greatly improve the drawbacks of synthetic resin while taking advantage of its properties, but even so, under severe friction conditions, the resin layer melts and flows on the sliding surface. There are still problems such as peeling off from the backing metal. Such problems can no longer be solved simply by using multiple layers of synthetic resin. As a result of intensive research into these problems, the inventors of the present invention made use of the frictional and abrasion properties of synthetic resins, and at the same time improved their resistance to heat and improved their adhesion to backing metals such as steel. As a multi-layer sliding member that can be effectively used under the sun, we have developed the patent application No. 54-45427 ``Synthetic resin multi-layer sliding member''. This product consists of a composition consisting of 4 to 25% by weight of thermosetting polyimide resin, 5 to 15% by weight of tetrafluoroethylene resin (PTFE), 2 to 15% by weight of lubricating oil, and the balance thermoplastic resin. Regarding the synthetic resin multilayer sliding material formed by integrally depositing the resin composition, several effective methods have been disclosed as means for depositing the resin composition on the metal backing. That is, a pretreated backing metal is heated, a powder of the resin composition is sprinkled onto it and melted on the backing metal, and the molten layer is pressed by a pressure plate or by a pressing operation. This is a method in which the desired multi-layer sliding member is obtained by holding it for a predetermined period of time without applying it, and then cooling it. The second method, which is relatively suitable for mass production, uses a continuous strip that has been coiled into a hoop material and has been pretreated as a backing metal, and this is attached to a crosshead that is attached to an extrusion molding machine. In this method, the resin composition is supplied to a die, melted, and extruded from a nozzle, so that the resin is continuously and integrally adhered to the surface of the backing metal. The third method, like the second method, uses a continuous strip that is coiled and provided as a hoop material as a backing metal and is pretreated in the same way. The strip is fed at a predetermined speed with or without heating, and the resin composition powder is sprinkled onto the backing metal to melt it, and the adhered layer of the resin is formed under roll pressure. The method is to let it form. Here, pretreatment refers to metal plating in advance on the back metal surface, or a sintered metal porous layer provided thereon without metal plating, or roughening of the surface as appropriate by shotplast or acid treatment. Alternatively, the surface treated in this way is cleaned and then a synthetic resin primer is baked on. As a result of further research and development, the present inventors found that there is no problem when adopting the second and third methods using the composition related to the above-mentioned Japanese Patent Application No. 45427-1982. It has been found that, in the first method, problems often occur, especially when obtaining a flexible layer sliding material without applying a pressing operation to the composition resin layer. In other words, when trying to efficiently obtain a multilayer sliding material on a mass production scale, it is impossible to rapidly raise the temperature of the backing metal or the atmosphere unless a pressing operation is performed, and the heating and holding time required for adhesion is difficult. It is difficult to shorten the length, and the fluidity of the molten resin is poor. If you ignore these points and proceed with the adhesion process, the resin compositions will not be fused together uniformly, and the adhesion layer will not only become very rough, but also the bond between the adhesion layer and the underlying metal will become uneven. Adhesion also decreases. Therefore, the present inventors have attempted to efficiently obtain a desired multilayer sliding material on a mass production scale without having as much adverse effect on various properties as a sliding material and without applying any pressing operation to the molten resin layer. As a result of intensive research on this method, it was discovered that this can be achieved by reducing the blending amounts of both the thermosetting polyimide resin component and the PTFE component without changing the blending amount of the lubricant component. That is, 76 to 96% by weight of thermoplastic synthetic resin powder selected from polyacetal resin, polyamide resin, polycarbonate resin, polyolefin resin, polyethylene terephthalate resin, and polybutylene terephthalate resin, and 1.5 to less than 4% of thermosetting polyimide resin powder. % by weight, 0.5 to less than 5% by weight of tetrafluoroethylene resin powder, and 2 to 15% by weight of a lubricant, and these are mixed uniformly to obtain a synthetic resin composition having powder fluidity, and then the synthesis The resin composition was uniformly dispersed and supplied onto the metal backing metal and melted on the backing metal, thereby making it possible to integrally form a resin layer made of the composition on the backing metal. This invention is particularly suitable when using a metal backing metal with a synthetic resin primer baked on as a pretreatment, and moreover, it can be efficiently replicated without pressing the molten resin layer when forming the resin composition. A layered sliding material can be obtained. The polyimide resin used in this invention is a polymerization product obtained by addition-polymerizing Bismaleimide A with an addition reaction product B of isocyanuric acid and butyl glycidyl ether, such as Imidalloy, a trade name manufactured by Toshiba Chemical Corporation, or Maleimide A
and alkylene diamide B, such as a thermosetting polyimide resin such as Kinel (trade name, manufactured by Rhone-Poulenc). These polyimide resins generally have features such as good heat resistance, excellent adhesion and very little decrease in adhesive strength even at high temperatures, excellent dimensional stability, and good friction and wear properties. It is something. The amount of polyimide resin component in the composition is
The amount is preferably 1.5 to 4% by weight, and an uncured powder that passes through approximately 200 meshes is used. The polyimide resin component has the effect of increasing the hardness of the composition, improving the adhesive strength to the backing metal, and suppressing the fluidity of the applied resin composition, thereby preventing peeling and settling of the resin layer. It also contributes to improving wear resistance and load carrying capacity. Note that this polyimide resin is cured (addition polymerization)
In the process of drying, moisture and other volatile substances are not generated, and since this material itself has extremely low hygroscopicity, there is no risk of creating bubbles or cracks in the resin layer formed. In this invention, if the amount is less than 1.5% by weight, almost no effect can be expected, and if it is more than 4% by weight, the fusion of the formed resin layer becomes uneven and rough, which not only impairs toughness. It impairs adhesion workability. PTFE is blended in the form of fine powder in an amount of 0.5 to 5% by weight. If it is more than 5% by weight, the fusion of the resin layer becomes uneven and rough, similar to the polyimide resin component, which not only impairs the toughness of the resin layer but also impairs the workability of adhesion. If it is less than 0.5% by weight, the synergistic effect with the lubricating oil component to impart self-lubricating properties cannot be expected. Lubricants include mineral oils such as engine oil, animal and vegetable oils such as whale oil and castor oil, and synthetic lubricants such as silicone oil, which are liquid at room temperature, petroleum waxes such as paraffin, and animal and vegetable waxes such as higher fatty acids and their esters. and soap, which are solid at room temperature but become liquid at temperatures up to the resin layer forming temperature of the composition. The blending amount is preferably 2 to 15% by weight, particularly 5 to 10% by weight. These lubricants provide the composition with excellent self-lubricating properties and contribute to lowering the coefficient of friction, especially at relatively high sliding speeds. Therefore, the generation of frictional heat is reduced, and as a side effect, wear resistance and load resistance are improved. When the amount is less than 2% by weight, almost no effect is observed, and as the amount is increased, the lubricating effect increases, but on the other hand, it not only reduces the mechanical strength but also reduces the adhesion of the resin layer. Since it also has a negative effect on adhesion strength, the upper limit was set at 15% by weight. In addition to the above-mentioned lubricants, powders of graphite, molybdenum disulfide, lead oxide, boron nitride, and other soft metals, which are conventionally generally used as solid lubricants, can also be blended as needed. The thermoplastic synthetic resin used in this invention can be normally molded at the curing temperature of polyimide resin, that is, the temperature at which addition polymerization proceeds smoothly, from 200 to 280°C, and the resin itself has good properties. It is necessary to have friction and wear characteristics and considerable mechanical strength. Thermoplastic synthetic resins having such features include those listed in Table 1. The synthetic resin composition used in this invention is a powdered polyimide resin initial polymer (for example,
The cure time on the hot plate is 40 to 60 seconds),
It is obtained by stirring and mixing predetermined amounts of PTFE powder, thermoplastic synthetic resin powder, and lubricant at room temperature or in a slightly warmed state.

【表】【table】

【表】 高速ミキサーたとえばヘンシエルミキサーなど
による撹拌混合手段は、この発明の組成物を得る
のに有効である。 得られた組成物は粉体流動性を有していること
が必要である。 この発明に使用される裏金は、一般構造用圧延
鋼板が好適であるが、目的用途によつては他の圧
延鋼板あるいは鋼以外の金属板(アルミニウム、
銅およびそれらの合金)も使用することができ
る。この裏金表面に種々の前処理が施されるので
あるが、本発明においてはすでに述べたように合
成樹脂プライマーを焼付けた間を被着表面とする
ことがもつとも望ましい。 プライマーの種類としては、フエノール変性ア
ルキツド樹脂、ポリアミドイミド樹脂、エポキシ
樹脂、フラン樹脂、ポリエステル樹脂、ポリウレ
タン樹脂などの合成樹脂、あるいはポリオレフイ
ンを主体とする樹脂層の被着用としては、とくに
テトライソプロピルチタネートの如き有機チタニ
ウムエステルが用いられ、これらプライマー層の
厚さは、おおむね0.005〜0.030mm(5ミクロン〜
30ミクロン)とすることが望ましい。 このように前処理が施された裏金上に粉末状の
樹脂組成物を供給し、200〜280℃の温度で融着せ
しめる。 この際、樹脂被着層を比較的厚く形成せしめる
場合など、必要に応じてバーもしくはロールによ
つて供給された粉末状の樹脂組成物層を軽くなら
して表層を平らにするなど(ただし押圧操作不
要)の手段を講ずることができる。 また裏金は、樹脂組成物を供給する前に予め所
定の温度に加温しておいてもよく、また組成物を
供給散布後加温してもよい。 いずれも裏金からの熱の伝達によつて樹脂の融
着が行なわれることが望ましく、たとえば雰囲気
温度が高過ぎることなどがら、供給散布された組
成粉末が、その表層から溶融が始まるような条件
は望ましくない。 融着に要する時間は、樹脂層の厚さが0.5mmの
場合を例示すると、第2表のとおりである。
[Table] Stirring and mixing means using a high speed mixer, such as a Henschel mixer, are effective for obtaining the composition of the present invention. It is necessary that the obtained composition has powder fluidity. The back metal used in this invention is preferably a general structural rolled steel plate, but depending on the intended use, other rolled steel plates or metal plates other than steel (aluminum,
Copper and their alloys) can also be used. Various pretreatments are performed on the surface of the backing metal, but in the present invention, it is desirable to use the area where the synthetic resin primer has been baked as the adhesion surface, as described above. The types of primers include synthetic resins such as phenol-modified alkyd resins, polyamideimide resins, epoxy resins, furan resins, polyester resins, and polyurethane resins, and for coating resin layers mainly composed of polyolefins, especially tetraisopropyl titanate. The thickness of these primer layers is approximately 0.005 to 0.030 mm (5 microns to
30 microns) is desirable. A powdered resin composition is supplied onto the backing metal that has been pretreated in this way, and is fused at a temperature of 200 to 280°C. At this time, when forming a relatively thick resin adhesion layer, if necessary, the powdered resin composition layer supplied by a bar or roll may be lightened to flatten the surface layer (although pressure may be applied). (no operation required) can be taken. Further, the back metal may be heated to a predetermined temperature in advance before supplying the resin composition, or may be heated after the composition is supplied and sprayed. In either case, it is desirable that the resin be fused by heat transfer from the backing metal.For example, if the ambient temperature is too high, there are no conditions where the supplied and dispersed composition powder starts to melt from its surface layer. Undesirable. The time required for fusion bonding is as shown in Table 2, illustrating the case where the thickness of the resin layer is 0.5 mm.

【表】 この発明によつて被着形成される樹脂層の厚さ
はおおむね0.1〜2.5mmで、0.1mmよりも薄いとピン
ホールの発生が多くなるのでよくない。 2.5mm以上の厚さでは融着に要する時間が過大
となるばかりか、被着層の均質性が損なわれ、ま
た被着層に亀裂を生ずるなどの弊害もある。 なお、組成物中の潤滑油剤成分が多い場合、た
とえばエンジン油などを10重量%以上配合して被
着層の接着性が懸念される場合は、該組成物の主
体をなす熱可塑性合成樹脂のみを、前処理を施し
た裏金に薄く被着せしめ、その上に該組成物を散
布供給して被着させるという手段をとることによ
り、接着性が確実となりかつ接着強度を高めるこ
とができる。 以下実施例について説明する。 実施例 200℃の熱板におけるキユアータイムが40〜60
秒のポリイミド樹脂(東芝ケミカル社製、商品名
イミダロイ)粉末2重量%、PTFE粉末(三井フ
ロロケミカル社のPTFEフアインパウダー)1重
量%、SAE30番相当のエンジン油(丸善石油社
製商品名スワマツクHD)6重量%、二硫化モリ
ブデン粉末1重量%そして残部ポリアミド樹脂
(ダイセル社製12ナイロン、商品名ダイアミド)
粉末の各成分を高速ミキサーによつて撹拌混合し
て粉末状の樹脂組成物を得た。 つぎに、一般構造用圧延鋼板をシヨツドブラス
ト(フルカバレージの状態)後、溶剤によつて洗
滌脱脂し、ついでこの表面にフエノール変性アル
キツド樹脂プライマーを塗布し、250〜300℃の温
度で0.03〜0.05mmの厚さに焼付けた。 このように前処理を施した裏金に上述した粉末
状の樹脂組成物を散布供給し、供給粉末の厚さを
一定にかつその表面を平らにならして215〜230℃
の温度に保持された電気炉内で80秒間保持後冷却
し、0.3〜0.4mmの厚さの樹脂被着層を有する複層
摺動材を得た。 実施例 実施例において、12ナイロンの代りに6ナイ
ロンの粉末を用いて、電気炉内で220〜240℃の温
度で80秒間保持したのち冷却し、0.3〜0.4mmの厚
さの樹脂被着層を有する複層摺動材を得た。 このようにして得られた複層肪動材について、
JIS K6744にしたがつて剥離試験、JIS K6804に
準じて圧縮せん断試験を行ない、それぞれ11〜13
Kg/20mm、230〜260Kg/cm2の値を得た。 これらの値は、12ナイロン、6ナイロン単体の
場合の値、すなわち15〜16Kg/20mm、270〜300
Kg/cm2に比較しても15〜20%程度の低下に止ま
り、6重量%の潤滑油を含有する樹脂組成物とし
てはきわめてすぐれた強度を有するものであり、
実用上何んら問題ない。 摩擦係数、摩耗量などの軸受性能は、鈴木式ス
ラスト試験機を用い、すべり速度33.3m/min、
荷重30Kg/cm2、雰囲気温度60℃、無給油で10時間
試験した結果、摩擦係数0.06〜0.10、摩耗量0.01
mm以下であつた。 12ナイロン、6ナイロンそれぞれ単体の場合の
値に比較して、摩擦係数において1/6〜1/2、摩耗
量においては数値をもつて比較が困難な程(数
100分の1以下)性能が向上した。 以上説明したように、この発明による合成樹脂
複層摺動材の製造方法は、きわめてすぐれた摺動
材を効率よく提供することができる。
[Table] The thickness of the resin layer deposited according to the present invention is approximately 0.1 to 2.5 mm, and if it is thinner than 0.1 mm, pinholes will occur frequently, which is not good. If the thickness is 2.5 mm or more, not only will the time required for fusion be excessive, but the homogeneity of the adhered layer will be impaired, and there will also be problems such as cracking in the adhered layer. In addition, if the composition contains a large amount of lubricant components, for example, if 10% by weight or more of engine oil is blended and there is concern about the adhesion of the adhered layer, only the thermoplastic synthetic resin that makes up the main component of the composition may be used. By applying a thin layer of the composition to a pretreated back metal, and then spraying and applying the composition thereon, the adhesive property can be ensured and the adhesive strength can be increased. Examples will be described below. Example Cure time on a hot plate at 200℃ is 40 to 60
2% by weight of polyimide resin powder (manufactured by Toshiba Chemical Co., Ltd., trade name Imidalloy), 1% by weight of PTFE powder (PTFE Fine Powder, made by Mitsui Fluorochemicals Co., Ltd.), engine oil equivalent to SAE No. 30 (trade name Swamatsu, made by Maruzen Oil Co., Ltd.) HD) 6% by weight, molybdenum disulfide powder 1% by weight, and the remainder polyamide resin (Nylon 12 manufactured by Daicel, trade name Diamid)
Each powder component was stirred and mixed using a high-speed mixer to obtain a powdered resin composition. Next, after shot blasting (full coverage state) a general structural rolled steel plate, it is washed and degreased with a solvent, and then a phenol-modified alkyd resin primer is applied to the surface, and the thickness is 0.03 to 0.05 mm at a temperature of 250 to 300°C. Baked to a thickness of . The above-mentioned powdered resin composition was sprayed onto the pretreated back metal, and heated at 215 to 230°C while keeping the thickness of the supplied powder constant and the surface flattened.
The mixture was held in an electric furnace at a temperature of 80 seconds and then cooled to obtain a multilayer sliding material having a resin adhesion layer with a thickness of 0.3 to 0.4 mm. Example In the example, powdered nylon 6 was used instead of nylon 12, held in an electric furnace at a temperature of 220 to 240°C for 80 seconds, and then cooled to form a resin adhesion layer with a thickness of 0.3 to 0.4 mm. A multilayer sliding material having the following properties was obtained. Regarding the multi-layered fatty moving material obtained in this way,
A peel test was conducted in accordance with JIS K6744, and a compression shear test was conducted in accordance with JIS K6804.
Kg/20mm, values of 230-260Kg/ cm2 were obtained. These values are for 12 nylon and 6 nylon alone, i.e. 15~16Kg/20mm, 270~300
Even when compared to Kg/ cm2 , the decrease is only about 15-20%, and it has extremely high strength for a resin composition containing 6% by weight of lubricating oil.
There is no problem in practical use. Bearing performance such as friction coefficient and wear amount was measured using a Suzuki thrust tester at a sliding speed of 33.3 m/min.
As a result of a 10-hour test at a load of 30Kg/cm 2 and an ambient temperature of 60℃ without lubrication, the coefficient of friction was 0.06 to 0.10, and the amount of wear was 0.01.
It was less than mm. Compared to the values for 12 nylon and 6 nylon alone, the friction coefficient is 1/6 to 1/2, and the amount of wear is so high that it is difficult to compare numerical values (numerical values).
(less than 1/100) performance has improved. As explained above, the method for manufacturing a synthetic resin multilayer sliding material according to the present invention can efficiently provide an extremely excellent sliding material.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリアセタール樹脂、ポリアミド樹脂、ポリ
カーボネイト樹脂、ポリオレフイン樹脂、ポリエ
チレンテレフタレート樹脂、ポリブチレンテレフ
タレート樹脂から選択した熱可塑性合成樹脂粉末
を76〜96重量%とし、これに熱硬化性ポリイミド
樹脂粉末1.5〜4未満重量%、四ふつ化エチレン
樹脂粉末0.5〜5未満重量%、潤滑油剤2〜15重
量%を配合し、これらを均一に混合して粉体流動
性を有する合成樹脂組成物を得、ついで該合成樹
脂組成物を金属裏金上に一様に散布供給して該裏
金上で溶融せしめ、該裏金上に該組成物からなる
樹脂層を一体に被着形成せしめることを特徴とし
た合成樹脂複層摺動材の製造方法。
1 76 to 96% by weight of thermoplastic synthetic resin powder selected from polyacetal resin, polyamide resin, polycarbonate resin, polyolefin resin, polyethylene terephthalate resin, and polybutylene terephthalate resin, and 1.5 to less than 4% by weight of thermosetting polyimide resin powder %, 0.5% to less than 5% by weight of tetrafluoroethylene resin powder, and 2 to 15% by weight of a lubricant, and these are mixed uniformly to obtain a synthetic resin composition having powder fluidity, and then the synthetic resin A synthetic resin multi-layer sliding device characterized in that a composition is uniformly dispersed and supplied onto a metal backing metal, melting it on the backing metal, and integrally forming a resin layer made of the composition on the backing metal. Method of manufacturing wood.
JP14570879A 1979-11-10 1979-11-10 Preparation of composite layered slide material made of synthetic resin Granted JPS5670880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14570879A JPS5670880A (en) 1979-11-10 1979-11-10 Preparation of composite layered slide material made of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14570879A JPS5670880A (en) 1979-11-10 1979-11-10 Preparation of composite layered slide material made of synthetic resin

Publications (2)

Publication Number Publication Date
JPS5670880A JPS5670880A (en) 1981-06-13
JPS63457B2 true JPS63457B2 (en) 1988-01-07

Family

ID=15391277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14570879A Granted JPS5670880A (en) 1979-11-10 1979-11-10 Preparation of composite layered slide material made of synthetic resin

Country Status (1)

Country Link
JP (1) JPS5670880A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983003612A1 (en) * 1982-04-17 1983-10-27 Schimizu, Takuro Coating layer for sliding surface
CH661523A5 (en) * 1983-07-15 1987-07-31 Suisse Horlogerie Rech Lab LUBRICANT VARNISHES WITH OIL INCLUSIONS.
JP2600754B2 (en) * 1988-02-05 1997-04-16 トヨタ自動車株式会社 Bearing member resin coating method
JP2000074136A (en) * 1998-08-28 2000-03-07 Oiles Ind Co Ltd Sliding structure combining two sliding members, and sliding support device using it
JP5358817B2 (en) * 2009-03-23 2013-12-04 株式会社Lixil Functional coating film electrostatic coating method and powder coating functional coating film forming building material
JP2016120704A (en) * 2014-12-25 2016-07-07 トヨタ自動車株式会社 Slide member and method for producing the same
JP6144667B2 (en) * 2014-12-25 2017-06-07 トヨタ自動車株式会社 Sliding member and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5670880A (en) 1981-06-13

Similar Documents

Publication Publication Date Title
US4421588A (en) Plastics alloy compositions
KR100454658B1 (en) Multi-layered material for sliding element and its manufacturing method and use of the multi-layered material
CA1322747C (en) Maintenance-free sliding bearing
EP0119815A2 (en) Composition of matter incorporating polyether ether ketone
CN102272470B (en) Bearings
JP5330969B2 (en) Sliding layer material and multilayer material
US4156049A (en) Laminate, particularly for anti-friction and slide members, and method for the production of the same
US8551569B2 (en) Method for producing a metal base material provided with a sliding layer, and the use thereof
US8012569B2 (en) Sliding member and process for formation of its coating layer
CN105829743B (en) bearing element and method for manufacturing bearing element
GB2055875A (en) Coating composition for the formation of antifriction layers
JPS63457B2 (en)
US5783308A (en) Ceramic reinforced fluoropolymer
GB2386929A (en) Plain bearing comprising a PTFE film
EP0204751A1 (en) Composite self lubricating bearings
TWI288032B (en) Composite material and plastic-processing product using the same
US6548453B1 (en) Continuously coated multi-composition, multi-layered solid lubricant coatings based on polyimide polymer compositions
EP0404852A1 (en) Bearings
GB2079867A (en) Plain bearing
DE2415327C2 (en) Process for the production of a plain bearing with a polyphenylene sulfide sliding layer
JPS6021541B2 (en) Sliding member coated with synthetic resin and its manufacturing method
US4360563A (en) Composite material surface for handling hot glass
JPH029077B2 (en)
JPS6021542B2 (en) Method for manufacturing sliding members coated with synthetic resin
JP2001149860A (en) Coated steel sheet excellent in self-lubricating property