JPS6345792A - Radio frequency heater - Google Patents

Radio frequency heater

Info

Publication number
JPS6345792A
JPS6345792A JP18927486A JP18927486A JPS6345792A JP S6345792 A JPS6345792 A JP S6345792A JP 18927486 A JP18927486 A JP 18927486A JP 18927486 A JP18927486 A JP 18927486A JP S6345792 A JPS6345792 A JP S6345792A
Authority
JP
Japan
Prior art keywords
wall surface
cavity resonator
door
shaped conductor
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18927486A
Other languages
Japanese (ja)
Inventor
岩淵 康司
哲男 窪田
幸雄 田中
多和田 正春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Heating Appliances Co Ltd
Original Assignee
Hitachi Heating Appliances Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Heating Appliances Co Ltd filed Critical Hitachi Heating Appliances Co Ltd
Priority to JP18927486A priority Critical patent/JPS6345792A/en
Publication of JPS6345792A publication Critical patent/JPS6345792A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高周波加熱装置のドア構造の改良に関する。[Detailed description of the invention] Industrial applications The present invention relates to an improvement in the door structure of a high-frequency heating device.

従来の技術 高周波加熱装置のドア周縁に特性インピーダンスの異な
る溝を深さ方向に設け、この溝の深さ方向の特性インピ
ーダンスを不連続にすることにより、実質的深さが使用
波長の4分の1より小さくしても、溝の入口でのインピ
ーダンスが最大となり、チョーク溝と同様に漏洩電波を
少なくすることができるという提案が特開昭60−25
190号公報にある。この従来例では、溝の深さ方向に
幅の異なる溝を設けたり、溝の周壁の形状を深さ方向に
変形するなどかなり形状が複雑である。また、特性イン
ピーダンスの不連続部における反射防止を考慮する必要
がある。
Conventional technology Grooves with different characteristic impedances are provided in the depth direction on the periphery of the door of a high-frequency heating device, and by making the characteristic impedance of the grooves discontinuous in the depth direction, the effective depth is reduced to a quarter of the wavelength used. A proposal was made in JP-A-60-25 that even if the value is smaller than 1, the impedance at the entrance of the groove is maximized, and leakage radio waves can be reduced in the same way as a choke groove.
It is in Publication No. 190. In this conventional example, the shape is quite complicated, such as providing grooves with different widths in the depth direction of the groove and deforming the shape of the peripheral wall of the groove in the depth direction. Furthermore, it is necessary to consider reflection prevention at discontinuous portions of characteristic impedance.

また、第7図で示すように、ドア5の外周に電波漏洩防
止用の空胴共振器12を屈曲形成して口字状断面とし、
空胴共振器12の一周壁である張出面11の端部切口と
空胴共振器12の他の壁面(第1の壁面8)とを対向さ
せた入口25を有する構造が実開昭61−795号公報
に示されている。この従来例では空胴共振器12の周壁
が複数の導体片に分割されていることは記載されていな
い。したがって空胴共振器12内には進行方向がyz面
以外にも生じる高次モードの電波が入ってくるため、空
胴共振器12が共振状態から外れ、電波漏洩防止効果が
小さくなる。仮りに第7図の空胴共振器12の立上り面
23と張出面11を長手方向(X方向)に使用波長の1
72より小さい幅の導体片に分割したと考える。この場
合、空胴共振器12を等価容量Cと等価インダクタンス
Lとから成る並列共振素子をドア5の長手方向(X方向
)に複数個並べたものとみなせる。各並列共振素子にお
いて、後述の(2)式で示すように、空胴共振器12の
入口25と空胴断面のめんせき中心0の距liQMと、
入口寸法Gとの比nM/Gが大きいほど等価容量Cが大
きくなる。第7図の空胴共振器12ではQu/G=1.
0で、後述する本発明のAM/G≧1.5に比べて等価
容量Cが小さくなる。その分だけ後述の(3)式より等
価インダクタンスLを大きくして漏洩電波の周波数に共
振させるようにしなければならない。そのため、後述の
(1)式から明らかなように、空胴共振器12の断面A
Bを大きくする必要があるので、従来例の空胴共振器1
2は大形となり、ドアの小形化、低コスト化には不向き
である。なお、第7図は実開昭61−795号公報の明
細書の図面の各部首法を同一比率で示したものであり、
また、構成要素の名称および番号は本発明と対応する部
分は同じにしである。
In addition, as shown in FIG. 7, a cavity resonator 12 for preventing radio wave leakage is formed in a curved manner on the outer periphery of the door 5 to form a mouth-shaped cross section.
A structure having an entrance 25 in which the end cut of the protruding surface 11, which is one peripheral wall of the cavity resonator 12, and the other wall surface (first wall surface 8) of the cavity resonator 12 are opposed was developed in 1982. It is shown in Publication No. 795. This conventional example does not describe that the peripheral wall of the cavity resonator 12 is divided into a plurality of conductor pieces. Therefore, higher-order mode radio waves whose propagation direction is not in the yz plane enter the cavity resonator 12, so the cavity resonator 12 goes out of the resonant state and the radio wave leakage prevention effect becomes smaller. If the rising surface 23 and the protruding surface 11 of the cavity resonator 12 in FIG. 7 are aligned in the longitudinal direction (X direction),
It is assumed that the conductor is divided into conductor pieces each having a width smaller than 72. In this case, the cavity resonator 12 can be regarded as a plurality of parallel resonant elements each having an equivalent capacitance C and an equivalent inductance L arranged in the longitudinal direction (X direction) of the door 5. In each parallel resonant element, as shown in equation (2) below, the distance liQM between the entrance 25 of the cavity resonator 12 and the center 0 of the cavity cross section,
The larger the ratio nM/G to the inlet dimension G, the larger the equivalent capacitance C becomes. In the cavity resonator 12 of FIG. 7, Qu/G=1.
0, the equivalent capacitance C is smaller than when AM/G≧1.5 of the present invention, which will be described later. Accordingly, the equivalent inductance L must be increased by that amount according to equation (3), which will be described later, in order to resonate with the frequency of the leaked radio waves. Therefore, as is clear from equation (1) below, the cross section A of the cavity resonator 12
Since it is necessary to increase B, the conventional cavity resonator 1
No. 2 is large in size and is not suitable for downsizing and cost reduction of doors. In addition, FIG. 7 shows each radical system in the drawings of the specification of Utility Model Application Publication No. 61-795 in the same proportion.
Also, the names and numbers of the components corresponding to those of the present invention are the same.

発明が解決しようとする問題点 溝の深さ方向に、複雑な形状をした溝を設ける必要があ
り、また特性インピーダンスの不連続部における反射防
止に手間が掛かかったり、ドアの小形化に不向きな点で
ある。
Problems that the invention aims to solve: It is necessary to provide grooves with a complicated shape in the depth direction of the groove, and it takes time and effort to prevent reflections at discontinuous parts of the characteristic impedance, making it unsuitable for miniaturizing doors. This is a point.

問題点を解決するための手段 ドア周囲に口字状断面を持つ漏洩電波防止用の空胴共振
器を設け、この空胴共振器の壁面の一部を多数のコ字状
導体片で形成し、又空胴共振器に漏洩電波を導き入れる
入口をコ字状導体片の一部と他の壁面の一部とで形成し
、かつこの入口と空胴断面の面積中心の距離QMと、入
口寸法Gとの比Qy/Gを1.5以上とし、更に又、入
口両端部に2個の容量調整素子を設け、他の壁面側の容
量調整素子をコ字状導体片側のものより大きくしたもの
である。
Means for solving the problem: A cavity resonator with a square-shaped cross section for preventing leakage radio waves was installed around the door, and a part of the wall of this cavity resonator was formed with a large number of U-shaped conductor pieces. In addition, an entrance for introducing leakage radio waves into the cavity resonator is formed by a part of the U-shaped conductor piece and a part of the other wall surface, and the distance QM between this entrance and the center of area of the cross section of the cavity, and the entrance The ratio Qy/G to the dimension G was set to 1.5 or more, and two capacitance adjusting elements were provided at both ends of the inlet, and the capacitance adjusting element on the other wall side was made larger than the one on one side of the U-shaped conductor. It is something.

作用 上記のように構成することにより、コ字状導体片により
漏洩しようとする電波はTEM波として口字状断面の空
胴共振器内に導き入れられる。この空胴共振器は、近似
的に1巻きの筒状コイルとして空胴断面積に比例した等
価インダクタンスLと、空胴の入口付近の乱れ電界に基
づく等価容量Cから成る並列共振素子を形成する。空胴
の入口を小さくし2個の容量調整素子を設けるとCが大
きくなり、その分だけLを小さくできる。すなわち空胴
断面積を小さくできる口字状断面の各辺がそれぞれ使用
波長の4分の1よりも小さい寸法で、電波シール効果が
最大となる。
Effect: By configuring as described above, radio waves that are about to leak through the U-shaped conductor piece are introduced as TEM waves into the cavity resonator having a square-shaped cross section. This cavity resonator forms a parallel resonant element consisting of an equivalent inductance L proportional to the cross-sectional area of the cavity and an equivalent capacitance C based on the disturbed electric field near the entrance of the cavity as a cylindrical coil with approximately one turn. . If the entrance of the cavity is made smaller and two capacitance adjustment elements are provided, C becomes larger, and L can be made smaller by that amount. That is, the radio wave sealing effect is maximized when each side of the mouth-shaped cross section, which can reduce the cross-sectional area of the cavity, is smaller than one quarter of the wavelength used.

実施例 本発明の一実施例による高周波加熱装置の構成および作
用を図面とともに説明する。
Embodiment The structure and operation of a high-frequency heating device according to an embodiment of the present invention will be explained with reference to the drawings.

第1図および第2図において、1は加熱室で、2は加熱
室1の開口部を取り囲むフランジで、3は外箱である。
In FIGS. 1 and 2, 1 is a heating chamber, 2 is a flange surrounding the opening of the heating chamber 1, and 3 is an outer box.

4は加熱室1内を覗くためにドア5の中央部にできるだ
け広範囲に設けた小穴群である。6は出の小穴群4の周
囲を取り囲む段部で、この段部6は小穴群4の内面に固
着した透光性のドア内カバー15の端部が清掃の際など
にはがれるのを防ぐと共に、ドア5閉成時にフランジ2
と平面接触する封口面7の平面度を良くするものである
。8は封口面7の端部よりフランジ2に対して略直角に
折り曲げた第1の壁面である。9は第1の壁面8の端部
よりフランジ2に対して略平行に延長した第2の壁面で
ある。10は第2の壁面9に溶接した多数の二字状導体
片である。このコ字状導体片10は第2の壁面9に溶接
される取り付は面19と、第1の壁面8にほぼ平行に対
向する立ち上がり面23と、端部切口を第1の壁面8に
対向させた張出面11との3面から成る。ドア5の周囲
の長平方向に対する各コ字状導体片100幅D(X方向
)は使用波長の2分の1よりも小さくしている。
Reference numeral 4 designates a group of small holes provided in the center of the door 5 as wide as possible to allow viewing into the heating chamber 1. Reference numeral 6 denotes a step surrounding the small hole group 4, and this step 6 prevents the end of the translucent door inner cover 15 fixed to the inner surface of the small hole group 4 from peeling off during cleaning, etc. , flange 2 when door 5 is closed
This improves the flatness of the sealing surface 7 that makes plane contact with the sealing surface 7. Reference numeral 8 denotes a first wall surface bent from the end of the sealing surface 7 at a substantially right angle to the flange 2. Reference numeral 9 denotes a second wall surface extending substantially parallel to the flange 2 from the end of the first wall surface 8. 10 is a large number of double-shaped conductor pieces welded to the second wall surface 9. This U-shaped conductor piece 10 is welded to the second wall surface 9 with a mounting surface 19, a rising surface 23 facing substantially parallel to the first wall surface 8, and an end cut on the first wall surface 8. It consists of three faces, with the overhanging faces 11 facing each other. The width D (X direction) of each U-shaped conductor piece 100 in the longitudinal direction around the door 5 is made smaller than one half of the wavelength used.

第1の壁面8とコ字状導体片10とで囲まれた口字状断
面を持つと共に狭小な入口25を有する空胴共振器12
を形成する。この空胴共振器12の入口をふさぐ不透明
の誘電体カバー13から突き出した突起片14はコ字状
導体片10の立ち上がり面23に設けた取り付は穴18
に引っ掛かるようになっている。ドア5の前面を覆う透
光性のドア外カバー16を保持するための誘電体製のド
ア外枠24から突き出した突起片17は第2の壁面9の
最外周縁端部20に引っ掛かるようになっている。
A cavity resonator 12 having a cross section surrounded by a first wall surface 8 and a U-shaped conductor piece 10 and having a narrow entrance 25
form. The projection piece 14 protruding from the opaque dielectric cover 13 that blocks the entrance of the cavity resonator 12 is attached to the hole 18 provided on the rising surface 23 of the U-shaped conductor piece 10.
It is designed to be caught on. A protruding piece 17 protruding from a dielectric door frame 24 for holding a translucent door outer cover 16 covering the front surface of the door 5 is hooked onto the outermost peripheral edge 20 of the second wall surface 9. It has become.

また、第5図の様に張出面11の端部近傍および第1の
壁面8近傍それぞれに誘電体カバー13から突き出した
容量調製素子26.27をもうけ、かつ第1の壁面8近
傍の容量調整素子27の突出寸法をもう一方の容量調整
素子26よりも大きくしている。
Further, as shown in FIG. 5, capacitance adjusting elements 26 and 27 protruding from the dielectric cover 13 are provided near the end of the projecting surface 11 and near the first wall surface 8, respectively, and the capacitance adjustment elements near the first wall surface 8 are provided. The protruding dimension of the element 27 is made larger than the other capacitance adjustment element 26.

次に上記のように構成した実施例の作用効果を説明する
。加熱室1開口部を取り囲むフランジ2と封口面7との
平面接触部に向かう入射電波に対して、第4図のような
簡易等価回路によって定性的に電波シール効果を説明す
る。21はフランジ2と封口面7との平面接触部に対応
する容量で、一種のバイパスコンデンサとして作用する
。平面接触部は平行板線路と考えられ、この線路の容量
は平行板のギャップに比例するので容量21は上記平面
接触部のギャップが小さいほど大きくなり、電波シール
効果が増す、コ字状導体片10の幅D(第3図のX方向
)を使用波長の2分の1より小さくしているので、第1
の壁面8と各コ字状導体片10とで形成された口字状断
面を持つ空胴共振器12の内部に入り込んだ電波の進行
方向は第3図のyz面内に限定される。張出面11が無
ければ第6図のように電界が分布し、平行板線路の長さ
Qが自由空間波長λの約4分の1で並列共振を起こし、
インピーダンスが最大となり、電波漏洩を防止すること
ができるが、2450M&の高周波加熱装置ではQは3
0.6amで、これをドアに実装しようとすると厚くな
り、意匠的にもコスト的にも不利である。
Next, the effects of the embodiment configured as described above will be explained. The radio wave sealing effect will be qualitatively explained using a simple equivalent circuit as shown in FIG. 4 with respect to the incident radio waves directed toward the planar contact portion between the flange 2 surrounding the opening of the heating chamber 1 and the sealing surface 7. 21 is a capacitor corresponding to the planar contact portion between the flange 2 and the sealing surface 7, and acts as a type of bypass capacitor. The planar contact portion is considered to be a parallel plate line, and the capacitance of this line is proportional to the gap between the parallel plates, so the capacitance 21 increases as the gap of the planar contact portion decreases, increasing the radio wave sealing effect. Since the width D of 10 (in the X direction in Figure 3) is smaller than half of the wavelength used, the first
The direction of propagation of the radio waves entering the cavity resonator 12 having a square cross section formed by the wall surface 8 and each U-shaped conductor piece 10 is limited within the yz plane of FIG. If there is no overhanging surface 11, the electric field will be distributed as shown in Fig. 6, and the length Q of the parallel plate line will cause parallel resonance at about one quarter of the free space wavelength λ.
The impedance is maximized and radio wave leakage can be prevented, but in the case of a 2450M& high frequency heating device, the Q is 3.
The thickness is 0.6 am, and if it were to be mounted on a door, it would be too thick, which would be disadvantageous both in terms of design and cost.

本発明のように、張出面11を設けて1口字状断面を持
ち狭小な入口25を有する空胴共振器12を形成した場
合は、第5図のような電界分布となる。この場合、張出
面11の端部切口付近と第1の壁面8との間に電気力線
の大部分が集まっている。空胴共振器12は第4図にお
いて等価インダクタンスLと等価容量Cとから成る並列
共振素子として表されている0等価インダクタンスLは
、近似的に空胴共振器12と同じ断面の1巻きの筒状コ
イルとして働き、そのコイルの定数としての等測的なイ
ンダクタンスを意味し、筒軸方向(X方向)の単位長あ
たりの値は(1)式のようになる。
When the cavity resonator 12 having the protruding surface 11 and having a single-shaped cross section and a narrow entrance 25 is formed as in the present invention, an electric field distribution as shown in FIG. 5 is obtained. In this case, most of the electric lines of force are concentrated between the vicinity of the end cut of the overhanging surface 11 and the first wall surface 8. The cavity resonator 12 is represented in FIG. 4 as a parallel resonant element consisting of an equivalent inductance L and an equivalent capacitance C. The zero equivalent inductance L is approximately a one-turn cylinder with the same cross section as the cavity resonator 12. It acts as a shaped coil, and means isometric inductance as a constant of the coil, and the value per unit length in the cylinder axis direction (X direction) is as shown in equation (1).

また1等価容量Cは空胴共振器12の入口25付近の乱
れ電界に基づくもので、近似的に(2)式で4太られる
Further, one equivalent capacitance C is based on the disturbed electric field near the entrance 25 of the cavity resonator 12, and is approximately increased by 4 according to equation (2).

L=μ、AB             ・・・(1)
ここで AB:空胴共振器12の口字状断面の面積μ。:空胴共
振器12内の媒質の透磁率e:2.72 QM:空欄共振器12の入口25と空胴断面の面積中心
0との距雛 ε。:空胴共振器12内の媒質の誘電率に:入口25付
近の形状に関係する補正項G:入口25の間隙(入口寸
法) 空胴共振器12の共振周波数f0は(3)式で表せる。
L=μ, AB...(1)
Here, AB: area μ of the mouth-shaped cross section of the cavity resonator 12. : Permeability e of the medium inside the cavity resonator 12: 2.72 QM: Distance ε between the entrance 25 of the cavity resonator 12 and the area center 0 of the cavity cross section. : To the permittivity of the medium in the cavity resonator 12 : A correction term related to the shape of the vicinity of the inlet 25 G : Gap of the inlet 25 (inlet dimension) The resonant frequency f0 of the cavity resonator 12 can be expressed by equation (3). .

f、=□        ・・・(3)2πVゴ丁で− (2)式より入口25の間隙Gを小さくするほど、ある
いはQM/Gを大きくするほど等価容量Cが大きくなる
ことがわかる。共振周波数f0を一定とすると、等価容
量Cが大きくなるほど等価インダクタンスLが小さくて
よいことが(3)式かられかる0等価インダクタンスL
を小さくするには(1)式より空胴共振器12の口字状
断面の面積ABを小さくすればよい。すなわち、空胴共
振器12を小形にするためには、入口25の間隙Gを狭
くして等価容量Cを大きくし、その分だけ空胴面積AB
を小さくして等価インダクタンスLを小さくし、一定の
共振周波数f、C高周波加熱装置の加熱周波数)で並列
共振を起こさせて、入口25におけるインピーダンスを
最大にし電波漏洩を防止すればよい。
f, = □ (3) 2πV Gotyo - From equation (2), it can be seen that the smaller the gap G of the inlet 25 or the larger QM/G, the larger the equivalent capacitance C becomes. Assuming that the resonance frequency f0 is constant, the larger the equivalent capacitance C, the smaller the equivalent inductance L can be found from equation (3).
In order to make it smaller, the area AB of the mouth-shaped cross section of the cavity resonator 12 can be made smaller according to equation (1). That is, in order to make the cavity resonator 12 smaller, the gap G of the inlet 25 is narrowed to increase the equivalent capacitance C, and the cavity area AB is increased accordingly.
By reducing the equivalent inductance L, parallel resonance is caused at a constant resonance frequency f (heating frequency of the high-frequency heating device C), the impedance at the inlet 25 is maximized, and radio wave leakage is prevented.

加熱周波数が2450MHz、高周波出力が5゜Owの
高周波加熱装置において、フランジ2と封口面7との間
の間隙を211n、張出面11と封口面7との段差を3
1m、コ字状導体片の幅りを15mとし、水275mQ
を加熱してドア5の周囲から50の距離で電波漏洩量を
測定してみた。その結果、G=5naのときAB=15
.4X15.9mm、QM/G=2.1で、電波漏洩量
がO,1mw/d以下となり、G = 8 mmと大き
くすると、上記と同程度に少ない電波漏洩量に抑えるた
めにはAB=20.4X18.4rm、Q M/G=1
.75というように口字状断面の面積も大きくなる。こ
のような実験により、入口25の間隙Gを4〜8mn位
と狭小にしてQM/Gを1.5以上にすることにより、
口字状断面の空胴共振器12の寸法Aおよび寸法Bをそ
れぞれ使用波長λの4分の1である30.6mmよりも
かなり小さくできることが明らかとなっている。
In a high-frequency heating device with a heating frequency of 2450 MHz and a high-frequency output of 5°Ow, the gap between the flange 2 and the sealing surface 7 is 211n, and the step between the overhanging surface 11 and the sealing surface 7 is 3.
1m, the width of the U-shaped conductor piece is 15m, and the water is 275mQ.
I heated it and measured the amount of radio wave leakage at a distance of 50 degrees from the periphery of the door 5. As a result, when G=5na, AB=15
.. At 4X15.9mm, QM/G=2.1, the amount of radio wave leakage is less than O,1mw/d, and if G = 8 mm is increased, AB=20 is required to suppress the amount of radio wave leakage to the same level as above. .4X18.4rm, Q M/G=1
.. 75, the area of the mouth-shaped cross section also becomes large. Through such experiments, by narrowing the gap G of the inlet 25 to about 4 to 8 mm and making QM/G 1.5 or more,
It has been found that the dimensions A and B of the cavity resonator 12 having a cross-section can be made considerably smaller than 30.6 mm, which is one-fourth of the working wavelength λ.

また、容量調整素子26.27により等価容量Cを調整
して並列共振を確実に生じるようにし、電波シール効果
を増す。さらに第1の壁面8近傍の容量調整素子27の
方が張出面11の端部近傍の容量調整素子26より突出
寸法が長いので、誘電体カバー13をはめこむとき、ま
ず容量調整素子27が第1の壁面8に沿って挿入され、
位置決めされた後で容量調整素子26が入口25に入っ
ていく。したがって容量調整素子26が張出面11をy
z力方向ら押して変形する恐れがない。なお容量調整素
子26は誘電体カバー13の固着状態において、2方向
からの外力に対して張出面11の変形を最小限に抑える
役目も果たしている。
In addition, the equivalent capacitance C is adjusted by the capacitance adjustment elements 26 and 27 to ensure parallel resonance, thereby increasing the radio wave sealing effect. Furthermore, since the capacitance adjustment element 27 near the first wall surface 8 has a longer protruding dimension than the capacitance adjustment element 26 near the end of the projecting surface 11, when fitting the dielectric cover 13, the capacitance adjustment element 27 first 1 along the wall surface 8,
After being positioned, the capacitive adjustment element 26 enters the inlet 25. Therefore, the capacitance adjustment element 26
There is no risk of deformation due to pushing from the z force direction. Note that the capacitance adjusting element 26 also plays the role of minimizing deformation of the projecting surface 11 against external forces from two directions when the dielectric cover 13 is in a fixed state.

発明の効果 以上のように本発明によると、多数のコ字状導体片と第
1の壁面とで囲まれた口字状断面の空胴共振器の入口を
コ字状導体片の張出面の端部切口と第1の壁面を対向さ
せた構成で狭小なものとし、かつQM/G≧1.5のよ
うに寸法を選び、2個の容量調整素子によって並列共振
をより確実に生じるようにすることにより空胴共振器の
断面寸法AおよびBを使用波長λの4分の1よりも小さ
くできるので、空胴共振器の形状が簡単となり、ドアの
小形化、薄形化が図れ、組立容易なコンパクトな高周波
加熱装置を提供でき、経済的波及効果も大なるものがあ
る。
Effects of the Invention As described above, according to the present invention, the entrance of a cavity resonator having a square cross section surrounded by a large number of U-shaped conductor pieces and the first wall surface is connected to the projecting surface of the U-shaped conductor piece. The end cut and the first wall face each other to make it narrow, and the dimensions are selected such that QM/G≧1.5, and two capacitance adjustment elements are used to more reliably generate parallel resonance. By doing so, the cross-sectional dimensions A and B of the cavity resonator can be made smaller than one quarter of the wavelength used, λ, so the shape of the cavity resonator can be simplified, the door can be made smaller and thinner, and the assembly can be made easier. A simple and compact high-frequency heating device can be provided, and the economic ripple effect is also large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による高周波加熱装置のドア
5の金属部だけを示す要部斜視図、第2図は同ドア周囲
の電波シール部を示す要部断面図、第3図は同電界方向
を示す図、第4図はドア5の電波シール部簡易等価回路
図、第5図は同電波シール部の電界分布図、第6図は同
終端を短絡した平行板線路の電界分布図、第7図は従来
の電波シール構造を示す構成説明図、第8図は同電界方
向を示す図である。
FIG. 1 is a perspective view of a main part showing only the metal part of a door 5 of a high-frequency heating device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a main part showing a radio wave seal around the door, and FIG. Figure 4 is a simplified equivalent circuit diagram of the radio wave seal part of the door 5, Figure 5 is an electric field distribution diagram of the radio wave seal part, and Figure 6 is the electric field distribution of the parallel plate line with the same termination short-circuited. FIG. 7 is a configuration explanatory diagram showing a conventional radio wave seal structure, and FIG. 8 is a diagram showing the direction of the electric field.

Claims (1)

【特許請求の範囲】[Claims] 加熱室(1)開口部を開閉するドア(5)の周縁に位置
しドア(5)閉成時には加熱室(1)開口部のフランジ
(2)に平面接触する封口面(7)と、この封口面(7
)端部よりフランジ(2)に対して略直角の第1の壁面
(8)と、この第1の壁面(8)と略直角の第2の壁面
(9)と、この第2の壁面(9)と略直角の立ち上がり
面(23)と、この立ち上がり面(23)と略直角の張
出面(11)とを備えた高周波加熱装置において、第2
の壁面(9)に端面が接した多数のコ字状導体片(10
)を設け、第1の壁面(8)とコ字状導体片(10)と
によりロ字状断面を持つと共に入口(25)を有する空
胴共振器(12)を形成し、かつ入口(25)と空胴断
面の面積中心(0)の距離(l_M)と、入口寸法(G
)との比l_M/Gを1.5以上とし、第1の壁面(8
)に向かって張り出したコ字状導体片(10)の張出面
(11)の端部近傍および第1の壁面(8)近傍それぞ
れに入口(25)をふさぐ誘電体カバー(13)から突
き出した容量調整素子(26)、(27)を設け、かつ
第1の壁面(8)近傍の容量調整素子(27)の突出寸
法をもう一方の容量調整素子(26)よりも大きくした
ことを特徴とする高周波加熱装置。
A sealing surface (7) located at the periphery of the door (5) that opens and closes the opening of the heating chamber (1) and in planar contact with the flange (2) of the opening of the heating chamber (1) when the door (5) is closed; Sealing side (7
) a first wall surface (8) substantially perpendicular to the flange (2) from the end, a second wall surface (9) substantially perpendicular to this first wall surface (8), and this second wall surface ( 9), a rising surface (23) substantially perpendicular to the rising surface (23), and a projecting surface (11) substantially perpendicular to the rising surface (23).
A large number of U-shaped conductor pieces (10
), the first wall surface (8) and the U-shaped conductor piece (10) form a cavity resonator (12) having a square-shaped cross section and an inlet (25); ), the distance (l_M) between the area center (0) of the cavity cross section, and the inlet dimension (G
) with the ratio l_M/G of 1.5 or more, and the first wall surface (8
) of the U-shaped conductor piece (10) protruding from the dielectric cover (13) that blocks the entrance (25) near the end of the projecting surface (11) and near the first wall surface (8), respectively. Capacitance adjusting elements (26) and (27) are provided, and the protruding dimension of the capacitance adjusting element (27) near the first wall surface (8) is made larger than the other capacitance adjusting element (26). High frequency heating equipment.
JP18927486A 1986-08-12 1986-08-12 Radio frequency heater Pending JPS6345792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18927486A JPS6345792A (en) 1986-08-12 1986-08-12 Radio frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18927486A JPS6345792A (en) 1986-08-12 1986-08-12 Radio frequency heater

Publications (1)

Publication Number Publication Date
JPS6345792A true JPS6345792A (en) 1988-02-26

Family

ID=16238573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18927486A Pending JPS6345792A (en) 1986-08-12 1986-08-12 Radio frequency heater

Country Status (1)

Country Link
JP (1) JPS6345792A (en)

Similar Documents

Publication Publication Date Title
US4254318A (en) Door seal arrangement for high-frequency heating apparatus
US4868359A (en) Radiation sealed door in a microwave heating apparatus
KR890004507B1 (en) Device for preventing electromagnetic wave in microwaves range
JPS6345792A (en) Radio frequency heater
JP2717401B2 (en) High frequency heating equipment
JPS6345795A (en) Radio frequency heater
JPS6345793A (en) Radio frequency heater
JPS6343287A (en) Radio frequency heater
JPS6345791A (en) Radio frequency heater
JPS6372090A (en) Radio frequency heater
JPS6372096A (en) Radio frequency heater
JPS6380496A (en) Radio frequency heater
JPS6345794A (en) Radio frequency heater
JPS6372089A (en) Radio frequency heater
JPS6372095A (en) Radio frequency heater
JPH08316679A (en) Electromagnetic shielding box and electric equipment having this case
JPS62249386A (en) Radio frequency heater
JPH10116684A (en) High frequency heating device
JPS6343288A (en) Radio frequency heater
JPS628919B2 (en)
JPS6372093A (en) Radio frequency heater
JPS62249389A (en) Radio frequency heater
JPS6258162B2 (en)
JPS62249387A (en) Radio frequency heater
JPS6372094A (en) Radio frequency heater