JP2717401B2 - High frequency heating equipment - Google Patents

High frequency heating equipment

Info

Publication number
JP2717401B2
JP2717401B2 JP61215373A JP21537386A JP2717401B2 JP 2717401 B2 JP2717401 B2 JP 2717401B2 JP 61215373 A JP61215373 A JP 61215373A JP 21537386 A JP21537386 A JP 21537386A JP 2717401 B2 JP2717401 B2 JP 2717401B2
Authority
JP
Japan
Prior art keywords
wall surface
cavity
wall
entrance
door
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61215373A
Other languages
Japanese (ja)
Other versions
JPS6372097A (en
Inventor
康司 岩淵
哲男 窪田
幸雄 田中
正春 多和田
Original Assignee
株式会社日立ホームテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ホームテック filed Critical 株式会社日立ホームテック
Priority to JP61215373A priority Critical patent/JP2717401B2/en
Publication of JPS6372097A publication Critical patent/JPS6372097A/en
Application granted granted Critical
Publication of JP2717401B2 publication Critical patent/JP2717401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高周波加熱装置のドア構造の改良に関する。 従来の技術 高周波加熱装置のドア周縁に特性インピーダンスの異
なる溝を深さ方向に設け,この溝の深さ方向の特性イン
ピーダンスを不達成にすることにより実質的深さが使用
波長の4分の1より小さくしても,溝の入口でのインピ
ーダンスが最大となり,チョーク溝と同様に漏洩電波を
少なくすることができるという提案が特開昭60−25190
号公報にある。この従来例では,溝の深さ方向に幅の異
なる溝を設けたり,溝の周縁の形状を深さ方向に変形す
るなどかなり形状が複雑である。また,特性インピーダ
ンスの不連続部における反射防止を考慮する必要があ
る。 また,第7図で示すようにドア5の外周に電波漏洩防
止用の空胴共振器12を屈曲形成して口字状断面とし,空
胴共振器12の一周壁である張出面11の端部切口と空胴共
振器12の他の壁面(第1の壁面8)とを対向させた入口
25を有する構造が実開昭61−795号公報に示されてい
る。この従来例では空胴共振器12の周壁が複数の導体片
に分割されているとは記載されていない。したがって空
胴共振器12内には第8図に示す進行方向がyz面以外にも
生じる高次モードの電波が入ってくるため,空胴共振器
12が共振状態から外れ,電波漏洩防止効果が小さくな
る。仮りに第7図の空胴共振器12の立ち上がり面23と張
出面11を長手方向(x方向)に使用波長の1/2より小さ
い幅の導体片に分割したと考える。この場合,空胴共振
器12を等価容量Cと等価インダクタンスLとから成る並
列共振素子をドア5の長手方向(x方向)に複数個並べ
たものとみなせる。各並列共振素子において,後述の
(2)式で示すように、空胴共振器12の入口25の第1の
壁面8側端部と空胴断面の面積中心Oの距離lMと、入口
寸法25との比lM/Gが大きいほど等価容量Cが大きくな
る。第7図の空胴共振器12では 後述する本発明の に比べて等価容量Cが小さくなる。その分だけ後述の
(3)式より等価インダクタンスLを大きくして漏洩電
波の周波数に共振させるようにしなければならない。そ
のため,後述の(1)式から明らかなように,空胴共振
器12の断面ABを大きくする必要があるので,従来例の空
胴共振器12は大形となり,ドアの小形化,低コスト化に
は不向きである。 なお,第7図は実開昭61−795号公報の明細書の図面
の各部寸法を同一比率で示したものであり,また,構成
要素の名称および番号は本発明と対応する部分は同じに
してある。 発明が解決しようとする問題点 溝の深さ方向に,複雑な形状をした溝を設ける必要が
あり,また,特性インピーダンスの不連続部における反
射防止に手間が掛かったり,ドアの小形化に不向きな点
である。 問題点を解決するための手段 ドア周囲に口字状断面を持つ漏洩電波防止用の空胴共
振器を設け,この空胴共振器の4面のうち3面をドアの
周囲の長手方向に設けた多数のコ字状導体片で形成し,
残りの一面とコ字状導体片の端部切口とを互いに対向さ
せて空胴共振器に漏洩電波を導入れる入口とし、かつこ
の入口のコ字状導体片に対向する壁面側端部と空胴断面
の断面中心Oの距離lMと、入口寸法Gとの比lM/Gを1.5
以上とし,入口の容量調整素子を設けたものである。 作 用 上記のように構成することにより,コ字状導体片によ
り漏洩しようとする電波はTEM波として口字状断面の空
胴共振器内に導びき入れられる。この空胴共振器は,近
似的に1巻きの筒状コイルとして空胴断面積に比例した
等価インダクタンスLと,空胴の入口付近の乱れ電界に
基づく等価容量Cから成る並列共振素子を形成する。空
胴の入口を小さくし容量素子を設けるとCが大きくな
り,その分だけLを小さくできる。すなわち空胴断面積
を小さくできる。口字状断面の各辺がそれぞれ使用波長
の4分の1よりも小さい寸法で,電波シール効果が最大
となる。 実施例 本発明の一実施例による高周波加熱装置の構成および
作用を図面とともに説明する。 第1図,第2図において,1は加熱室で,2は加熱室1の
開口部を取り囲むフランジで,3は外箱である。4は加熱
室1内を覗くためにドア5の中央部にできるだけ広範囲
に設けた小穴群である。6はこの小穴群の周囲を取り囲
む段部で,この段部6は小穴群4の内面に固着した透光
性のドア内カバー15の端部が清掃の際などにはがれるの
を防ぐと共に,ドア5閉成時にフランジ2と平面接触す
る封口面7の平面度を良くするものである。8は封口面
7の端部よりフランジ2に対して略直角に折り曲げた第
1の壁面である。9は第1の壁面8の端部よりフランジ
2に対して略平行に延長した第2の壁面である。10は第
2の壁面9に溶接した多数のコ字状導体片である。この
コ字状導体片10は第2の壁面9に溶接される取り付け面
19と,第1の壁面8にほぼ平行に対向する立ち上がり面
23と,端部切口を第1の壁面8に対向させた張出面11と
の3面から成る。ドア5の周囲の長手方向に対する各コ
字状導体片10の幅D(x方向)は使用波長の2分の1よ
りも小さくしている。 第1の壁面8とコ字状導体片10とで囲まれた口字状断
面は狭小な入口25を有する空胴共振器12を形成する。こ
の空胴共振器12の入口25をふさぐ不透明な誘電体カバー
13から突き出した突起片14は,コ字状導体片10の立ち上
がり面23に設けた取り付け穴18に引っ掛かるようになっ
ている。ドア5の前面を覆う透光性のドア外カバー16を
保持するための誘電体製のドア外枠24から突き出した突
起片17は第2の壁面9の最外周縁端部20に引っ掛かるよ
うになっている。 また,誘電体カバー13の裏面から空胴共振器12の内部
に向かって容量調整素子26を突き出している。 次に上記のように構成した実施例の作用効果を説明す
る。加熱室1開口部を取り囲むフランジ2と封口面7と
の平面接触部に向かう入射電波に対して,第4図のよう
な簡易等価回路によって定性的に電波シール効果を説明
する。21はフランジ2と封口面7との平面接触部に対応
する容量で,一種のバイパスコンデンサとして作用す
る。平面接触部は平行板線路と考えられ,この線路の容
量は平行板のキャップに比例するので容量21は上記平面
接触部のキャップが小さいほど大きくなり,電波シール
効果が増す。コ字状導体片10の幅D(第3図のx方向)
を使用波長の2分の1より小さくしているので,第1の
壁面8と各コ字状導体片10とで形成された口字状断面を
持つ空胴共振器12の内部に入り込んだ電波の進行方向は
第3図のyz面内に限定される。張出面11が無ければ第6
図のように電界が分布し,平行板線路の長さlが自由空
間波長λの約4分の1で並列共振を起こし,インピーダ
ンスが最大となり,電波漏洩を防止することができる
が,2450MHzの高周波加熱装置ではlは30.6mmで,これを
ドアに実装しようとすると厚くなり,意匠的にもコスト
的にも不利である。 本実施例のように,張出面11を設けて,口字状断面を
持ち狭小な入口25を有する空胴共振器12を形成した場合
は,第5図のような電界分布となる。この場合,張出面
11の端部切口付近と第1の壁面8との間に電気力線の大
部分が集まっている。空胴共振器12は第4図において等
価インダクタンスLと等価容量Cとから成る並列共振素
子として表わされている。等価インダクタンスLは,近
似的に空胴共振器12と同じ断面の1巻きの筒状コイルと
して働き,そのコイルの定数としての等価的なインダク
タンスを意味し,筒軸方向(x方向)の単位長あたりの
値は(1)式のようになる。また,等価容量Cは空胴共
振器12の入口25付近の乱れ電界に基づくもので,近似的
に(2)式で与えられる。 ここで AB :空胴共振器12の口字状断面の面積 μO:空胴共振器12内の媒質の透磁率 e :2.27 lM :空胴共振器12の入口25の第1の壁面8側端部と空胴
断面の面積中心Oとの距離 εO:空胴共振器12内の媒質の誘電率 K :入口25付近の形状に関係する補正項 G :入口25の間隙(入口寸法) 空胴共振器12の共振周波数fOは(3)式で表わせる。 (2)式より入口25の間隙Gを小さくするほど,ある
いはlM/Gを大きくするほど等価容量Cが大きくなること
がわかる。共振周波数fOを一定とすると,等価容量Cが
大きくなるほど等価インダクタンスLが小さくてよいこ
とが(3)式からわかる。等価インダクタンスLを小さ
くするには(1)式より空胴共振器12の口字状断面の面
積ABを小さくすればよい。すなわち,空胴共振器12を小
形にするためには,入口25の間隙Gを狭くして等価容量
Cを大きくし,その分だけ空胴面積ABを小かくして等価
インダクタンスLを小さくし,一定の共振周波数fO(高
周波加熱装置の加熱周波数)で並列共振を起こさせて,
入口25におけるインピーダンスを最大にし,電波漏洩を
防止すればよい。 加熱周波数が2,450MHz,高周波出力が500Wの高周波加
熱装置において,フランジ2と封口面7との間の間隙を
2mm,張出面11と封口面7との段差を3mm,コ字状導体片の
幅Dを15mmとし,水275mlを加熱してドア5の周囲から5
cmの距離で電波漏洩量を測定してみた。その結果,G=5m
mのときAB=15.4×45.9mm, 電波漏洩量が0.1mw/cm2以下となり,G=8mmと大きくする
と,上記と同程度に少ない電波漏洩量に抑えるためには
AB=20.4×18.4mm, というように口字状断面の面積も大きくなる。このよう
な実験により,入口25の間隙Gを4〜8mm位と狭小にし
てlM/Gを1.5以上にすることにより,口字状断面の空胴
共振器12の寸法Aおよび方法Bをそれぞれ使用波長λの
4分の1である30.6mmよりもかなり小さくできることが
明らかとなっている。 また,誘電体カバー13の裏面から空胴共振器12の内部
に向かって容量調整素子26を突き出しているので,入口
25の電気力線の集中したところへ誘電体が挿入されるこ
とになるので,等価容量Cが大きくなり,その分だけ等
価インダクタンスLが小さくてよい。すなわち容量調整
素子26を設けることにより,空胴共振器12を一層小形化
できるようになる。 発明の効果 以上のように本発明によると,多数のコ字状導体片と
第1の壁面とで囲まれた口字状断面の空胴共振器の入口
をコ字状導体片の張出面の端部切口と第1の壁面を対向
させた構成で狭小なものとし, のような寸法を選び,かつ誘電体カバーの裏面から空胴
共振器の内部に向かって容量調整素子を突き出すように
したので,空胴共振器の断面寸法AおよびBを使用波長
λの4分の1よりも小さくでき,共振空胴器の形状が簡
単となり,ドアの小形化,薄形化が図れ,コンパクトな
高周波加熱装置を提供でき,経済的波及効果も大なるも
のがある。
Description: TECHNICAL FIELD The present invention relates to an improvement in a door structure of a high-frequency heating device. 2. Description of the Related Art Grooves having different characteristic impedances are provided in the depth direction on the periphery of a door of a high-frequency heating device, and the characteristic impedance in the depth direction of the grooves is not achieved. Japanese Patent Application Laid-Open No. 60-25190 proposes that the impedance at the entrance of the groove can be maximized even if it is made smaller, and the leaked radio wave can be reduced as in the case of the choke groove.
No. in the official gazette. In this conventional example, the shape is considerably complicated, such as providing grooves having different widths in the depth direction of the groove, or deforming the shape of the peripheral edge of the groove in the depth direction. In addition, it is necessary to consider prevention of reflection at a discontinuous portion of the characteristic impedance. Also, as shown in FIG. 7, a cavity resonator 12 for preventing radio wave leakage is formed on the outer periphery of the door 5 to have a bent cross-section, and the end of the projecting surface 11 which is one peripheral wall of the cavity resonator 12 is formed. Entrance where the partial cut and the other wall surface (the first wall surface 8) of the cavity resonator 12 are opposed to each other.
A structure having 25 is shown in Japanese Utility Model Laid-Open No. 61-795. In this conventional example, it is not described that the peripheral wall of the cavity resonator 12 is divided into a plurality of conductor pieces. Accordingly, radio waves of higher-order modes in which the traveling direction shown in FIG.
12 deviates from the resonance state, and the effect of preventing radio wave leakage decreases. It is assumed that the rising surface 23 and the projecting surface 11 of the cavity 12 shown in FIG. 7 are divided into conductor pieces having a width smaller than 1/2 of the wavelength used in the longitudinal direction (x direction). In this case, the cavity resonator 12 can be regarded as a plurality of parallel resonant elements each having an equivalent capacitance C and an equivalent inductance L arranged in the longitudinal direction (x direction) of the door 5. In each of the parallel resonant elements, as shown by the following expression (2), the distance l M between the end of the cavity 25 on the first wall 8 side of the entrance 25 and the area center O of the cavity cross section, and the entrance dimension As the ratio l M / G to 25 increases, the equivalent capacitance C increases. In the cavity resonator 12 of FIG. The present invention described below , The equivalent capacitance C becomes smaller. It is necessary to increase the equivalent inductance L from equation (3) described later to resonate with the frequency of the leaked radio wave. For this reason, as is apparent from equation (1) described later, it is necessary to increase the cross section AB of the cavity resonator 12, so that the cavity resonator 12 of the conventional example becomes large, so that the door can be downsized and the cost can be reduced. It is not suitable for transformation. FIG. 7 shows the dimensions of each part of the drawings of the specification of Japanese Utility Model Application Laid-Open No. Sho 61-795 at the same ratio, and the names and numbers of the constituent elements are the same as those of the present invention, and the same parts are used. It is. Problems to be Solved by the Invention It is necessary to provide a groove having a complicated shape in the depth direction of the groove, and it takes time to prevent reflection at discontinuous portions of characteristic impedance, and is not suitable for downsizing doors. It is a point. Means for Solving the Problems A cavity is provided around the door for preventing leaked radio waves having a square cross section, and three of the four surfaces of the cavity are provided in the longitudinal direction around the door. Formed of many U-shaped conductor pieces,
The remaining one surface and the end cut of the U-shaped conductor piece are opposed to each other to serve as an entrance through which leaked radio waves are introduced into the cavity resonator. The ratio l M / G of the distance l M of the section center O of the trunk section to the entrance dimension G is 1.5.
As described above, the capacitance adjusting element at the entrance is provided. Operation With the configuration described above, radio waves to be leaked by the U-shaped conductor pieces are guided into the cavity resonator having a square cross section as TEM waves. This cavity resonator forms a parallel resonance element composed of an equivalent inductance L proportional to the cavity cross-sectional area and an equivalent capacitance C based on a turbulent electric field near the cavity entrance, as a cylindrical coil of approximately one turn. . If the entrance of the cavity is made small and a capacitive element is provided, C becomes large, and L can be reduced accordingly. That is, the cavity sectional area can be reduced. Each side of the bracket-shaped cross section has a size smaller than one quarter of the used wavelength, and the radio wave sealing effect is maximized. Embodiment The configuration and operation of a high-frequency heating device according to an embodiment of the present invention will be described with reference to the drawings. 1 and 2, reference numeral 1 denotes a heating chamber, 2 denotes a flange surrounding the opening of the heating chamber 1, and 3 denotes an outer box. Reference numeral 4 denotes a group of small holes provided as widely as possible in the center of the door 5 to look inside the heating chamber 1. Reference numeral 6 denotes a step portion surrounding the small hole group. The step portion 6 prevents the end of the translucent door inner cover 15 fixed to the inner surface of the small hole group 4 from peeling off at the time of cleaning or the like. 5 is to improve the flatness of the sealing surface 7 that comes into planar contact with the flange 2 when the shutter is closed. Reference numeral 8 denotes a first wall surface which is bent substantially perpendicularly to the flange 2 from the end of the sealing surface 7. Reference numeral 9 denotes a second wall extending from the end of the first wall 8 substantially parallel to the flange 2. Reference numeral 10 denotes a number of U-shaped conductor pieces welded to the second wall 9. This U-shaped conductor piece 10 is a mounting surface to be welded to the second wall surface 9.
19 and the rising surface which is almost parallel to the first wall 8
23 and an overhanging surface 11 whose end cut is opposed to the first wall surface 8. The width D (x direction) of each of the U-shaped conductor pieces 10 with respect to the longitudinal direction around the door 5 is smaller than one half of the used wavelength. The square cross section surrounded by the first wall surface 8 and the U-shaped conductor piece 10 forms a cavity resonator 12 having a narrow entrance 25. Opaque dielectric cover covering the entrance 25 of the cavity 12
The projecting piece 14 protruding from 13 is hooked on a mounting hole 18 provided on the rising surface 23 of the U-shaped conductor piece 10. The projecting piece 17 protruding from the dielectric door outer frame 24 for holding the translucent door outer cover 16 covering the front surface of the door 5 is hooked on the outermost peripheral edge 20 of the second wall 9. Has become. Further, the capacitance adjusting element 26 protrudes from the back surface of the dielectric cover 13 toward the inside of the cavity resonator 12. Next, the operation and effect of the embodiment configured as described above will be described. The radio wave sealing effect will be qualitatively described by a simple equivalent circuit as shown in FIG. 4 with respect to the radio wave incident toward the plane contact portion between the flange 2 surrounding the opening of the heating chamber 1 and the sealing surface 7. Reference numeral 21 denotes a capacitance corresponding to a plane contact portion between the flange 2 and the sealing surface 7, and acts as a kind of bypass capacitor. The plane contact portion is considered to be a parallel plate line, and the capacity of this line is proportional to the cap of the parallel plate. Therefore, the capacitance 21 increases as the cap of the plane contact portion decreases, and the radio wave sealing effect increases. Width D of the U-shaped conductor piece 10 (x direction in FIG. 3)
Is smaller than one half of the wavelength used, the radio wave entering the cavity 12 having a square cross-section formed by the first wall 8 and each of the U-shaped conductor pieces 10. Is limited to the yz plane in FIG. 6 without overhang surface 11
As shown in the figure, the electric field is distributed, and parallel resonance occurs when the length l of the parallel plate line is about one-fourth of the free space wavelength λ, the impedance becomes maximum, and the electric wave leakage can be prevented. In a high-frequency heating device, 1 is 30.6 mm, and when it is mounted on a door, it becomes thick, which is disadvantageous in terms of design and cost. In the case where the overhanging surface 11 is provided to form the cavity resonator 12 having a square cross section and a narrow entrance 25 as in this embodiment, the electric field distribution as shown in FIG. 5 is obtained. In this case, the overhang surface
Most of the lines of electric force are gathered between the vicinity of the 11 end cut and the first wall surface 8. The cavity resonator 12 is shown in FIG. 4 as a parallel resonance element having an equivalent inductance L and an equivalent capacitance C. The equivalent inductance L functions as a one-turn cylindrical coil having a cross section approximately the same as that of the cavity resonator 12, and means an equivalent inductance as a constant of the coil, and is a unit length in the cylinder axis direction (x direction). The value per is as shown in equation (1). The equivalent capacitance C is based on a turbulent electric field near the entrance 25 of the cavity resonator 12, and is approximately given by the equation (2). Here, AB: the area μ of the square cross section of the cavity resonator 12 O : the magnetic permeability e of the medium in the cavity resonator 12: 2.27 l M : the first wall surface 8 of the entrance 25 of the cavity resonator 12 Distance between the side end and the center O of the area of the cavity cross section ε O : Dielectric constant of the medium in the cavity resonator K: Correction term related to the shape near the entrance 25 G: Gap of the entrance 25 (entrance dimension) The resonance frequency f O of the cavity resonator 12 can be expressed by equation (3). From equation (2), it can be seen that the equivalent capacitance C increases as the gap G of the inlet 25 decreases or l M / G increases. From the equation (3), assuming that the resonance frequency f O is constant, the equivalent inductance L may be smaller as the equivalent capacitance C is larger. In order to reduce the equivalent inductance L, the area AB of the square cross section of the cavity resonator 12 may be reduced according to the equation (1). That is, in order to reduce the size of the cavity resonator 12, the equivalent capacitance C is increased by narrowing the gap G at the inlet 25, and the equivalent inductance L is reduced by decreasing the cavity area AB by that much, and the constant Parallel resonance occurs at the resonance frequency f O (heating frequency of the high-frequency heating device),
The impedance at the entrance 25 should be maximized to prevent radio wave leakage. In a high-frequency heating device with a heating frequency of 2,450 MHz and a high-frequency output of 500 W, the gap between the flange 2 and the sealing surface 7
2 mm, the step between the overhanging surface 11 and the sealing surface 7 was 3 mm, the width D of the U-shaped conductor piece was 15 mm, and 275 ml of water was heated to 5 mm from the periphery of the door 5.
I measured the amount of radio wave leakage at a distance of cm. As a result, G = 5m
AB = 15.4 × 45.9mm when m If the amount of radio wave leakage becomes 0.1 mw / cm 2 or less and G is increased to 8 mm, in order to suppress the amount of radio wave leakage as small as above,
AB = 20.4 × 18.4mm, Thus, the area of the square-shaped cross section also increases. According to such an experiment, the dimension A and the method B of the cavity resonator 12 having a square-shaped cross section are respectively set by narrowing the gap G of the inlet 25 to about 4 to 8 mm and setting l M / G to 1.5 or more. It is clear that it can be considerably smaller than 30.6 mm, which is one quarter of the used wavelength λ. Also, since the capacitance adjusting element 26 protrudes from the back surface of the dielectric cover 13 toward the inside of the cavity resonator 12, the
Since the dielectric is inserted at the location where the 25 lines of electric force are concentrated, the equivalent capacitance C is increased, and the equivalent inductance L may be reduced accordingly. That is, by providing the capacitance adjusting element 26, the size of the cavity resonator 12 can be further reduced. Advantageous Effects of the Invention As described above, according to the present invention, the entrance of the cavity resonator having a U-shaped cross section surrounded by a number of U-shaped conductor pieces and the first wall is connected to the projecting surface of the U-shaped conductor piece. The end cut and the first wall face each other to be narrow, Is selected, and the capacitance adjusting element is projected from the back surface of the dielectric cover toward the inside of the cavity. 1, the shape of the resonant cavity can be simplified, the door can be reduced in size and thickness, a compact high-frequency heating device can be provided, and the economic ripple effect can be increased.

【図面の簡単な説明】 第1図は本発明の一実施例による高周波加熱装置のドア
5の金属部だけを示す要部斜視図,第2図は同ドア周囲
の電波シール部を示す要部断面図,第3図は同電界方向
を示す図,第4図はドア5の電波シール部の簡易等価回
路図,第5図は同電波シール部の電界分布図,第6図は
同終端を短絡した平行板線路の電界分布図,第7図は従
来の電波シール構造を示す構成説明図,第8図は同電界
方向を示す図である。 1……加熱室、2……フランジ、4……小穴群 5……ドア、6……段部、7……封口面 8……第1の壁面、9……第2の壁面 10……コ字状導体片、11……張出面 12……空胴共振器、13……誘電体カバー 19……取り付け面、23……立ち上がり面 25……入口、26……容量調整素子 lM……空胴共振器12の入口25の第1の壁面8側端部と空
胴断面の面積中心Oとの距離、 G……入口寸法
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a main part showing only a metal part of a door 5 of a high-frequency heating device according to an embodiment of the present invention, and FIG. 2 is a main part showing a radio wave seal part around the door. FIG. 3 is a diagram showing the same electric field direction, FIG. 4 is a simplified equivalent circuit diagram of a radio wave seal portion of the door 5, FIG. 5 is an electric field distribution diagram of the radio wave seal portion, and FIG. FIG. 7 is an explanatory diagram of the electric field distribution of a short-circuited parallel plate line, FIG. 7 is an explanatory diagram showing the configuration of a conventional radio wave seal structure, and FIG. 8 is a diagram showing the same electric field direction. DESCRIPTION OF SYMBOLS 1 ... Heating chamber, 2 ... Flange, 4 ... Small hole group 5 ... Door, 6 ... Step part, 7 ... Sealing surface 8 ... 1st wall surface, 9 ... 2nd wall surface 10 ... U-shaped conductor piece, 11 projecting surface 12 cavity resonator 13 dielectric cover 19 mounting surface 23 rising surface 25 entrance 26 26 capacitance adjusting element l M ... Distance between the end of the cavity 25 on the first wall 8 side of the entrance 25 and the center O of the area of the cavity section;

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−124901(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-61-124901 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.加熱室(1)開口部を開閉するドア(5)の周縁に
位置し、ドア(5)閉成時には加熱室(1)開口部のフ
ランジ(2)に平面接触する封口面(7)と、この封口
面(7)の端部よりフランジ(2)に対して略直角の第
1の壁面(8)と、この第1の壁面(8)と略直角の第
2の壁面(9)と、この第2の壁面(9)と略直角の立
ち上がり面(23)と、この立ち上がり面(23)と略直角
の張出面(11)とを備えた高周波加熱装置において、第
2の壁面(9)に端面が接した多数のコ字状導体片(1
0)を設け、第1の壁面(8)とコ字状導体片(10)と
によりロ字状断面を形成すると共に入口(25)を有する
空胴共振器(12)を形成し、かつ入口(25)の第1の壁
面(8)側端部と空胴断面の面積中心(O)の距離
(lM)と、入口寸法(G)との比lM/Gを1.5以上とし、
かつ入口(25)をふさぐ誘電体カバー(13)の裏面から
空胴共振器(12)の内部に向かって容量調整素子(26)
を突き出し、コ字状導体片(10)は第2の壁面(9)に
接する取り付け面(19)と、第1の壁面(8)にほぼ平
行に対向する立ち上がり面(23)と、端部切口を第1の
壁面(8)に対向させた張出面(11)との3面から成
り、空胴共振器(12)の入口(25)は張出面(11)の端
部切口と第1の壁面(8)を対向させて形成したことを
特徴とする高周波加熱装置。
(57) [Claims] A sealing surface (7), which is located at the periphery of a door (5) for opening and closing the heating chamber (1) opening and which is in flat contact with the flange (2) of the heating chamber (1) opening when the door (5) is closed; A first wall surface (8) substantially perpendicular to the flange (2) from the end of the sealing surface (7), a second wall surface (9) substantially perpendicular to the first wall surface (8), In a high-frequency heating apparatus having a rising surface (23) substantially perpendicular to the second wall surface (9) and a projecting surface (11) substantially perpendicular to the rising surface (23), the second wall surface (9) is provided. A large number of U-shaped conductor pieces (1
0) to form a cavity (12) having a square cross section by the first wall surface (8) and the U-shaped conductor piece (10), and having an inlet (25). The ratio l M / G of the distance (l M ) between the end of the first wall surface (8) side of (25) and the area center (O) of the cavity section and the entrance dimension (G) is 1.5 or more;
And a capacitance adjusting element (26) from the back of the dielectric cover (13) covering the entrance (25) to the inside of the cavity resonator (12)
And a U-shaped conductor piece (10) has a mounting surface (19) in contact with the second wall surface (9), a rising surface (23) substantially parallel to the first wall surface (8), and an end portion. An opening (25) of the cavity (12) is provided with an end cut of the overhanging surface (11) and a first surface of the overhanging surface (11) with the cutout facing the first wall surface (8). A high-frequency heating device characterized in that the wall surfaces (8) are formed so as to face each other.
JP61215373A 1986-09-12 1986-09-12 High frequency heating equipment Expired - Lifetime JP2717401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61215373A JP2717401B2 (en) 1986-09-12 1986-09-12 High frequency heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61215373A JP2717401B2 (en) 1986-09-12 1986-09-12 High frequency heating equipment

Publications (2)

Publication Number Publication Date
JPS6372097A JPS6372097A (en) 1988-04-01
JP2717401B2 true JP2717401B2 (en) 1998-02-18

Family

ID=16671221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61215373A Expired - Lifetime JP2717401B2 (en) 1986-09-12 1986-09-12 High frequency heating equipment

Country Status (1)

Country Link
JP (1) JP2717401B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709070B2 (en) * 2001-12-20 2010-05-04 The Procter & Gamble Company Articles and methods for applying color on surfaces
CN109895800A (en) * 2017-12-08 2019-06-18 中车青岛四方机车车辆股份有限公司 A kind of rail vehicle interior pressure monitoring system and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124901A (en) * 1984-11-22 1986-06-12 Toppan Printing Co Ltd Production of color separating filter

Also Published As

Publication number Publication date
JPS6372097A (en) 1988-04-01

Similar Documents

Publication Publication Date Title
JPH0475639B2 (en)
US4868359A (en) Radiation sealed door in a microwave heating apparatus
JP2717401B2 (en) High frequency heating equipment
JP2673347B2 (en) High frequency heating equipment
JPH0569275B2 (en)
JPH0569274B2 (en)
JPS6345793A (en) Radio frequency heater
JPS6380496A (en) Radio frequency heater
JPS6345794A (en) Radio frequency heater
JPS6345791A (en) Radio frequency heater
JPH0569276B2 (en)
JPS6345792A (en) Radio frequency heater
JPH0569277B2 (en)
JPS6372090A (en) Radio frequency heater
JPS6372094A (en) Radio frequency heater
JPS6047715B2 (en) High frequency heating device
JPS6343290A (en) Radio frequency heater
JPS6372093A (en) Radio frequency heater
JPH09167902A (en) Dielectric filter
JP3609536B2 (en) microwave
JPS6343289A (en) Radio frequency heater
JPS6372092A (en) Radio frequency heater
JPS6343288A (en) Radio frequency heater
JPS62249389A (en) Radio frequency heater
JPS62249386A (en) Radio frequency heater

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term