JPS6345728A - Circuit breaker - Google Patents

Circuit breaker

Info

Publication number
JPS6345728A
JPS6345728A JP18817386A JP18817386A JPS6345728A JP S6345728 A JPS6345728 A JP S6345728A JP 18817386 A JP18817386 A JP 18817386A JP 18817386 A JP18817386 A JP 18817386A JP S6345728 A JPS6345728 A JP S6345728A
Authority
JP
Japan
Prior art keywords
memory alloy
shape memory
current
circuit
main circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18817386A
Other languages
Japanese (ja)
Other versions
JPH0697589B2 (en
Inventor
尾崎 雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18817386A priority Critical patent/JPH0697589B2/en
Publication of JPS6345728A publication Critical patent/JPS6345728A/en
Publication of JPH0697589B2 publication Critical patent/JPH0697589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Breakers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は形状記憶合金を利用した回路しゃ断器に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a circuit breaker using a shape memory alloy.

(従来の技術) 従来の回路しゃ断器の一例を第6図に示す。(Conventional technology) An example of a conventional circuit breaker is shown in FIG.

これは、いわゆる静止形引外し方式であって、主回路1
の各相に設けた変流器2の二次出力を整流回路3により
整流して電流・電圧変換回路4により電圧変換し、これ
を長限時回路5、短限時回路6及び瞬時回路7に人力し
て主回路1の短絡、過負荷等の・1【放電流発生時に各
回路5〜7から夫々の限時特性に合わせた引外し信号を
出力させる構成である。引外し信号は、前記整流回路3
に対し引外しコイル8と共に直列接続したサイリスタ9
のゲートに与えられ、サイリスタ9をターンオンさせる
ことにより引外しコイル8に変流器め二次電流を流して
開閉機構部10の引外し動作を行わせる。
This is a so-called static tripping method, and the main circuit 1
The secondary output of the current transformer 2 provided in each phase is rectified by the rectifier circuit 3, converted into voltage by the current/voltage conversion circuit 4, and then manually input to the long time limit circuit 5, short time limit circuit 6, and instantaneous circuit 7. The configuration is such that each circuit 5 to 7 outputs a trip signal in accordance with the respective time-limiting characteristics when a discharge current occurs such as a short circuit or an overload in the main circuit 1. The tripping signal is generated by the rectifier circuit 3.
Thyristor 9 connected in series with tripping coil 8
By turning on the thyristor 9, a secondary current is caused to flow through the current transformer in the tripping coil 8, and the switching mechanism 10 is tripped.

ところが、上記構成では、長限時回路5には、負荷或は
電線等の熱特性を考慮して主回路電流Iと動作時間tと
がll  を−一定となるような反限時特性を与えるこ
とが必要になるから、そのために回路構成が複雑になる
という欠点がある。しか ゛も、近時インバータ等の位
相制御機器が増加する傾向にあり、これらの機器を適切
に保護するには実効値演算を行うことが必要になるため
、囲路構成が一層複雑化し且つ大形化するという問題を
生ずる。
However, in the above configuration, it is not possible to give the long time limit circuit 5 an inverse time limit characteristic such that the main circuit current I and the operating time t are - constant, taking into consideration the thermal characteristics of the load or electric wire. Since this is necessary, there is a drawback that the circuit configuration becomes complicated. However, in recent years, the number of phase control devices such as inverters has been increasing, and in order to properly protect these devices, it is necessary to perform effective value calculations, making the enclosure configuration even more complex and large-scale. This creates the problem of formalization.

一方、斯かる複雑化を回避するため、引外し動作のため
に形状記憶合金を利用することも考えられているが(例
えば実開昭61−49945号公報)、これは形状記憶
合金に主回路7u流を流す構成であるから、定格電流が
大きな回路しゃ断器には採用できないという問題がある
On the other hand, in order to avoid such complications, it has been considered to use a shape memory alloy for the tripping operation (for example, Japanese Utility Model Application Publication No. 49945/1983), but this is because the shape memory alloy is not used in the main circuit. Since it is configured to allow a 7u current to flow, there is a problem in that it cannot be used in a circuit breaker with a large rated current.

(発明が解決しようとする問題点) 以上述べたように、従来の静止形引外し方式を採用した
ものでは適切な過電流保護特性を得ようとすれば、回路
が大幅に複雑化・大形化し、また単に形状記憶合金を利
用するだけでは大容量化が困難であるという問題があっ
た。
(Problems to be Solved by the Invention) As stated above, in order to obtain appropriate overcurrent protection characteristics with conventional static tripping systems, the circuit becomes significantly complicated and large. There was also the problem that it was difficult to increase the capacity by simply using a shape memory alloy.

そこで、本発明の目的は、構造の簡単化及び小形化を図
り得ると共に、大定格仕様としても構成できる回路しゃ
断器を提供するにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a circuit breaker which can be simplified and downsized in structure, and which can also be configured to a large rated specification.

[発明の構成] (問題点を解決するための手段) 本発明の回路しゃ断器は、主回路の各を目に設けた変流
器からの二次電流を形状記憶合金に通電し、この形状記
憶合金の変形に基づき過電置引外し動作を行わせるよう
にしたところに特徴を有する。
[Structure of the Invention] (Means for Solving the Problems) The circuit breaker of the present invention applies a secondary current from a current transformer provided in each of the main circuits to a shape memory alloy. The feature is that the overvoltage tripping operation is performed based on the deformation of the memory alloy.

(作用) 形状記憶合金には主回路電流に比例した電流が流れる。(effect) A current proportional to the main circuit current flows through the shape memory alloy.

このため、形状記憶合金は自己発熱し、所定の変態温度
に達したところで変形が生じて過ii流引外し動作が行
われる。ここで、形状記憶合金の発熱量は変流器の二次
電流をiとするとifに比例するから、主回路電流が大
きい程変態温度に達する時間が短くなり、従って形状記
憶合金の変形が発生するまでの時間tはil に反比例
し、負荷や電線等の熱特性に合致した反限時特性が得ら
れる。また、形状記憶合金には変流器の二次電流を流す
ものであるから、変流器の変流比を適宜設定することに
より、広範囲の定格電流に対応することができる。
For this reason, the shape memory alloy self-heats, and when it reaches a predetermined transformation temperature, it deforms and performs the overflow pulling operation. Here, the calorific value of the shape memory alloy is proportional to if if the secondary current of the current transformer is i, so the larger the main circuit current, the shorter the time to reach the transformation temperature, and therefore the deformation of the shape memory alloy occurs. The time t until this happens is inversely proportional to il, and an inverse time characteristic matching the thermal characteristics of the load, electric wire, etc. can be obtained. Furthermore, since the secondary current of the current transformer is passed through the shape memory alloy, it is possible to accommodate a wide range of rated currents by appropriately setting the current transformation ratio of the current transformer.

(実施例) 以下本発明の第1実施例につき第1図乃至第3図を参照
して説明する。
(Embodiment) A first embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

3相分の電源側端子11と負荷側端子12との間には主
回路接点群13を介して主回路14が設けられている。
A main circuit 14 is provided between the power supply side terminal 11 and the load side terminal 12 for three phases via a main circuit contact group 13 .

主回路14の各相には変流器15が設けられ、その二次
側が整流回路16に接続されている。17は引外し装置
で、これは第2図に示すように構成されている。同図に
おいて18は永久磁石であり、これの両極には夫々ポー
ルピース19,20が設けられている。一方のポールピ
ース20には可動片21が一端を回動可能に設けられ、
その他端は他方のポールピース19の先端部に接離可能
にされて常時は永久磁石18の磁気力によりポールピー
ス19に吸着されている。この可動片21は、前記主回
路14に設けた主回路接点群12の周知の引き外し機構
(図示せず)を作動させるもので、ポールピース19へ
の吸着状態から矢印方向に回動してポールピース19か
ら離れると、主回路14の引き外しが行われるようにな
っている。22はポールピース20に巻装した磁束打消
用コイルである。23はコイルばね状に形成した形状記
憶合金で、その一端は図示しないケース側に固定され、
他端は可動片21に連結されている。形状記憶合金23
は、常iRではポールピース19への可動片21の吸着
によって弾性的に伸長されており、永久磁石18の磁気
力が減少したとすれば白身の弾性力により可動片21を
矢印方向に回動させることができる。また、この形状記
憶合金23は、所定の変態温度まで加熱されると収縮変
形するように設定されており、その収縮変形によっても
可動片21を磁気吸6カに抗して矢印方向に回動させる
ことができる。
A current transformer 15 is provided in each phase of the main circuit 14, and its secondary side is connected to a rectifier circuit 16. 17 is a tripping device, which is constructed as shown in FIG. In the figure, 18 is a permanent magnet, and pole pieces 19 and 20 are provided at both poles of the permanent magnet, respectively. One pole piece 20 has a movable piece 21 rotatably provided at one end,
The other end is allowed to come into contact with and separate from the tip of the other pole piece 19, and is normally attracted to the pole piece 19 by the magnetic force of the permanent magnet 18. This movable piece 21 operates a well-known detachment mechanism (not shown) for the main circuit contact group 12 provided in the main circuit 14, and rotates in the direction of the arrow from the state of adsorption to the pole piece 19. When separated from the pole piece 19, the main circuit 14 is disconnected. 22 is a magnetic flux canceling coil wound around the pole piece 20. 23 is a shape memory alloy formed into a coil spring shape, one end of which is fixed to the case side (not shown);
The other end is connected to the movable piece 21. shape memory alloy 23
In normal iR, the movable piece 21 is elastically extended by adsorption to the pole piece 19, and if the magnetic force of the permanent magnet 18 decreases, the movable piece 21 is rotated in the direction of the arrow due to the elastic force of the white body. can be done. Moreover, this shape memory alloy 23 is set to contract and deform when heated to a predetermined transformation temperature, and this contraction and deformation also causes the movable piece 21 to rotate in the direction of the arrow against the magnetic attraction 6. can be done.

而して、第1図に示すように、上記引外し装置17の形
状記憶合金23は前記整流回路16の直流出力側に電流
・電圧変換回路24と共に直列に接続され、もって変流
器15の二次電流を通電できるようになっている。そし
て、電流・電圧変換回路24からの出力電圧は、周知の
静止形引外し回路である短限時回路25及び瞬時回路2
6に与えられるようになっており、主回路14の短絡・
過電流等の事故状態時に夫々の限時特性に応じて引外し
信号Stをサイリスタ27に与えてこれをターンオンさ
せる。このサイリスタ27は、整流回路16の直流出力
側に前記引外し装置17の磁東打消コイル22と共に直
列接続され、ターンオンすると磁束打消コイル22に永
久磁石18の磁束を弱めるような方向に電流を流す。
As shown in FIG. It is designed to allow secondary current to flow. The output voltage from the current/voltage conversion circuit 24 is converted to a short time limit circuit 25 and an instantaneous circuit 2, which are well-known static trip circuits.
6, and the main circuit 14 is short-circuited and
In an accident state such as overcurrent, a tripping signal St is applied to the thyristor 27 according to the respective time limit characteristics to turn it on. This thyristor 27 is connected in series with the magnetic east canceling coil 22 of the tripping device 17 on the DC output side of the rectifier circuit 16, and when turned on, current flows through the magnetic flux canceling coil 22 in a direction that weakens the magnetic flux of the permanent magnet 18. .

次に上記構成の作用を説明する。通常時には引外し装置
!¥17の可動片21は、第2図に示すように、ポール
ピース19に吸着されていて、主回路接点群13は開成
状態にある。主回路14に過電流が流れると、変流器1
5の二次側は整流回路16を介して形状記憶合金23及
び電流φ電圧変換回路24に接続されているため、形状
記憶合金23には主回路電流に比例した電流iが流れて
形状記憶合金23が自己発熱する。ここで、形状記憶合
金23における発熱量は主回路電流ひいては変流器15
の二次電流iの2乗に比例するから、形状記憶合金23
が変態温度に達するまでの時間tは電流iの2乗に反比
例する。即ち、主回路電流が大きい程発熱量が大きなっ
てより早く変態温度に達することになる。そして、過電
流がある時間継続して形状記憶合金23が変態温度に達
すると、形状記憶合金23が収縮変形する。これにて、
引外し装置17の可動片21が永久磁石18による磁気
吸引力に抗して第2図矢印方向に回動し、第3図に示す
ようにポールピース19から引き離され、もって引外し
機構がトリップ動作して主回路接点群13の開放により
負荷が保護される。
Next, the operation of the above configuration will be explained. Tripping device during normal operation! As shown in FIG. 2, the movable piece 21 of ¥17 is attracted to the pole piece 19, and the main circuit contact group 13 is in an open state. When an overcurrent flows through the main circuit 14, the current transformer 1
Since the secondary side of 5 is connected to the shape memory alloy 23 and the current φ voltage conversion circuit 24 via the rectifier circuit 16, a current i proportional to the main circuit current flows through the shape memory alloy 23, and the shape memory alloy 23 self-heats. Here, the amount of heat generated in the shape memory alloy 23 is determined by the main circuit current and the current transformer 15.
Since it is proportional to the square of the secondary current i, the shape memory alloy 23
The time t until the current i reaches the transformation temperature is inversely proportional to the square of the current i. That is, the larger the main circuit current, the greater the amount of heat generated, and the faster the transformation temperature is reached. When the overcurrent continues for a certain period of time and the shape memory alloy 23 reaches a transformation temperature, the shape memory alloy 23 contracts and deforms. With this,
The movable piece 21 of the tripping device 17 rotates in the direction of the arrow in FIG. 2 against the magnetic attraction force of the permanent magnet 18, and is pulled away from the pole piece 19 as shown in FIG. 3, thereby tripping the tripping mechanism. The load is protected by opening the main circuit contact group 13.

また、主回路14の過電流値が大きい場合或は短絡事故
等の場合には、電流・電圧変換回路24からの電圧信号
が大きくなるため、短限時回路25または瞬時回路26
から引外し信号Stが出力され、サイリスタ27がター
ンオンする。すると、引外し装置17の磁束打消コイル
22に変流器、15の二次電流が流れ、これにより永久
磁石18の磁束が打消されるため、磁気1及引力が減少
し、形状記憶合金23の温度上y?による収縮変形を待
たずともその弾性収縮力により可動片21がやはり第2
図矢印方向に回動して主回路14の引外しが短時間内に
行われる。
In addition, when the overcurrent value of the main circuit 14 is large or in the case of a short circuit accident, etc., the voltage signal from the current/voltage conversion circuit 24 becomes large, so the short time limit circuit 25 or the instantaneous circuit 26
A trip signal St is output from the thyristor 27, and the thyristor 27 is turned on. Then, the secondary current of the current transformer 15 flows through the magnetic flux canceling coil 22 of the tripping device 17, thereby canceling the magnetic flux of the permanent magnet 18, so that the magnetic force 1 and the attractive force decrease, and the shape memory alloy 23 Is the temperature higher? Even without waiting for contraction and deformation due to the elastic contraction force, the movable piece 21 still moves to the second
By rotating in the direction of the arrow in the figure, the main circuit 14 is tripped within a short time.

このように本実施例では、形状記憶合金23に主回路電
流に比例した自己発熱を起こさせ、その発熱による温度
上昇により形状記憶合金23を収縮変形させて主回路1
4の引外しを行うようにしたところに第1の特徴を有す
る。この結果、形状記憶合金23の発熱量は主回路電流
の2乗に比例するから、極めて簡単に反限時特性を得る
ことができ、構造の簡素化、コストダウン、小形化及び
信頼性の向」−が−挙に可能になる。しかも、形状記憶
合金23における発熱量は主回路電流の実効値に比例す
るから、本質的に実効値特性となり、負荷が位相制御機
器等であって主回路電流が位相制御波形となっても、負
荷や電線の熱特性に合致した理想的な保護が可能となる
。更に、TS2の特徴は、形状記憶合金23に変流器1
5の二次電流を流すようにしたところにあり、この結果
、変流器15の変流比を適宜設定することにより、定格
電流の大きな回路しゃ断器にも十分に適用することがで
きることになる。史には、特に本実施例では、短限時回
路25及び瞬時回路26からの引外し信号Stにより磁
束打消コイル22に通電する構成とし、もって形状記憶
合金23の弾性力を利用して可動片21を回動させるこ
とにより引外し動作を行わせるようにしたから、短限時
及び瞬時の引外し動作のために専用の電磁石装置等を設
けずとも済んで構造の一層の簡単化を図ることができる
As described above, in this embodiment, the shape memory alloy 23 is caused to generate self-heating in proportion to the main circuit current, and the shape memory alloy 23 is contracted and deformed due to the temperature rise caused by the heat generation, so that the main circuit 1
The first feature is that the tripping of 4 is performed. As a result, the calorific value of the shape memory alloy 23 is proportional to the square of the main circuit current, so it is extremely easy to obtain inverse timing characteristics, leading to simpler structures, lower costs, smaller size, and higher reliability. - become possible all at once. Moreover, since the amount of heat generated in the shape memory alloy 23 is proportional to the effective value of the main circuit current, it essentially becomes an effective value characteristic, and even if the load is a phase control device or the like and the main circuit current has a phase control waveform, This enables ideal protection that matches the thermal characteristics of the load and wires. Furthermore, the feature of TS2 is that the current transformer 1 is attached to the shape memory alloy 23.
As a result, by appropriately setting the current transformation ratio of the current transformer 15, it can be sufficiently applied to a circuit breaker with a large rated current. . In particular, in this embodiment, the magnetic flux canceling coil 22 is energized by the tripping signal St from the short-time circuit 25 and the instantaneous circuit 26, and the elastic force of the shape memory alloy 23 is utilized to move the movable piece 21. Since the tripping operation is performed by rotating the , there is no need to provide a dedicated electromagnetic device for short-term and instantaneous tripping, and the structure can be further simplified. .

第4図及び第5図は本発明の第2実施例を示す。4 and 5 show a second embodiment of the invention.

これは、引外し機構を動作させるための引外し装置を改
良したものである。図において、28は磁性材製のケー
ス、29はケース28内に固定した円筒状の永久磁石、
30は永久磁石29の内周部に設けたリング状のポール
ピースである。ケース28内にはプランジャー31が出
没方向に移動可能に設けられ、ストッパーリング32に
より抜は止めされている。33はケース28内の端部に
プランジャー31と同軸に設けた磁性材製の受は座で、
これとプランジャー31の中間に形成した径大部31a
との間にはコイルばね状に成形した形状記憶合金34が
設けられている。磁気的には永久磁石29、ケース28
、受座33、プランジャー31及びポールピース30を
順に通って永久磁石29に戻る磁気回路が形成され、こ
れにより常時はプランジャー31が形状記憶合金34を
弾性的に圧縮してその弾発力に抗して受座33に吸むさ
れている。この形状記憶合金34はプランジャー31の
受座33への吸6時には、上述のように弾性的に圧縮さ
れているが、所定の変態温度に達するとその磁気吸着力
に抗して伸長変形するように設定されており、やはり整
流回路16の直流出力側に電流・電圧変換回路24と共
に直列接続されて変流器15の二次電流が流れるように
なっている。35はケース28内に前記形状記憶合金3
4を包囲するように設けた磁束打消コイルで、これは前
記第1実施例と同様に整流回路16の直流出力側にサイ
リスタ27と直列に接続され、サイリスタ27がターン
オンすると永久磁石29の磁束を打消すような磁界を発
生する。この実施例では、以上述べた引外し装置以外は
前記第1実施例と同一構成である。
This is an improved version of the tripping device for operating the tripping mechanism. In the figure, 28 is a case made of magnetic material, 29 is a cylindrical permanent magnet fixed inside the case 28,
30 is a ring-shaped pole piece provided on the inner circumference of the permanent magnet 29. A plunger 31 is provided within the case 28 so as to be movable in the direction of protrusion and retraction, and is prevented from being removed by a stopper ring 32. 33 is a seat made of magnetic material provided coaxially with the plunger 31 at the end inside the case 28;
A large diameter portion 31a formed between this and the plunger 31
A shape memory alloy 34 formed into a coil spring shape is provided between the two. Magnetically, permanent magnet 29, case 28
, the catch 33, the plunger 31, and the pole piece 30 in order to form a magnetic circuit that returns to the permanent magnet 29. As a result, the plunger 31 normally compresses the shape memory alloy 34 elastically to generate its elastic force. It is sucked into the catch seat 33 against the force. This shape memory alloy 34 is elastically compressed as described above when the plunger 31 is sucked into the seat 33, but when it reaches a predetermined transformation temperature, it is elongated and deformed against the magnetic attraction force. The rectifier circuit 16 is connected in series with the current/voltage conversion circuit 24 to the DC output side of the rectifier circuit 16, so that the secondary current of the current transformer 15 flows therethrough. 35 is the shape memory alloy 3 inside the case 28.
A magnetic flux canceling coil is provided to surround the permanent magnet 29, and is connected in series with the thyristor 27 on the DC output side of the rectifier circuit 16 as in the first embodiment, and when the thyristor 27 is turned on, the magnetic flux of the permanent magnet 29 is Generates a canceling magnetic field. This embodiment has the same configuration as the first embodiment except for the tripping device described above.

上記構成では、主回路14に過電流が流れると、やはり
変流器15の二次電流が形状記憶合金34に流れて形状
記憶合金34が自己発熱するから、形状記憶合金34が
変態f′1す度に達したところで伸長変形する。これに
より、プランジャー31が永久磁石29の磁気吸引力に
抗して突出方向に移動し、図示しない引外し機構により
主回路14の引外し動作が行われる。また、過電流値が
大きい場合や短絡時には、サイリスタ27がターンオン
して磁束打消コイル35に通電され、これにてプランジ
ャー31に作用する磁気吸引力が減少するため、形状記
憶合金34の弾発力によりプランジャー31が突出方向
に移動してやはり引外し動作が行われる。このように構
成しても、上記第1実施例と同様の効果を奏することは
勿論である。 その他、本発明は上記し且つ図面に示す
実施例に限定されるものではなく、例えば変流器15と
形状記憶合金23.34との間に補助変流器を設ける等
、要旨を逸脱しない範囲内で種々変形して実施すること
ができるものである。
In the above configuration, when an overcurrent flows in the main circuit 14, the secondary current of the current transformer 15 also flows to the shape memory alloy 34 and the shape memory alloy 34 self-heats, so the shape memory alloy 34 undergoes transformation f'1 When it reaches a certain degree, it is elongated and deformed. As a result, the plunger 31 moves in the protruding direction against the magnetic attraction force of the permanent magnet 29, and the main circuit 14 is tripped by a tripping mechanism (not shown). In addition, when the overcurrent value is large or in the event of a short circuit, the thyristor 27 is turned on and the magnetic flux canceling coil 35 is energized, thereby reducing the magnetic attraction force acting on the plunger 31, causing the shape memory alloy 34 to rebound. The force causes the plunger 31 to move in the protruding direction, and a tripping action is also performed. Even with this configuration, it goes without saying that the same effects as in the first embodiment can be achieved. In addition, the present invention is not limited to the embodiments described above and shown in the drawings, but may be modified within the scope of the gist, such as providing an auxiliary current transformer between the current transformer 15 and the shape memory alloy 23, 34. The invention can be implemented with various modifications within the scope of the invention.

[発明の効果コ 以−L述べたように、本発明は、形状記憶合金に変流器
からの二次電流を通電するようにしだところに特徴を有
し、この結果、極めて簡単な構成にて理想的な反限時特
性を得ることができ、しかも形状記憶合金には変流器の
二次電流を流すのもであるから主回路fX’tttの定
格が大きい場合でも適用できるという優れた効果を奏す
るものである。
[Effects of the Invention] As stated above, the present invention is characterized in that the secondary current from the current transformer is passed through the shape memory alloy, and as a result, the structure is extremely simple. The shape memory alloy has the excellent effect of being applicable even when the rating of the main circuit fX'ttt is large, since it allows the secondary current of the current transformer to flow through the shape memory alloy. It is something that plays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の第1実施例を示し、第1図
は全体の回路図、第2図は形状記憶合金を用いた引外し
装置を示す断面図、第3図は同装置の引外し動作時にお
ける断面図、第4図及び第5図は本発明の第2実施例を
示す第2図及び第3図相当図、第6図は従来例を示す第
1図相当図である。 図面中、14は主回路、15は変流器、22゜35は磁
束打消コイル、23.34は形状記憶合金である。 出願人  株式会社  東  芝 jPll  図 第 2 図 第 3 図 第 4 図 第 5 図
1 to 3 show a first embodiment of the present invention, FIG. 1 is an overall circuit diagram, FIG. 2 is a sectional view showing a tripping device using a shape memory alloy, and FIG. 3 is the same. 4 and 5 are views corresponding to FIGS. 2 and 3 showing the second embodiment of the present invention, and FIG. 6 is a view equivalent to FIG. 1 showing the conventional example. It is. In the drawing, 14 is a main circuit, 15 is a current transformer, 22.degree. 35 is a magnetic flux canceling coil, and 23.34 is a shape memory alloy. Applicant Toshiba Corporation JPll Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、主回路の事故電流を検出して引外し動作を行わせる
むのにおいて、前記主回路の各相に設けた変流器からの
二次電流を形状記憶合金に通電し、この形状記憶合金の
変形に基づき過電流引外し動作を行わせるようにしたこ
とを特徴とする回路しや断器。
1. In order to detect a fault current in the main circuit and perform a tripping operation, a secondary current from a current transformer provided in each phase of the main circuit is applied to a shape memory alloy. A circuit breaker characterized in that an overcurrent tripping operation is performed based on the deformation of the circuit.
JP18817386A 1986-08-11 1986-08-11 Circuit breaker Expired - Lifetime JPH0697589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18817386A JPH0697589B2 (en) 1986-08-11 1986-08-11 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18817386A JPH0697589B2 (en) 1986-08-11 1986-08-11 Circuit breaker

Publications (2)

Publication Number Publication Date
JPS6345728A true JPS6345728A (en) 1988-02-26
JPH0697589B2 JPH0697589B2 (en) 1994-11-30

Family

ID=16219035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18817386A Expired - Lifetime JPH0697589B2 (en) 1986-08-11 1986-08-11 Circuit breaker

Country Status (1)

Country Link
JP (1) JPH0697589B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280955U (en) * 1988-12-12 1990-06-21
JPH06203736A (en) * 1992-12-28 1994-07-22 Togami Electric Mfg Co Ltd Electronic type over-current relay
US6221190B1 (en) 1997-08-29 2001-04-24 Chugai Ro Co., Ltd. Method and apparatus for processing glass panel
JP2010067514A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Circuit breaker unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280955U (en) * 1988-12-12 1990-06-21
JPH06203736A (en) * 1992-12-28 1994-07-22 Togami Electric Mfg Co Ltd Electronic type over-current relay
US6221190B1 (en) 1997-08-29 2001-04-24 Chugai Ro Co., Ltd. Method and apparatus for processing glass panel
JP2010067514A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Circuit breaker unit
TWI412752B (en) * 2008-09-11 2013-10-21 Mitsubishi Electric Corp Circuit breaker

Also Published As

Publication number Publication date
JPH0697589B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US3295023A (en) Circuit-breaker devices, especially for semi-conductor circuits
JPS6345728A (en) Circuit breaker
US6469600B1 (en) Remote control circuit breaker with a by-pass lead
EP1014413B1 (en) Electronic driving circuit for a bistable actuator
US4405965A (en) Current limiting device for overcurrent protection
JPH02202320A (en) Superconducting current limiter
JPS59158506A (en) Electromagnet
JPH065189A (en) Circuit breaker
JPH05342969A (en) Circuit breaker
US4922370A (en) Automatically resetting circuit protector
JP2019047690A (en) DC circuit breaker
US2820927A (en) Anti-inrush sensing device
JPH02101926A (en) Current limiting apparatus
RU2141695C1 (en) Device increasing speed of response of magnetization- controlled reactor
JPH0142256Y2 (en)
SU595819A1 (en) Device for overload protection of ac electric installation
JPS592526A (en) Device for tripping circuit breaker
CN110783152A (en) Locking shunt release
US1759787A (en) Protective device for rotary converters
JPS62247721A (en) Apparatus for tripping closing current of breaker
JPS6233484Y2 (en)
JPH02294222A (en) Current-limiting apparatus
JPS644313Y2 (en)
SU122800A1 (en) Device for single-system protection
JPS6344275B2 (en)