JPS6345698B2 - - Google Patents

Info

Publication number
JPS6345698B2
JPS6345698B2 JP12893780A JP12893780A JPS6345698B2 JP S6345698 B2 JPS6345698 B2 JP S6345698B2 JP 12893780 A JP12893780 A JP 12893780A JP 12893780 A JP12893780 A JP 12893780A JP S6345698 B2 JPS6345698 B2 JP S6345698B2
Authority
JP
Japan
Prior art keywords
resin
group
unsaturated polyester
amino
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12893780A
Other languages
Japanese (ja)
Other versions
JPS5753993A (en
Inventor
Yasuo Fushiki
Masaharu Abe
Masayuki Ooizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP12893780A priority Critical patent/JPS5753993A/en
Priority to CA000378138A priority patent/CA1162470A/en
Priority to DE8181104019T priority patent/DE3162355D1/en
Priority to EP19810104019 priority patent/EP0040848B1/en
Publication of JPS5753993A publication Critical patent/JPS5753993A/en
Priority to US06/722,762 priority patent/US4572859A/en
Publication of JPS6345698B2 publication Critical patent/JPS6345698B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特に打抜加工性及び耐湿性に優れた
セルロース系基材不飽和ポリエステル樹脂電気用
積層板及びそれを製造する方法に関する。 本発明でいう電気用積層板とは、例えば各種金
属箔部品の基板として用いられる積層板あるいは
銅張り積層板を意味し、その形状は、厚みがおよ
そ0.5〜5mmであるような板状物をいう。 上記のごとき積層板は、セルロース系基材に不
飽和ポリエステル樹脂を含浸させた後、積層して
硬化することによつて製造される。例えば、既に
本発明等は常温で液状である不飽和ポリエステル
樹脂を用いて電気用積層板を連続的に製造する方
法を特開昭55−4838、特開昭55−53013等におい
て提案している。又、常温で固体である不飽和ポ
リエステル樹脂を用い、加熱加圧成形により積層
板を製造する例としては、特公昭48−29625、特
開昭51−111885、特開昭52−92288等多くの提案
があるが、これらは末だ実用化の段階にまでは至
つていない。 前記のごとき方法で得られるセルロース系基材
不飽和ポリエステル樹脂積層板は、常態における
電気絶縁性、半田耐熱性、機械的強度等は極めて
良好であるが、吸湿によりこれらの電気用積層板
としての特性の低下がしばしば大きいという欠点
を有していた。これは不飽和ポリエステル樹脂自
身の電気絶縁性、耐熱性、耐湿性は優れている
が、一方基材を構成するセルロースとの間の密着
性に乏しく、吸湿により樹脂とセルロース繊維と
の界面が剥離し、それに伴ない吸湿量が増大し、
ひいては諸性能の低下を招くためと考えられる。 かかる欠点を改善するための試みとして、セル
ロース系基材をアミノ系有機化合物の初期縮合物
で処理する方法(特公昭38−13781)等が既に提
案されている。 ところで、本発明者らもこれら初期縮合物で紙
基材の予備処理を行い、それと不飽和ポリエステ
ル樹脂とから積層板を作成し、その性能を調べた
ところ予備処理をしない場合に比べ、吸湿による
電気絶縁性や半田耐熱性の低下が少なく、耐湿
性、耐水性の面では可成りの向上はみられるが、
その一方、衝撃によりクラツクが入り易く、従つ
て、このものの打抜加工性は、とうてい実用に耐
え得るものではなかつた。打抜加工性は、使用す
る不飽和ポリエステル樹脂の物性の影響も大きい
と考えられ、本発明者は前記の予備処理を行つた
紙を用い、市場にある多数の不飽和ポリエステル
樹脂を検討したが、良好な打抜加工性を有し、か
つ実用的なものは皆無であつた。 かかる現状に鑑み、本発明者らが鋭意研究を行
つた結果、セルロース系基材の予備処理に用いる
メラミン樹脂、グアナミン樹脂等のアミノ樹脂に
可とう性を付与する目的で軟質の熱可塑性樹脂を
添加することにより、得られる積層板は優れた打
抜加工性を有し、かつ吸湿時の電気絶縁性、耐熱
性、機械的強度等の低下の少ないものであること
を見い出し本発明を完成した。 以下、本発明を詳細に説明する。 本発明でいうアミノ樹脂とは、メラミン樹脂、
グアナミン樹脂、尿素樹脂、環状尿素樹脂等をい
い、メラミンあるいはホルモグアナミン、アセト
グアナミン、プロピオグアナミン、ベンゾグアナ
ミン、アジポジグアナミン等のグアナミン類、あ
るいは尿素またはエチレン尿素、プロピレン尿素
等の環状尿素類に代表されるアミノ化合物とホル
ムアルデヒド等のアルデヒド類との初期縮合物あ
るいはそれらのメチロール基の一部又は全部をメ
タノールやブタノールの如き低級アルコールでエ
ーテル化したものなどをいう。但し、アルデヒド
類の内ホルムアルデヒドが最も好ましい。又、本
発明において上記の各樹脂を2種以上混合して用
いたり共縮合して用いてもかまわない。更にフエ
ノール樹脂、N―メチロールアクリルアミド等の
メチロール基を含有する化合物を混合もしくは共
縮合してもよい。しかしながら、中でもメラミン
樹脂及び又はグアナミン樹脂が耐熱性、耐湿性等
の性能の面で最も好ましい。 打抜加工性を改良する目的で上記のアミノ樹脂
に添加する軟質の熱可塑性樹脂とは、例えば下記
の如きものである。 即ち、 (a) メチルアクリレート、エチルアクリレート、
ブチルアクリレート、イソブチルアクリレー
ト、2―エチルヘキシルアクリレート等の炭素
数1〜14のアルキル基を有するアルキルアクリ
レート;ラウリルメタクリレート、オクタデシ
ルメタクリレート等の炭素数6〜16のアルキル
基を有するアルキルメタクリレートからなる重
合体あるいはそれらを主成分としてそれらと共
重合可能な例えばメチルメタクリレート、エチ
ルメタクリレート、アクリロニトリル、アクリ
ル酸、メタクリル酸、アクリルアミド、メタク
リルアミド、ジメチルアミノエチルメタクリレ
ート、メチロールアクリルアミド、ブトキシメ
チルアクリルアミド、ヒドロキシエチルアクリ
レート、ヒドロキシエチルメタクリレート、ヒ
ドロキシプロピルメタクリレート、グリシジル
メタクリレート等の各種アクリル化合物、スチ
レン、酢酸ビニル、塩化ビニル、ジブチルマレ
エート、無水マレイン酸、イタコン酸等のビニ
ル化合物からなる軟質のアクリル系重合体。 (b) ブタジエン、イソプレン、クロロプレンなど
の共役ジエンからなる単独重合体あるいは、ブ
タジエン―スチレン、ブタジエン―アクリロニ
トリル、ブタジエン―メチルメタクリレートの
共役ジエン系共重合体あるいはそれらに前記(a)
の項で述べた各種のアクリル化合物及び又はビ
ニル化合物を共重合させた軟質の共役ジエン系
重合体。 (c) ポリエチレン、ポリイソブチレン、エチレン
―酢酸ビニル共重合体、エチレン―酢酸ビニル
共重合体のケン化物あるいはエチレンを主成分
として前記(a)の項で述べた各種の単量体を共重
合した軟質のオレフイン系重合体。 (d) ポリ酢酸ビニルあるいは酢酸ビニルを主体と
して、それに前記(a)の項に記した各種の単量体
を共重合したもの、あるいはそのケン化物、ポ
リ酢酸ビニルをケン化して得られるポリビニル
アルコール、それを更にアセタール化して得ら
れるポリビニルホルマール等のボリビニルアセ
タール樹脂。 尚、本発明でいう共重合あるいは何々系樹脂
とは、ランダム、ブロツク、グラフト等の手段
で重合したものをも意味し、二元あるいは三元
以上のものをも包含する。又、乳化、溶液、サ
スペンジヨン、ブロツクその他重合方法をも限
定するものではない。 (e) 多塩基酸と多価アルコールから作られる軟質
のアルキツド樹脂。 多塩基酸としては無水フタル酸、イソフタル
酸、テレフタル酸、アジピン酸、セバシン酸、
アゼライン酸、コハク酸、ダイマー酸;多価ア
ルコールとしてはエチレングリコール、ジエチ
レングリコール、1,4―ブタンジオール、
1,5―ペンタンジオール、グリセリン、トリ
メチロールプロパン、ペンタエリスリトール等
からなり、その他必要に応じて油脂類、ロジン
酸等で変性したもの。 (f) 上記の多塩基酸とエチレンジアミン、トリエ
チレンジアミン、ヘキサメチレンジアミン等の
多価アミノ化合物から作られる軟質のポリアミ
ド樹脂などがあげられる。 本発明において、アミノ樹脂に添加して打抜加
工性を改良するための熱可塑性樹脂は、その効果
を十分発揮するには、その軟化点が30℃以下、よ
り好ましくは0℃以下の熱可塑性樹脂であること
が望ましい。又、上記の条件を満たす熱可塑性樹
脂の中でも、分子内にアミノ樹脂のメチロール基
と縮合しうるカルボキシル基、水酸基、アミノ
基、アミド基、メチロール基、エポキシ基等の官
能基を1つあるいは2つ以上有するものが、最終
的に得られる積層板の機械的強度や耐熱性の低下
が少なく、本発明にとつて好適である。かかる意
味で末端にカルボキシル基や水酸基を有するアル
キツド樹脂、末端にカルボキシル基やアミノ基を
有するポリアミド樹脂は好ましい。又、軟質のア
クリル系重合体、共役ジエン系重合体、オレフイ
ン系重合体、酢酸ビニル系重合体においても、そ
の分子鎖中あるいは末端に上記の官能基を導入す
るために、官能性の単量体を共重合させることが
望ましい。通常カルボキシル基を導入するために
はアクリル酸、メタクリル酸、無水マレイン酸、
イタコン酸等の単量体、アミノ基、アミド基を導
入するためにはジメチルアミノエチルメタクリレ
ート、アクリルアミド、メタクリルアミド等、水
酸基を導入するには、2―ヒドロキシエチルアク
リレート、2―ヒドロキシエチルメタクリレー
ト、2―ヒドロキシプロピルメタクリレート等、
メチロール基を導入するには、メチロールアクリ
ルアミド等、エポキシ基を導入するにはグリシジ
ルメタクリレートなどが用いられる。本発明者ら
が検討したところによればこれらの官能性の単量
体を共重合させた軟質のアクリル系共重合体ある
いは共役ジエン系共重合体をアミノ樹脂に添加し
た場合、得られる積層板が打抜加工性、更に常態
及び吸湿下における電気絶縁性、耐熱性、機械的
強度等の性能のバランスがとれており、本発明の
好適な実施態様であることも明らかとなつた。 ところで、アミノ樹脂に添加する軟質の熱可塑
性樹脂の使用量は、積層板に使用する不飽和ポリ
エステル樹脂のガラス転移温度によつて、その最
適量は異なるが、通常アミノ樹脂100重量部に対
して3重量部から40重量部の範囲内が好ましい。
その使用量が3重量部より少ない場合は打抜加工
性を改良する効果が少なく、又40重量部を越える
と積層板にした場合、機械的強度、耐熱性等の低
下が大きい。その使用方法については、アミノ樹
脂の溶液に、軟質の熱可塑性樹脂の溶液や懸濁液
を混合したり、あるいはアミノ樹脂を製造する段
階で軟質の熱可塑性樹脂の溶液や懸濁液を添加し
てもよい。溶剤としては水、アルコール類、ケト
ン類、エステル類等が使用される。 又、これらの処理剤系の濃度は、乾燥後のセル
ロース系繊維基材に対する全付着量が乾燥基材重
量に対し3〜30重量部、望ましくは6〜20重量部
となるように調整することが望ましく、3重量部
未満の付着量では効果が十分でなく、30重量部を
こえると積層板にした時、板がもろくなり、打抜
加工性を劣化させる。 上記の条件で調製した処理剤の溶液又は懸濁液
にクラフト紙、リンター紙等のセルロース系紙基
材、場合によつては綿、レーヨン等のセルロース
糸布基材を浸漬浴、ロールコーターあるいはスプ
レー等を用いて含浸した後、乾燥して溶媒を除去
することにより処理基材を得る。望ましい乾燥温
度は通常50〜170℃であり、乾燥時間は0.5〜60分
程度である。 一方、本発明に用いる不飽和ポリエステル樹脂
は、不飽和ポリエステル鎖の構造式が、たとえば であるような一般に良く知られたもの及びこれら
構造にハロゲン等が含有された難燃性のものが使
用でき、従つて原料が多価アルコールとしてはエ
チレングリコール、プロピレングリコール、ジエ
チレングリコール、1,4―ブタンジオール及び
1,5―ペンタンジオール、ビスフエノールA−
プロピレンオキサイド付加物、2,2―ジプロモ
ネオペンチルグリコール、飽和多塩基酸として無
水フタル酸、イソフタル酸、テレフタル酸、アジ
ピン酸、セバシン酸、アゼライン酸、クロルエン
ド酸、テトラブロモ無水フタル酸、テトラクロロ
無水フタル酸、不飽和多塩基酸として無水マレイ
ン酸、フマル酸であるようなものが一般的であ
り、これらと架橋用単量体との混合物である。
又、一般にビニルエステル樹脂と呼ばれる分子末
端に2個以上のアクリロイル基、メタクリロイル
基を有するエポキシ−アクリレートと架橋用単量
体との混合物も本発明に適用され得る。 架橋用単量体としてはスチレンが一般的である
が、その他α―メチルスチレン、ビニルトルエ
ン、クロルスチレン、ジビニルベンゼン、炭素数
1〜10のアルキルアクリレート、炭素数1〜10の
アルキルメタクリレート、フタル酸ジアリル、シ
アヌル酸トリアリルなどの単量体をも使用するこ
とができる。これらの架橋用単量体の使用量は、
不飽和ポリエステル樹脂の20〜50重量%であり、
更に硬化触媒として汎用の有機過酸化物、必要に
応じて硬化促進剤が硬化に際して加えられる。な
お、硬化触媒はこれらに限定されるのではなく、
有機過酸化物と共に又は単独で光に感応する硬化
触媒や放射線、電子線に感応する硬化触媒等、公
知の硬化触媒はすべて利用できる。又、目的によ
り難燃剤、難燃助剤、重合禁止剤、紫外線吸収
剤、充填剤、着色剤等が不飽和ポリエステル樹脂
液に添加されていても、もちろんさしつかえな
い。 前記の処理基材に、上記の不飽和ポリエステル
樹脂液を含浸せしめ、この樹脂含浸基材を積層
し、硬化せしめることによつて電気用積層板が製
造できる。この時、不飽和ポリエステル樹脂とし
ては常温で液状のものが好ましく、その粘度が常
温で0.1〜30ポイズ、より望ましくは0.5〜15ポイ
ズである。 又、不飽和ポリエステル樹脂を含浸した基材を
積層し、硬化させる時の成形圧については何ら制
限はないが、既に本発明者らが特開昭55−53013
で提案したように、実質的に無圧の状態で硬化せ
しめることにより性能のすぐれた積層板を得るこ
とができるが、これは本発明の望ましい実施態様
の一つである。 なお、本発明の処理基材から得られる積層板の
打抜加工性は優れているが、低温打抜加工性を可
能ならしめるためには不飽和ポリエステル樹脂と
してその硬化体のガラス転移温度が20〜80℃の樹
脂を使用するのが望ましい。 以上の方法により製造された積層板及び金属箔
張り積層板は、打抜加工性及び耐湿性に優れたも
のであり、電気用積層板として印刷回路基板など
の各用途に用いることができる。 次に、実施例により本発明を更に詳しく説明す
る。 実施例 1 水100重量部(以下、部と省略する)、メラミン
樹脂(日本カーバイト工業、ニカレジンS−305)
8部、メチロール基含有の水溶性アクリル酸エス
テル(綜研化学、WS−120)3部からなる処理
液に、厚み285μmのクラフト紙(巴川製紙、
MKP−150)を浸漬し、取出し、ロールにて余分
の液を絞り出した後、120℃で10分間加熱して付
着量14.6%の処理紙基材を得た。 一方、ジエチレングリコール、イソフタル酸及
び無水マレイン酸を原料として、各原料成分のモ
ル比がそれぞれ3:2:1であり、平均分子量が
約3900であり、一般的な方法で縮合された不飽和
ポリエステルポリマー62部とスチレン38部からな
る樹脂液に硬化触媒として1,1―ビス(t―ブ
チルパーオキシ)3,3,5―トリメチルシクロ
ヘキサン(日本油脂、パーヘキサ3M)1部を配
合した。この樹脂液を上記の処理紙に含浸せし
め、5枚積層させると同時にエポキシ系接着剤を
塗布した35μmの電解銅箔をラミネートし、その
まま100℃で45分間実質無圧の下で硬化させ1.6mm
の片面銅張り板を得た。その性能を第1表に示
す。 実施例 2 メラミン100部、37%ホルマリン210部を反応器
にとり、PH9のアルカリ性とし、攪拌しながら15
分を要して90℃まで温度を上昇させ、同温度で30
分間反応を続けた。次に水溶性アクリル酸エステ
ル(WS−120)64部を加え、同温度で更に10分
間反応させた後、室温まで冷却した。 水100部、上記の変性メラミン樹脂17部からな
る処理剤溶液に厚み285μmのクラフト紙を浸漬
し、実施例1と同様の方法で付着量14.0%の処理
紙基材を得た。次いで、得られた処理紙でもつて
実施例1と同様の操作を行い、厚みが1.6mmの銅
張り積層板を得た。その性能を第1表に示す。 実施例 3 水100部、メラミン樹脂(ニカレジンS−305)
8部、メチロール基を有するアクリル酸エステル
エマルジヨン(日本カーバイト工業、ニカゾール
RX−18A)3部からなる処理剤溶液を調製し、
実施例1と同様の方法で付着量13.4%の処理紙基
材を得た。この処理紙より実施例1と同様の方法
で1.6mmの銅張り積層板を得た。その性能を第1
表に示す。 実施例 4 水100部、メラミン樹脂(ニカレジンS−305)
8部、カルボキシル基を含有する変性NBRラテ
ツクス(日本ゼオン、ニツポール1571)3部から
なる処理剤溶液を調製し、実施例1と同様の方法
で付着量13.8%の処理紙基材を得た。この処理紙
でもつて、実施例1と同様の操作を行い1.6mmの
銅張り積層板を得た。その性能を第1表に示す。 実施例 5 実施例4において、カルボキシル基を含有する
変性NBRラテツクスの代りに、官能基を有さな
い未変性のNBRラテツクス(日本ゼオン、ニツ
ポール1551)を用いて、1.6mmの銅張り積層板を
作成した。その性能を第1表に示す。なお、処理
紙の処理剤付着量は13.6%であつた。 実施例 6 水100部、メラミン樹脂(ニカレジンS−305)、
水溶性アルキツド樹脂(日触アロー化学、アロロ
ン376)3部からなる処理剤溶液でもつて実施例
1の方法により、付着量14.6%の処理紙基材を得
た。次いで、得られた処理紙でもつて、実施例1
と同様の操作を行い厚みが1.6mmの銅張り積層板
を作成した。その性能を第1表にまとめて示す。 実施例 7 実施例3と同様の処理剤溶液に厚さ285μmのク
ラフト紙を連続的に浸漬し、120℃で6分間の加
熱乾燥を行うことにより長尺の処理紙基材を予め
用意した。この処理紙を5枚連続的に搬送しなが
ら、実施例1と同じ樹脂液を各紙の上面より含浸
せしめ、次いで2本のロール対でもつて重ね合わ
せるとともに、片面からエポキシ接着剤を塗布し
た35μmの電解銅箔、その対面に厚さ50μmのポリ
エステルフイルムをラミネートしつつ、温度が
110℃のトンネル型熱風乾燥炉へ連続的に移送せ
しめ、15分を要して加熱硬化させた。このものを
切断後、更に160℃で10分間の加熱処理を行い、
最終的に厚さ1.6mmの銅張り積層板を得た。得ら
れた積層板の性能を第1表に示す。 比較例 メラミン樹脂(ニカレジンS−305)8部、水
100部からなる処理剤溶液に厚さ285μmのクラフ
ト紙を浸漬し、実施例1と同様の方法で付着量
11.2%のメラミン樹脂処理紙を得た。この処理紙
より、実施例1と同様の操作を行い厚みが1.6mm
の銅張り積層板を得た。この性能を本発明との比
較のため第1表に示す。
The present invention particularly relates to a cellulose-based unsaturated polyester resin electrical laminate having excellent punching workability and moisture resistance, and a method for producing the same. The electrical laminate used in the present invention refers to a laminate or a copper-clad laminate that is used as a substrate for various metal foil parts, for example, and the shape of the electrical laminate is a plate with a thickness of approximately 0.5 to 5 mm. say. The above laminate is manufactured by impregnating a cellulose base material with an unsaturated polyester resin, then laminating and curing the impregnated cellulose base material. For example, the present invention has already proposed in JP-A-55-4838, JP-A-55-53013, etc. a method for continuously manufacturing electrical laminates using unsaturated polyester resin that is liquid at room temperature. . In addition, examples of manufacturing laminates by heat and pressure molding using unsaturated polyester resins that are solid at room temperature include JP-B No. 48-29625, JP-A No. 51-111885, JP-A No. 52-92288, etc. There are some proposals, but these have not yet reached the stage of practical application. Cellulose-based unsaturated polyester resin laminates obtained by the above method have extremely good electrical insulation properties, soldering heat resistance, mechanical strength, etc. under normal conditions, but due to moisture absorption, these laminates cannot be used as electrical laminates. It has the disadvantage that the deterioration of characteristics is often large. Although the unsaturated polyester resin itself has excellent electrical insulation, heat resistance, and moisture resistance, it has poor adhesion to the cellulose that makes up the base material, and the interface between the resin and cellulose fibers peels due to moisture absorption. As a result, the amount of moisture absorbed increases,
This is thought to be due to the fact that this leads to a decline in various performances. As an attempt to improve these drawbacks, a method has already been proposed in which a cellulose base material is treated with an initial condensate of an amino organic compound (Japanese Patent Publication No. 13781/1983). By the way, the present inventors also pre-treated a paper base material with these initial condensates, created a laminate from it and an unsaturated polyester resin, and investigated the performance. There is little deterioration in electrical insulation properties and soldering heat resistance, and considerable improvements are seen in terms of moisture resistance and water resistance.
On the other hand, it was easy to crack due to impact, so the punching workability of this material was not at all practical. It is believed that the punching processability is greatly influenced by the physical properties of the unsaturated polyester resin used, and the present inventor used paper that had undergone the above-mentioned pretreatment and examined a large number of unsaturated polyester resins on the market. However, there were none that had good punching workability and were of practical use. In view of this current situation, the present inventors have conducted extensive research and have found that soft thermoplastic resins are used for the purpose of imparting flexibility to amino resins such as melamine resins and guanamine resins used in the pretreatment of cellulose base materials. The present inventors have discovered that by adding this material, the resulting laminate has excellent punching workability and exhibits less deterioration in electrical insulation properties, heat resistance, mechanical strength, etc. when absorbing moisture, and has completed the present invention. . The present invention will be explained in detail below. The amino resin referred to in the present invention refers to melamine resin,
Refers to guanamine resin, urea resin, cyclic urea resin, etc.; representative examples include guanamines such as melamine, formoguanamine, acetoguanamine, propioguanamine, benzoguanamine, and adipodiguanamine, and cyclic ureas such as urea, ethylene urea, and propylene urea. It refers to an initial condensation product of an amino compound and an aldehyde such as formaldehyde, or a product in which part or all of the methylol group thereof is etherified with a lower alcohol such as methanol or butanol. However, among the aldehydes, formaldehyde is most preferred. Furthermore, in the present invention, two or more of the above-mentioned resins may be used as a mixture or co-condensed. Furthermore, a compound containing a methylol group such as a phenol resin or N-methylol acrylamide may be mixed or co-condensed. However, among them, melamine resin and/or guanamine resin are most preferable in terms of performance such as heat resistance and moisture resistance. Examples of the soft thermoplastic resin added to the above amino resin for the purpose of improving punching workability include the following. That is, (a) methyl acrylate, ethyl acrylate,
Alkyl acrylates having an alkyl group having 1 to 14 carbon atoms such as butyl acrylate, isobutyl acrylate, and 2-ethylhexyl acrylate; or polymers consisting of alkyl methacrylates having an alkyl group having 6 to 16 carbon atoms such as lauryl methacrylate and octadecyl methacrylate. as a main component and copolymerizable with them, such as methyl methacrylate, ethyl methacrylate, acrylonitrile, acrylic acid, methacrylic acid, acrylamide, methacrylamide, dimethylaminoethyl methacrylate, methylol acrylamide, butoxymethyl acrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, A soft acrylic polymer consisting of various acrylic compounds such as hydroxypropyl methacrylate and glycidyl methacrylate, and vinyl compounds such as styrene, vinyl acetate, vinyl chloride, dibutyl maleate, maleic anhydride, and itaconic acid. (b) Homopolymers of conjugated dienes such as butadiene, isoprene, and chloroprene, or conjugated diene copolymers of butadiene-styrene, butadiene-acrylonitrile, butadiene-methyl methacrylate, or the above (a)
A soft conjugated diene polymer made by copolymerizing various acrylic compounds and/or vinyl compounds mentioned in the section. (c) Saponified products of polyethylene, polyisobutylene, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer, or copolymerized products containing ethylene as the main component and various monomers mentioned in the above (a). Soft olefin polymer. (d) Polyvinyl acetate or copolymerization of vinyl acetate as a main ingredient with various monomers listed in (a) above, or saponified products thereof, polyvinyl alcohol obtained by saponifying polyvinyl acetate. , polyvinyl acetal resin such as polyvinyl formal obtained by further acetalizing it. Incidentally, the term "copolymerized or so-and-so-based resin" as used in the present invention means those polymerized by means such as random, block, and graft methods, and also includes two or more ternary resins. Furthermore, there are no limitations on the polymerization methods such as emulsification, solution, suspension, block, and others. (e) A soft alkyd resin made from polybasic acids and polyhydric alcohols. Polybasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, adipic acid, sebacic acid,
Azelaic acid, succinic acid, dimer acid; polyhydric alcohols include ethylene glycol, diethylene glycol, 1,4-butanediol,
Consisting of 1,5-pentanediol, glycerin, trimethylolpropane, pentaerythritol, etc., modified with other fats and oils, rosin acid, etc. as necessary. (f) Examples include soft polyamide resins made from the above-mentioned polybasic acids and polyvalent amino compounds such as ethylenediamine, triethylenediamine, and hexamethylenediamine. In the present invention, the thermoplastic resin to be added to the amino resin to improve punching workability must be a thermoplastic resin with a softening point of 30°C or less, more preferably 0°C or less, in order to fully exhibit its effect. Preferably, it is a resin. Also, among thermoplastic resins that meet the above conditions, one or two functional groups such as a carboxyl group, a hydroxyl group, an amino group, an amide group, a methylol group, an epoxy group, etc. that can be condensed with the methylol group of an amino resin are included in the molecule. A material having at least three is preferable for the present invention, since the mechanical strength and heat resistance of the finally obtained laminate are less likely to deteriorate. In this sense, alkyd resins having a carboxyl group or hydroxyl group at the end, and polyamide resins having a carboxyl group or amino group at the end are preferable. Also, in soft acrylic polymers, conjugated diene polymers, olefin polymers, and vinyl acetate polymers, functional monomers are used to introduce the above-mentioned functional groups into the molecular chains or at the ends. It is desirable to copolymerize the bodies. Usually, to introduce a carboxyl group, acrylic acid, methacrylic acid, maleic anhydride,
For introducing monomers such as itaconic acid, amino groups and amide groups, dimethylaminoethyl methacrylate, acrylamide, methacrylamide, etc. For introducing hydroxyl groups, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2 -Hydroxypropyl methacrylate, etc.
To introduce a methylol group, methylol acrylamide or the like is used, and to introduce an epoxy group, glycidyl methacrylate or the like is used. According to studies conducted by the present inventors, when a soft acrylic copolymer or a conjugated diene copolymer obtained by copolymerizing these functional monomers is added to an amino resin, the resulting laminate It has also become clear that this material is a suitable embodiment of the present invention because it has well-balanced properties such as punching workability, electrical insulation properties under normal conditions and under moisture absorption, heat resistance, and mechanical strength. By the way, the optimal amount of the soft thermoplastic resin to be added to the amino resin varies depending on the glass transition temperature of the unsaturated polyester resin used in the laminate, but it is usually used for 100 parts by weight of the amino resin. It is preferably within the range of 3 parts by weight to 40 parts by weight.
If the amount used is less than 3 parts by weight, the effect of improving punching workability will be small, and if it exceeds 40 parts by weight, mechanical strength, heat resistance, etc. will be greatly reduced when made into a laminate. As for how to use it, you can mix a solution or suspension of a soft thermoplastic resin with a solution of an amino resin, or add a solution or suspension of a soft thermoplastic resin at the stage of manufacturing the amino resin. You can. Water, alcohols, ketones, esters, etc. are used as the solvent. In addition, the concentration of these treatment agents should be adjusted so that the total amount deposited on the cellulose fiber base material after drying is 3 to 30 parts by weight, preferably 6 to 20 parts by weight, based on the weight of the dry base material. Desirably, if the amount is less than 3 parts by weight, the effect will not be sufficient, and if it exceeds 30 parts by weight, the plate will become brittle when made into a laminate and the punching workability will deteriorate. A solution or suspension of the treatment agent prepared under the above conditions is coated with a cellulose paper base such as kraft paper or linter paper, or in some cases a cellulose yarn fabric base such as cotton or rayon, using a dipping bath, roll coater or After impregnation using a spray or the like, a treated substrate is obtained by drying to remove the solvent. The desirable drying temperature is usually 50 to 170°C, and the drying time is about 0.5 to 60 minutes. On the other hand, in the unsaturated polyester resin used in the present invention, the structural formula of the unsaturated polyester chain is, for example, Well-known and flame-retardant alcohols containing halogen or the like in their structures can be used. Therefore, polyhydric alcohols used as raw materials include ethylene glycol, propylene glycol, diethylene glycol, 1,4- Butanediol and 1,5-pentanediol, bisphenol A-
Propylene oxide adduct, 2,2-dipromoneopentyl glycol, saturated polybasic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, adipic acid, sebacic acid, azelaic acid, chlorendoic acid, tetrabromophthalic anhydride, tetrachloro Commonly used phthalic anhydride and unsaturated polybasic acids are maleic anhydride and fumaric acid, and are a mixture of these and a crosslinking monomer.
Further, a mixture of an epoxy-acrylate having two or more acryloyl groups or methacryloyl groups at the molecular end and a crosslinking monomer, which is generally called a vinyl ester resin, can also be applied to the present invention. Styrene is commonly used as a crosslinking monomer, but other examples include α-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene, alkyl acrylates having 1 to 10 carbon atoms, alkyl methacrylates having 1 to 10 carbon atoms, and phthalic acid. Monomers such as diallyl and triallyl cyanurate can also be used. The amount of these crosslinking monomers used is
20-50% by weight of unsaturated polyester resin,
Furthermore, a general-purpose organic peroxide is added as a curing catalyst, and a curing accelerator is added as necessary during curing. In addition, the curing catalyst is not limited to these,
All known curing catalysts can be used together with organic peroxides or alone, such as curing catalysts that are sensitive to light, radiation, or electron beams. Further, depending on the purpose, flame retardants, flame retardant aids, polymerization inhibitors, ultraviolet absorbers, fillers, colorants, etc. may be added to the unsaturated polyester resin liquid. An electrical laminate can be produced by impregnating the treated base material with the unsaturated polyester resin liquid, laminating the resin-impregnated base materials, and curing the resin-impregnated base materials. At this time, the unsaturated polyester resin is preferably liquid at room temperature, and has a viscosity of 0.1 to 30 poise, more preferably 0.5 to 15 poise. Furthermore, there is no restriction on the molding pressure when laminating and curing the base materials impregnated with unsaturated polyester resin, but the present inventors have already reported in JP-A-55-53013
As proposed in 2007, superior performance laminates can be obtained by curing under substantially no pressure, which is a preferred embodiment of the present invention. Note that the punching workability of the laminate obtained from the treated base material of the present invention is excellent, but in order to make low-temperature punching workability possible, the glass transition temperature of the cured product of the unsaturated polyester resin must be 20 It is preferable to use resins at ~80°C. The laminates and metal foil-clad laminates produced by the above method have excellent punching workability and moisture resistance, and can be used as electrical laminates for various purposes such as printed circuit boards. Next, the present invention will be explained in more detail with reference to Examples. Example 1 100 parts by weight of water (hereinafter abbreviated as parts), melamine resin (Nippon Carbide Industries, Nikaresin S-305)
8 parts of methylol group-containing water-soluble acrylic ester (Soken Chemical, WS-120) was added to a treatment solution consisting of 3 parts of 285 μm thick kraft paper (Tomoekawa Paper Co., Ltd.).
MKP-150) was immersed, taken out, and the excess liquid was squeezed out using a roll, and then heated at 120°C for 10 minutes to obtain a treated paper base material with a coating weight of 14.6%. On the other hand, an unsaturated polyester polymer made of diethylene glycol, isophthalic acid, and maleic anhydride as raw materials, with a molar ratio of each raw material component of 3:2:1, an average molecular weight of about 3900, and a condensation process using a general method. 1 part of 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane (Perhexa 3M, Nippon Oil & Fats) was added as a curing catalyst to a resin liquid consisting of 62 parts of styrene and 38 parts of styrene. This resin solution was impregnated into the above treated paper, five sheets were laminated, and at the same time a 35μm electrolytic copper foil coated with epoxy adhesive was laminated, and the paper was cured at 100℃ for 45 minutes under virtually no pressure to form a 1.6mm sheet.
A single-sided copper-clad board was obtained. Its performance is shown in Table 1. Example 2 100 parts of melamine and 210 parts of 37% formalin were placed in a reactor, made alkaline to pH 9, and heated to 15% while stirring.
The temperature was raised to 90℃ over 30 minutes at the same temperature.
The reaction continued for minutes. Next, 64 parts of water-soluble acrylic acid ester (WS-120) was added, and the mixture was reacted at the same temperature for an additional 10 minutes, and then cooled to room temperature. Kraft paper with a thickness of 285 μm was immersed in a treatment agent solution consisting of 100 parts of water and 17 parts of the modified melamine resin described above, and a treated paper base material with a coating weight of 14.0% was obtained in the same manner as in Example 1. Next, the same operations as in Example 1 were performed using the obtained treated paper to obtain a copper-clad laminate having a thickness of 1.6 mm. Its performance is shown in Table 1. Example 3 100 parts of water, melamine resin (Nica Resin S-305)
8 parts, acrylic acid ester emulsion with methylol group (Nippon Carbide Industries, Nikazol)
RX-18A) Prepare a processing agent solution consisting of 3 parts,
A treated paper base material with a coating weight of 13.4% was obtained in the same manner as in Example 1. A 1.6 mm copper-clad laminate was obtained from this treated paper in the same manner as in Example 1. Its performance is the first priority.
Shown in the table. Example 4 100 parts of water, melamine resin (Nica Resin S-305)
A treatment agent solution consisting of 8 parts and 3 parts of a modified NBR latex containing a carboxyl group (Nippon Zeon, Nippor 1571) was prepared, and a treated paper base material with a coating amount of 13.8% was prepared in the same manner as in Example 1. Using this treated paper, the same operations as in Example 1 were carried out to obtain a 1.6 mm copper-clad laminate. Its performance is shown in Table 1. Example 5 In Example 4, a 1.6 mm copper-clad laminate was made by using unmodified NBR latex (Nippon Zeon, Nitzpol 1551) without functional groups instead of modified NBR latex containing carboxyl groups. Created. Its performance is shown in Table 1. The amount of treatment agent attached to the treated paper was 13.6%. Example 6 100 parts of water, melamine resin (Nica Resin S-305),
A treated paper base material with a coating weight of 14.6% was obtained by the method of Example 1 using a treatment agent solution consisting of 3 parts of a water-soluble alkyd resin (Nissaku Arrow Chemical Co., Ltd., Aloron 376). Next, with the obtained treated paper, Example 1
A copper-clad laminate with a thickness of 1.6 mm was created by performing the same operation as above. Its performance is summarized in Table 1. Example 7 A long treated paper base material was prepared in advance by continuously immersing 285 μm thick kraft paper in the same treatment agent solution as in Example 3 and heating and drying it at 120° C. for 6 minutes. While continuously transporting five sheets of this treated paper, the same resin liquid as in Example 1 was impregnated from the top surface of each sheet, and then they were overlapped using two pairs of rolls, and a 35 μm sheet coated with epoxy adhesive from one side was Electrolytic copper foil is laminated with a 50 μm thick polyester film on the opposite side, and the temperature is
It was continuously transferred to a tunnel type hot air drying oven at 110°C, and was heated and cured for 15 minutes. After cutting this material, it was further heat-treated at 160℃ for 10 minutes.
Finally, a copper-clad laminate with a thickness of 1.6 mm was obtained. Table 1 shows the performance of the obtained laminate. Comparative example: 8 parts of melamine resin (Nicaresin S-305), water
A piece of kraft paper with a thickness of 285 μm was immersed in a treatment agent solution containing 100 parts, and the amount of adhesion was determined in the same manner as in Example 1.
A 11.2% melamine resin treated paper was obtained. Using this treated paper, the same operation as in Example 1 was performed to obtain a thickness of 1.6 mm.
A copper-clad laminate was obtained. This performance is shown in Table 1 for comparison with the present invention.

【表】 打抜加工性はASTM−D617、吸水率、絶縁抵
抗、半田耐熱性はJIS−C6481に依つた。
[Table] Punching workability was based on ASTM-D617, and water absorption, insulation resistance, and soldering heat resistance were based on JIS-C6481.

Claims (1)

【特許請求の範囲】 1 セルロース系基材と不飽和ポリエステル樹脂
とからなる電気用積層板において、セルロース系
基材が、軟質の熱可塑性樹脂を添加したアミノ樹
脂で予め含浸処理をした後、不飽和ポリエステル
樹脂を含浸し積層、硬化してなる不飽和ポリエス
テル樹脂電気用積層板。 2 軟質の熱可塑性樹脂が、アミノ樹脂と縮合し
うる官能基を有する軟質の熱可塑性樹脂である特
許請求の範囲第1項記載の不飽和ポリエステル樹
脂電気用積層板。 3 アミノ樹脂と縮合しうる官能基を有する軟質
の熱可塑性樹脂が、分子内にカルボキシル基、水
酸基、アミノ基、アミド基、メチロール基、エポ
キシ基からなる群より選ばれる一つあるいは2つ
以上を有する軟質のアクリル系重合体である特許
請求の範囲第2項記載の不飽和ポリエステル樹脂
電気用積層板。 4 アミノ樹脂と縮合しうる官能基を有する軟質
の熱可塑性樹脂が、分子内にカルボキシル基、水
酸基、アミノ基、アミド基、メチロール基、エポ
キシ基からなる群より選ばれる一つあるいは2つ
以上を有する軟質の共役ジエン系重合体である特
許請求の範囲第2項記載の不飽和ポリエステル樹
脂電気用積層板。 5 アミノ樹脂が、メラミン樹脂及び又はグアナ
ミン樹脂である特許請求の範囲第1項乃至第4項
の何れかの項記載の不飽和ポリエステル樹脂電気
用積層板。 6 不飽和ポリエステル樹脂が、その硬化体のガ
ラス転移温度が20〜80℃である特許請求の範囲第
1項乃至第5項の何れかの項記載の不飽和ポリエ
ステル樹脂電気用積層板。 7 セルロース系基材を、軟質の熱可塑性樹脂を
添加したアミノ樹脂で予め含浸処理し、加熱乾燥
した後、該処理を施したセルロース系基材に、不
飽和ポリエステル樹脂液を含浸せしめ、次いで積
層し、実質的に無圧の条件下に硬化せしめること
を特徴とする不飽和ポリエステル樹脂電気用積層
板を製造する方法。 8 軟質の熱可塑性樹脂が、アミノ樹脂と縮合し
うる官能基を有する軟質の熱可塑性樹脂である特
許請求の範囲第7項記載の方法。 9 アミノ樹脂と縮合しうる官能基を有する軟質
の熱可塑性樹脂が、分子内にカルボキシル基、水
酸基、アミノ基、アミド基、メチロール基、エポ
キシ基からなる群より選ばれる一つあるいは2つ
以上を有する軟質のアクリル系重合体である特許
請求の範囲第7項記載の方法。 10 アミノ樹脂と縮合しうる官能基を有する軟
質の熱可塑性樹脂が、分子内にカルボキシル基、
水酸基、アミノ基、アミド基、メチロール基、エ
ポキシ基からなる群より選ばれる一つあるいは2
つ以上を有する軟質の共役ジエン系重合体である
特許請求の範囲第7項記載の方法。 11 アミノ樹脂が、メラミン樹脂及び又はグア
ナミン樹脂である特許請求の範囲第7項乃至第1
0項の何れかの項記載の方法。 12 不飽和ポリエステル樹脂が、その硬化体の
ガラス転移温度が20〜80℃である特許請求の範囲
第7項乃至第11項の何れかの項記載の方法。
[Scope of Claims] 1. In an electrical laminate made of a cellulose base material and an unsaturated polyester resin, the cellulose base material is pre-impregnated with an amino resin to which a soft thermoplastic resin is added and then treated with an unsaturated polyester resin. An unsaturated polyester resin electrical laminate that is impregnated with saturated polyester resin, laminated and cured. 2. The unsaturated polyester resin electrical laminate according to claim 1, wherein the soft thermoplastic resin is a soft thermoplastic resin having a functional group capable of condensing with an amino resin. 3 A soft thermoplastic resin having a functional group capable of condensing with an amino resin has one or more selected from the group consisting of a carboxyl group, a hydroxyl group, an amino group, an amide group, a methylol group, and an epoxy group in its molecule. The unsaturated polyester resin electrical laminate according to claim 2, which is a soft acrylic polymer. 4 A soft thermoplastic resin having a functional group capable of condensing with an amino resin has one or more selected from the group consisting of a carboxyl group, a hydroxyl group, an amino group, an amide group, a methylol group, and an epoxy group in its molecule. The unsaturated polyester resin electrical laminate according to claim 2, which is a soft conjugated diene-based polymer. 5. The unsaturated polyester resin electrical laminate according to any one of claims 1 to 4, wherein the amino resin is a melamine resin and/or a guanamine resin. 6. The unsaturated polyester resin electrical laminate according to any one of claims 1 to 5, wherein the unsaturated polyester resin has a glass transition temperature of 20 to 80°C as a cured product. 7 A cellulose base material is pre-impregnated with an amino resin to which a soft thermoplastic resin has been added, and after drying by heating, the treated cellulose base material is impregnated with an unsaturated polyester resin liquid, and then laminated. A method for producing an unsaturated polyester resin electrical laminate, characterized in that the unsaturated polyester resin electrical laminate is cured under substantially no pressure conditions. 8. The method according to claim 7, wherein the soft thermoplastic resin is a soft thermoplastic resin having a functional group capable of condensing with an amino resin. 9 A soft thermoplastic resin having a functional group capable of condensing with an amino resin has one or more selected from the group consisting of a carboxyl group, a hydroxyl group, an amino group, an amide group, a methylol group, and an epoxy group in its molecule. 8. The method according to claim 7, wherein the soft acrylic polymer has the following properties. 10 A soft thermoplastic resin having a functional group that can be condensed with an amino resin has a carboxyl group,
One or two selected from the group consisting of hydroxyl group, amino group, amide group, methylol group, and epoxy group
8. The method according to claim 7, which is a soft conjugated diene polymer having at least one of the following. 11 Claims 7 to 1, wherein the amino resin is a melamine resin and/or a guanamine resin
The method described in any of item 0. 12. The method according to any one of claims 7 to 11, wherein the unsaturated polyester resin has a cured product having a glass transition temperature of 20 to 80°C.
JP12893780A 1980-05-26 1980-09-16 FUHOWAHORIESUTERUJUSHIDENKYOSEKISOBANOYOBISOREOSEIZOSURUHOHO Granted JPS5753993A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12893780A JPS5753993A (en) 1980-09-16 1980-09-16 FUHOWAHORIESUTERUJUSHIDENKYOSEKISOBANOYOBISOREOSEIZOSURUHOHO
CA000378138A CA1162470A (en) 1980-05-26 1981-05-22 Electrical laminate
DE8181104019T DE3162355D1 (en) 1980-05-26 1981-05-25 Insulating laminate
EP19810104019 EP0040848B1 (en) 1980-05-26 1981-05-25 Insulating laminate
US06/722,762 US4572859A (en) 1980-05-26 1985-04-15 Electrical laminate comprising a plurality of fibrous layers and cured resin layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12893780A JPS5753993A (en) 1980-09-16 1980-09-16 FUHOWAHORIESUTERUJUSHIDENKYOSEKISOBANOYOBISOREOSEIZOSURUHOHO

Publications (2)

Publication Number Publication Date
JPS5753993A JPS5753993A (en) 1982-03-31
JPS6345698B2 true JPS6345698B2 (en) 1988-09-12

Family

ID=14997084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12893780A Granted JPS5753993A (en) 1980-05-26 1980-09-16 FUHOWAHORIESUTERUJUSHIDENKYOSEKISOBANOYOBISOREOSEIZOSURUHOHO

Country Status (1)

Country Link
JP (1) JPS5753993A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021242A (en) * 1983-07-15 1985-02-02 松下電工株式会社 Manufacture of metallic foil lined laminated board

Also Published As

Publication number Publication date
JPS5753993A (en) 1982-03-31

Similar Documents

Publication Publication Date Title
US4994133A (en) Continuous process for producing reinforced resin laminates
JPS6221371B2 (en)
US4410388A (en) Production of metal clad laminates
EP0031852B1 (en) Process and apparatus for continuous production of laminates
JPS6345698B2 (en)
US4572859A (en) Electrical laminate comprising a plurality of fibrous layers and cured resin layers
JPS633742B2 (en)
JP2001288444A (en) Impregnating and adhesive bonding resin composition
JPS6345697B2 (en)
JPS6345416B2 (en)
JPS642136B2 (en)
JPS6346101B2 (en)
JPS6335422B2 (en)
JPH0321337B2 (en)
JPS6345415B2 (en)
JP2976303B2 (en) Fiber nonwoven fabric and method for producing the same
JPS6037812B2 (en) Method of manufacturing laminates
JPS6345699B2 (en)
JPS634576B2 (en)
JPS6354543B2 (en)
JP2001181417A (en) Prepreg and copper-clad laminate
JPH0253225B2 (en)
JPS58113227A (en) Manufacture of laminate
JPH048461B2 (en)
JPH01286837A (en) Metallic foil plated electric laminate