JPS6345531A - Method for diagnosing life - Google Patents

Method for diagnosing life

Info

Publication number
JPS6345531A
JPS6345531A JP18847486A JP18847486A JPS6345531A JP S6345531 A JPS6345531 A JP S6345531A JP 18847486 A JP18847486 A JP 18847486A JP 18847486 A JP18847486 A JP 18847486A JP S6345531 A JPS6345531 A JP S6345531A
Authority
JP
Japan
Prior art keywords
crack
life
evaluation
progression
ductile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18847486A
Other languages
Japanese (ja)
Inventor
Shinji Sakata
信二 坂田
Satoshi Sugano
智 菅野
Hiroaki Doi
土居 博昭
Naoto Saito
直人 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18847486A priority Critical patent/JPS6345531A/en
Publication of JPS6345531A publication Critical patent/JPS6345531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To permit evaluation of the life of equipment for both brittle fracture and ductile fracture which are the fracture mode of a metallic material by evaluating the progression of a crack by fatigue from the coefft. of stress expansion and evaluating the stable progression of the crack simultaneously. CONSTITUTION:The data on the part to be evaluated, initial crack and material characteristics are determined from material, working method, quality control and load during use and the progression evaluation is executed in the designing stage of the equipment. The amt. of the progression by fatigue or corrosion, creep is first evaluated at this time and is compared with brittle fracture toughness KIC. The actual load or max. load to be generated during the operation is then set and the progression evaluation of the ductile crack is executed by the propressions of KI>=KIC... brittle fracture, JI>=JIC... ductile crack. As to the life, the time until the brittle fracture toughness KIC, toughness value JIC are attained is calculated and is determined as the remaining life. The review from the selection of the material and working method by returning to the beginning are mandatory if the life of the equipment runs out before the designed service lifetime by the above-mentioned evaluation in the design stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 機器に発生したき裂の進展量を評価し、機器の健全性と
余寿命を明らかとするための診断法に関する技術である
[Detailed Description of the Invention] [Industrial Application Field] This technology relates to a diagnostic method for evaluating the amount of growth of cracks generated in equipment and clarifying the soundness and remaining life of the equipment.

〔従来の技術〕[Conventional technology]

重電機器のき裂進展評価は、線形破壊力学に基づく応力
拡大係数でその進展量及び限界き裂寸法を評価して来た
。しかし、高温環境下で使用される場合や延性材を用い
た機器では、塑性変形により、延性き裂′の発生及びき
裂の鈍化により機器に悪影響を及ぼす場合がある。この
現象は、弾塑性破壊力学に基づいた評価が必要である。
In the evaluation of crack growth in heavy electrical equipment, the amount of growth and critical crack size have been evaluated using stress intensity factors based on linear fracture mechanics. However, when used in high-temperature environments or in devices using ductile materials, plastic deformation may generate ductile cracks and slow down the cracks, which may adversely affect the device. This phenomenon requires evaluation based on elastoplastic fracture mechanics.

本発明に関連する公知例として、特開昭56−6322
0号公報がある。
As a publicly known example related to the present invention, JP-A-56-6322
There is a publication No. 0.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術の項でも述べたようにこれまでの機器の寿命評
価は、線形破壊力学(弾性輪)に基づく応力拡大係数を
パラメータとしたき裂の進展世評高温状態で使用される
機器や延性材機器に発生する塑性変形に伴う現象を評価
することはできない。
As mentioned in the section on conventional technology, the lifespan evaluation of equipment up to now has been based on linear fracture mechanics (elastic rings) based on stress intensity factors as parameters for crack propagation. It is not possible to evaluate the phenomena associated with plastic deformation that occurs.

すなわち、き裂が塑性変形により鈍化し、大きな開口変
形を生じる点、さらに、不安定破壊に至る前に安定き裂
の進展がある点など延性破壊特有の現象がある。本発明
の目的は、これらの延性破壊有象をも考慮した寿命評価
を実施することにある。
That is, there are phenomena peculiar to ductile fracture, such as the fact that the crack is slowed down by plastic deformation, resulting in large opening deformation, and furthermore, the stable crack propagates before reaching unstable fracture. An object of the present invention is to carry out a life evaluation that also takes into account these ductile fracture phenomena.

〔問題点を解決するための手段〕[Means for solving problems]

機器の寿命評価は、き裂が微小な場合は、高温環境や延
性材であってもその進展挙動は、応力拡大係数にとパラ
メータとして評価法に従うことが知られている。従って
、前記の問題点を解決するために、き裂の疲労又は腐食
、クリープによる進展(き裂が小さい状態での進展を支
配する因子)は、応力拡大係数Kにより評価し、同時に
、あるき裂進展量毎に、延性破壊挙動を評価するため、
弾塑性破壊力学パラメータJ積分による安定き裂進展評
価を実施する。これ両者を同時に評価することによりき
裂を有する機器の総合的な寿命評価法が確立する。
When evaluating the lifespan of equipment, it is known that when a crack is small, its propagation behavior is determined by the stress intensity factor as a parameter, even in high-temperature environments or in ductile materials. Therefore, in order to solve the above problems, the propagation of cracks due to fatigue, corrosion, and creep (factors that govern the propagation of cracks when they are small) is evaluated using the stress intensity factor K, and at the same time, In order to evaluate the ductile fracture behavior for each amount of progress,
Stable crack growth evaluation is performed using elastic-plastic fracture mechanics parameter J integral. By evaluating both at the same time, a comprehensive life evaluation method for equipment with cracks can be established.

〔作用〕[Effect]

き裂の進展挙動は大別する以下の現象に大別できる。 Crack growth behavior can be broadly classified into the following phenomena.

(1)疲労、腐食又はクリープによる進展(2)安定き
裂の進展 (3)不安定進展 これらの中で、線形破壊力学パラメータである応力拡大
係数には、(1)と(3)を規定するパラメータである
。脆性材の場合は、(1)の現象の後、材料の破壊靭性
Kzcを越えると(3)の現象となる。一方、延性材の
場合は、き裂が比較的微小の場合は、(1)の現象のみ
であり、これに対しては、Kによる評価が有効である。
(1) Growth due to fatigue, corrosion, or creep (2) Stable crack growth (3) Unstable growth Among these, (1) and (3) are specified for the stress intensity factor, which is a linear fracture mechanics parameter. This is a parameter to In the case of brittle materials, after the phenomenon (1), when the fracture toughness Kzc of the material is exceeded, the phenomenon (3) occurs. On the other hand, in the case of a ductile material, if the crack is relatively small, only the phenomenon (1) occurs, and evaluation using K is effective for this.

しかし、き裂がある程度大きくなると(2)の現象が生
じ、これには、弾塑性破壊力学パラメータ、■を用いて
、靭性値、Lrcとの比較による評価を実施する。(3
)の現象は延性材の場合Ktaでは、無く、Jを用いた
評価によって実施するとかできる。
However, when the crack becomes large to a certain extent, the phenomenon (2) occurs, and for this purpose, evaluation is carried out by comparing the toughness value, Lrc, using the elastic-plastic fracture mechanics parameter, ■. (3
) phenomenon does not exist with Kta in the case of ductile materials, and can be carried out by evaluation using J.

以上、KとJを組合せた評価法により、(1)〜(3)
の現象が評価できる。
Above, using the evaluation method that combines K and J, (1) to (3)
This phenomenon can be evaluated.

〔実施例〕〔Example〕

本発明を用いた寿命及び健全性評価例を第1図に示す0
機器の設計段階で、材料、加工法1品質管理、供用中負
荷などから評価対象部位、初期き裂、材料特性データを
決定し進展評価を実施する。
An example of lifespan and soundness evaluation using the present invention is shown in FIG.
At the equipment design stage, the evaluation target area, initial crack, and material property data are determined based on materials, processing method 1 quality control, and in-service load, etc., and progress evaluation is performed.

第1にブロックh)は、疲労又は腐食、クリープによる
進展量を評価し、脆性的破壊靭性KIOとの比較を行う
0次にブロックj)に進み、運転中に生じる実働負荷又
は極大負荷を設定し、延性き裂の進展評価を実施する。
First, block h) evaluates the amount of progress due to fatigue, corrosion, and creep, and compares it with the brittle fracture toughness KIO. Next, block j) sets the actual load or maximum load that occurs during operation. and evaluate the growth of ductile cracks.

これらの評価は、次の2式により評価される。These evaluations are performed using the following two equations.

Kr≧KfC・・・脆性的破壊  (1)J!≧Jrc
        ・・・延性き裂の進展(2)ここで、
KIC,Jrcは材料物性値。
Kr≧KfC...brittle fracture (1) J! ≧Jrc
...Ductile crack growth (2) Here,
KIC and Jrc are material property values.

さらに寿命については、式(1)及び(2)において、 Kr<Krc Jx<Jxc である場合、それぞれ、Krce Jraに達するまで
の1時間をブロックh)において計算し余寿命とする。
Furthermore, regarding the lifespan, in equations (1) and (2), when Kr<Krc Jx<Jxc, one hour until reaching Krce Jra is calculated in block h) and used as the remaining life.

設計段階で本発明の評価により設計耐用年数以下で機器
の寿命が無くなる場合は、元に戻りブロックa)の材料
、加工法の選定から再度検討し直すことになる。
If the evaluation of the present invention at the design stage shows that the life of the equipment is less than the designed service life, the process should be returned to the original stage and the selection of the material and processing method for block a) should be reconsidered.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、機器を構成する材料が脆性。 According to the present invention, the material constituting the device is brittle.

延性のいずれであっても、又、高温、低温のいずれのQ
Inにあってもその寿命、健全性を評価することができ
る。すなわち、金属材料の破壊モードである脆性破壊、
延性破壊の両者に対して、機器の寿命が評価でき、その
信頼性の大幅向上が期待できる効果がある。
Regardless of whether it is ductile or whether it is high temperature or low temperature, Q
Even if it is In, its lifespan and soundness can be evaluated. In other words, brittle fracture, which is the fracture mode of metallic materials;
The life of the equipment can be evaluated against both ductile fractures and its reliability can be expected to be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 1、実働条件下における機器の寿命予測を行う方法であ
つて、計測又は推定されたき裂に対して応力拡大係数K
によるき裂の進展量評価とき裂サイズにより必要に応じ
て延性き裂の進展の有無を判定し、脆性材又は延性材に
よつて作られている機器の寿命を予測することを特徴と
する寿命診断法。
1. A method for predicting the life of equipment under actual working conditions, in which the stress intensity factor K is calculated for measured or estimated cracks.
A life expectancy characterized by predicting the life of equipment made of brittle or ductile materials by evaluating the amount of crack growth and determining the presence or absence of ductile crack growth as necessary based on the crack size. Diagnostic method.
JP18847486A 1986-08-13 1986-08-13 Method for diagnosing life Pending JPS6345531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18847486A JPS6345531A (en) 1986-08-13 1986-08-13 Method for diagnosing life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18847486A JPS6345531A (en) 1986-08-13 1986-08-13 Method for diagnosing life

Publications (1)

Publication Number Publication Date
JPS6345531A true JPS6345531A (en) 1988-02-26

Family

ID=16224356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18847486A Pending JPS6345531A (en) 1986-08-13 1986-08-13 Method for diagnosing life

Country Status (1)

Country Link
JP (1) JPS6345531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002261A (en) * 2008-06-19 2010-01-07 Toshiba Corp Instrument life evaluation method and instrument life evaluation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002261A (en) * 2008-06-19 2010-01-07 Toshiba Corp Instrument life evaluation method and instrument life evaluation system

Similar Documents

Publication Publication Date Title
Fatemi et al. Multiaxial fatigue: An overview and some approximation models for life estimation
Araújo et al. Life prediction in multiaxial high cycle fretting fatigue
JP2014071053A (en) Creep damage assessment method and creep damage assessment system for high-temperature members
Blagoeva et al. Application of the CEN (European Committee for Standardization) small punch creep testing code of practice to a representative repair welded P91 pipe
Pedersen Introduction to metal fatigue
CN1207550C (en) Test method of high-temp, component creep life
JP6448724B1 (en) Remaining life evaluation method
Mackay et al. An evaluation of the staircase and over-stress probe methods for fatigue life characterization in aluminum sand castings
Okrajni et al. Description of the deformation process under thermo-mechanical fatigue
Brandt et al. Fatigue crack initiation and growth in AlMg4. 5Mn butt weldments
JPS6345531A (en) Method for diagnosing life
Goodall et al. An assessment procedure for the high temperature response of structures
Garbatov et al. Influence of steel strength on the fatigue reliability of welded structural components
Yu et al. Experiment and simulation of high‐cycle corrosion fatigue damage evolution and corrosion pit tolerance analysis of crack nucleation
OHGUCHI et al. Fatigue life estimation of SAC solder based on inelastic strain analysis using stepped ramp wave loading
Roy et al. A stochastic model for evolution of creep damage in engineering materials
Belodedenko et al. Fatigue lifetime model under a complex loading with application of the amalgamating safety indices rule
KR20090071685A (en) Estimating superannuation method of facilities
Miller et al. High-temperature cumulative damage for stage I crack growth
Dean et al. R5 procedures for assessing the high temperature response of structures: current status and future developments
Ainsworth et al. Creep-fatigue crack initiation assessment procedures
Dai et al. Study on the Estimation Method for Welding Fatigue Mean Stress Effect Based on Local Elastic-Plastic Stress Cycle
Mirzaee-Sisan et al. Application of the local approach to predict load history effects in ferritic steels
Kliman et al. Influence of scatter of cyclic properties of material on operational endurance of construction
Schijve Fatigue under variable-amplitude loading