KR20090071685A - Estimating superannuation method of facilities - Google Patents

Estimating superannuation method of facilities Download PDF

Info

Publication number
KR20090071685A
KR20090071685A KR1020070139552A KR20070139552A KR20090071685A KR 20090071685 A KR20090071685 A KR 20090071685A KR 1020070139552 A KR1020070139552 A KR 1020070139552A KR 20070139552 A KR20070139552 A KR 20070139552A KR 20090071685 A KR20090071685 A KR 20090071685A
Authority
KR
South Korea
Prior art keywords
deterioration
grade
facility
steel
parameter
Prior art date
Application number
KR1020070139552A
Other languages
Korean (ko)
Other versions
KR100971898B1 (en
Inventor
조종춘
안득규
제현우
조경식
전창배
Original Assignee
한국기계연구원
조종춘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, 조종춘 filed Critical 한국기계연구원
Priority to KR1020070139552A priority Critical patent/KR100971898B1/en
Publication of KR20090071685A publication Critical patent/KR20090071685A/en
Application granted granted Critical
Publication of KR100971898B1 publication Critical patent/KR100971898B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers

Abstract

An evaluation method for deterioration of facilities is provided to prevent damage by predicting explosion and fire in advance by finding out the replacement time for objective equipment through database searching tissues photo classified as the kind of steels, parameter, and grade. An evaluation method for deterioration of facilities comprises: a step of preparing a replica film by photographing micro- tissues of facility to be evaluated about deterioration; a step of connecting a search system through internet; a step of selecting the parameter in the search system according to the kind of the steel and the usage of the facility; a step of selecting a similar grade which is determined by comparing the replica film with the tissue photo registered in the parameter; and a step of preparing counterplan according to the selected grade. In the search system, database for searching tissues photo classified according to steels, parameters, and grades is formed.

Description

설비의 열화도 평가방법{ESTIMATING SUPERANNUATION METHOD OF FACILITIES}Evaluation method of facility deterioration {ESTIMATING SUPERANNUATION METHOD OF FACILITIES}

본발명은 석유화학 및 정유플랜트, 발전, 난방분야등 주로 가혹한 분위기에서 사용되는 설비의 열화도를 평가하여 설비의 잔존수명 예측과 설비보수 및 교체시기를 정확히 판단함으로서 불의에 발생할 수도 있는 대형사고를 사전에 예방할 수 있도록 한 설비의 열화도를 평가하기 위한 방법으로서, 더욱 구체적으로는 인터넷을 통하여 비전문가라도 손쉽게 접근하여 설비의 노후화를 직접 평가할 수 있도록 한 설비의 열화도 평가방법에 관한 것이다.The present invention evaluates the degree of deterioration of equipment mainly used in harsh atmospheres such as petrochemical and oil refining plants, power generation, and heating, and accurately predicts the remaining life of equipment and timely repairs and replacements. As a method for evaluating the degree of deterioration of a facility that can be prevented in advance, and more specifically, it relates to a method of evaluating the degree of deterioration of a facility so that even non-experts can easily assess the deterioration of the facility directly through the Internet.

일반적으로, 석유화학 및 정유플랜트, 발전산업분야등에 설치된 대부분의 설비는 염산, 황산등의 부식환경에 노출되어 있을 뿐 아니라 고온고압하의 가혹한 조건에서 가동되고 있는 관계로 탄화물의 석출, 조대화등의 조직변화, 크리프(creep), 열응력, 침탄(Carburization), 유화(Sulfidation),등의 다양한 경년열화를 받고 있는데. 이러한 열화요인으로 인해 일반적인 조건에서 사용되는 설비에 비하여 설비의 손상속도가 빠르게 나타난다. 더구나 국내의 이러한 산업은 장치의 노후화가 심하여 사고가 빈번하게 일어나고 있다.In general, most of the facilities installed in petrochemical, oil refining plants, and power generation industries are exposed to corrosive environments such as hydrochloric acid and sulfuric acid, and are operated under severe conditions at high temperature and high pressure. It is undergoing various deterioration such as tissue change, creep, thermal stress, carburization, sulfidation, etc. Due to these deterioration factors, the damage rate of the equipment is faster than that of the equipment used under normal conditions. In addition, the domestic industry is a aging device, and accidents occur frequently.

따라서, 당업계에서는 소재의 열화요인을 분석하여 설비의 잔존수명을 평가 하고 이에 따른 대책을 마련하여 설비의 수명을 연장하고 폭발등의 대형사고를 사전에 예방할 수 있는 보수점검의 기회를 많이 갖는 것이 필요하여 정기적인 점검을 실시하여 오고 있는데, 생산 현장에서 근무하는 기술자는 설비의 열화요인을 분석할 수 있는 전문지식이 부족하여 설비의 열화정도와 잔존수명을 평가할 수 없기 때문에 전문기관에 의뢰하여 열화도를 평가하여 오고 있는 것이 현 실정이다.Therefore, in the art, it is necessary to analyze the deterioration factors of the material to evaluate the remaining life of the facility, and to prepare a countermeasure accordingly, to increase the service life of the facility and to have many opportunities for maintenance inspections that can prevent large accidents such as explosions in advance. We have been conducting regular inspections as necessary.The technician working at the production site lacks the specialized knowledge to analyze the deterioration factors of the facility and cannot evaluate the degree of deterioration and the remaining life of the facility. The present situation is evaluating the province.

그러나, 전문기관에 의뢰하는 경우 의뢰하는데 따른 절차가 복잡하여 시간이 많이 걸리는 관계로 적기에 평가작업 수행이 곤란하고, 이에 따라 부품의 보수 및 교체시기를 놓쳐서 설비의 수명 단축을 가져오거나 대형사고를 유발할 수 있는 문제가 발생하고, 또한 의뢰비용도 고가인 문제가 있다.However, in case of requesting a specialized institution, it is difficult to carry out the evaluation work in a timely manner due to the complicated procedure required for requesting, and therefore, it is possible to shorten the repair and replacement time of parts, resulting in shortening the lifespan of the facility or causing a large accident. There is a problem that can be caused, and there is also a problem that the request cost is expensive.

본 발명은 이와 같은 문제를 해결하기 위하여 창안한 것으로 전문가가 아닌 비전문가 즉, 생산현장의 기술자라도 쉽게 접근해서 자체 평가가 가능하고, 저렴한 비용으로 업무수행이 가능하도록 함으로서 설비의 보수 및 교체시기를 예측가능하게 하여 설비의 수명연장은 물론 대형사고 발생을 미연에 방지 하기 위한 방법을 제공하고자 하는데 그 목적이 있다.The present invention was devised to solve such a problem, and even non-experts, ie, technicians in the production site, can easily access and evaluate themselves, and predict the time for repair and replacement of facilities by allowing them to perform tasks at low cost. The aim is to provide a way to prevent the occurrence of large-scale accidents as well as the life of the equipment.

상기 목적을 달성하기 위하여 본 발명은 The present invention to achieve the above object

열화정도를 평가하고자하는 설비의 미세조직을 촬영하여 레프리카 필름을 준비하는 단계와, Preparing a replica film by photographing the microstructure of a facility to evaluate the degree of deterioration;

인터넷을 통하여 검색시스템에 접속하는 단계와, 상기 검색시스템에서 설비의 강종 및 설비의 사용분위기에 따른 파라메타를 선택하는 단계와, 상기 레프리카 필름을 상기 파라메타에 등재된 조직사진과 상호 대비하여 가장 유사하다고 판단되는 그레이드를 선택하는 단계와,상기 선택된 그레이드에 따라 대책 마련하는 단계로 이루어 진 것을 특징으로 하는 설비의 열화도 평가방법을 제공한다.Accessing the retrieval system through the Internet, selecting a parameter according to the steel grade of the facility and the use environment of the facility in the retrieval system, and comparing the replica film with the organizational pictures listed in the parameter. It provides a method for evaluating deterioration of the facility, characterized in that it comprises the step of selecting the grade to be judged, and preparing a countermeasure according to the selected grade.

또한, 본 발명에서 상기 검색시스템은 강종별, 파라메타별, 그레이드별로 분류된 조직사진들을 검색할 수 있는 데이터 베이스가 구축되어 인터넷상에서 누구라도 쉽게 접근할 수 있도록 되어있는 것을 특징으로 하며,In addition, the search system in the present invention is characterized in that a database that can search for organization photos classified by steel type, parameter, grade, etc. can be easily accessible to anyone on the Internet,

상기 강종은 저탄소 합금강, 내식강, 내열주강인 것을 특징으로 하며,The steel is characterized in that the low carbon alloy steel, corrosion resistant steel, heat-resistant cast steel,

상기 파라메타는 열화요인과 사용분위기등에 따라 열화정도, 크리프정도, 응력부식균열, 부식피로균열, 침탄, 수소손상, 공식으로 세분화 되어 있는 것을 특징으로 하며,The parameter is characterized in that the degree of degradation, creep, stress corrosion cracking, fatigue fatigue cracking, carburizing, hydrogen damage, formulated according to the deterioration factors and use atmosphere, etc.

상기 그레이드는 탄화물의 조직상태, 케비티 결함, 피팅, 수소손상, 균열정도를 감안하여 A~F단계의 열화등급으로 분류되며, 설비의 잔존수명이 어느 정도인지 나타내는 것을 특징으로 하는 설비의 열화도 평가방법을 제공한다.The grade is classified into degradation grades of A to F in consideration of the structure state of the carbides, cavity defects, fittings, hydrogen damage, and cracking degree, and indicates the extent of the remaining life of the equipment. Provide an evaluation method.

본 발명에 따르면, 석유화학, 정유, 발전산업분야의 설비에 대한 열화등급을 금속조직 관련 비전문가와 미숙련자라 하더라도 손쉽게 저렴한 비용으로 판독하는 것이 가능하여 대상설비에 대한 최적의 교체시기를 알아낼 수 있어 사전에 폭발, 화재등의 피해를 예방하고, 이에 따라 인명 및 재산상의 손실을 최소화할 수 있는 효과가 있다.According to the present invention, it is possible to easily read the deterioration grades for the facilities in the petrochemical, oil refining, and power generation industries even at low cost, even for non-experts and non-experts related to the metal structure, so that the optimum replacement time for the target equipment can be determined. To prevent damages such as explosion, fire, etc., thereby minimizing the loss of life and property.

이하, 본발명의 구성에 대하여 설명한다.Hereinafter, the structure of this invention is demonstrated.

본 발명에서 사용자가 설비의 노후화 정도를 평가하기 위하여 설비의 미세조직을 촬영한 레프리카 필름을 사용하는데, 이는 검색시스템에 등재된 데이터와 비교가 가능하도록 하기 위함이다.In the present invention, the user uses a replica film photographing the microstructure of the facility in order to evaluate the degree of aging of the facility, so that it can be compared with the data listed in the search system.

본 발명의 검색시스템은 인터넷을 통하여 누구나 손쉽게 접속할 수 있도록 한 것으로서 ,본 발명자가 수십년간 현장에서 설비의 열화도 평가를 수행하면서 수집한 다양한 미세조직사진을 강종별, 파라메타별, 그레이드별로 분류하여 데이터베이스화하여 컴퓨터에 탑재한 것이다.The retrieval system of the present invention allows anyone to easily access through the Internet, and the database is classified into various types of microstructured pictures collected by the inventors for decades in the field during the evaluation of deterioration of the facility by steel type, parameter, and grade. It is mounted on a computer.

검색시스템에 탑재된 데이터중에서 대상강종을 탄소강, 내식강, 내열강. 주강등으로 분류하였는데 그 이유는 이들 강종이 설비에 주로 사용되는 대표적인 강종이기 때문이다. 물론 필요에 따라 다양한 강종으로 분류하는 것이 가능하다.Among the data installed in the retrieval system, the target steels are carbon steel, corrosion resistant steel, and heat resistant steel. It is classified as cast steel because these steels are representative steels mainly used in equipment. Of course, it is possible to classify into various steel grades as needed.

그리고, 파라메타를 탄화물 석출, 침탄, 크리프, 응력부식균열, 부식피로, 수소손상등으로 분류하였는데, 그 이유는 이들 파라메타가 설비의 소재가 열화되는 여러 가지 요인중에서 열화를 일으키는 주요인인 미세조직의 변화에 따른 열화와 구조적인 분위기(급격한 인장응력, 충격, 반복인장, 압축응력, 지속적인 일정하중, 작용응력등) 및 환경적인 분위기(탄소 및 수소침투외 기타 부식등)에 따라 야기되는 대표적인 요인이기 때문이다.The parameters were categorized into carbide precipitation, carburization, creep, stress corrosion cracking, corrosion fatigue, and hydrogen damage, because of the change in microstructure, which is the main cause of deterioration among the various factors that cause the material of the equipment to degrade Due to deterioration and structural atmosphere (rapid tensile stress, impact, repeated tension, compressive stress, constant constant load, working stress, etc.) and environmental atmosphere (corrosion other than carbon and hydrogen penetration) to be.

여기에서, 탄화물 석출은 탄소강, 내식강, 내열강등 금속소재가 고온에 장기 간 노출될 때 미세조직이 변태되거나 입계 및 입내에 탄화물이 석출하게 되는 것을 말하며, 탄화물 석출이 진행되면서 궁극적으로는 균열 및 파손을 초래하게 되는 대표적인 열화요인이다.Here, the precipitation of carbide refers to the transformation of microstructures or the precipitation of carbides in grain boundaries and mouth when metal materials such as carbon steel, corrosion resistant steel, and heat resistant steel are exposed to high temperatures for a long period of time. It is a representative deterioration factor that causes breakage.

도 1에는 저탄소 저합금강의 미세조직 열화거동이 나타나 있는데, 여기에 따르면 미세조직의 열화가 진행되어 작용응력 및 환경인자에 의한 손상이 발생하게 됨을 알 수 있고,Figure 1 shows the deterioration behavior of the microstructure of the low carbon low alloy steel, according to this deterioration of the microstructure can be seen that the damage caused by the working stress and environmental factors,

도 2에는 내열주강의 미세조직 열화거동에 따르면 공정탄화물이 구상화되고 조대화되면서 열화가 진행됨을 알 수 있으며,In Figure 2 it can be seen that according to the microstructure deterioration behavior of heat-resistant cast steel deterioration proceeds as the process carbide is spheroidized and coarsened,

도 3에서는 내열주강에서 오스테나이트 기지에 공정탄화물들이 여러 가지 형태로 존재하고 있음을 보여주고 있고,3 shows that the process carbides exist in various forms in the austenitic base in the heat-resistant cast steel,

도 4에는 20000시간 사용한 튜브의 심하게 열화된 미세조직을 나타내고 있으며,Figure 4 shows the severely deteriorated microstructure of the tube used for 20000 hours,

도 5에는 내식(내열)강의 미세조직 열화거동에 따르면 결정입계 및 입내에 탄화물등이 석출되어 열화가 진행됨을 알 수 있어 탄화물 석출이 금속이 열화되는 대표적인 요인임을 알 수 있다.In FIG. 5, it can be seen that according to the microstructure deterioration behavior of the corrosion-resistant (heat-resistant) steel, carbides are precipitated in the grain boundary and the mouth to deteriorate, so that the precipitation of carbides is a representative factor of metal deterioration.

이때, 침탄은 고온영역에서 사용되는 설비의 금속표면에 발생하여 부피와 열팽창계수, 열전도도등의 변화에 의해 재료의 열화를 촉진시키는 열화요인이며, 침탄의 진행은 유리탄소 생성→튜브내 벽면에 코크(Coke)층 형성→튜브의 유효단면적 감소→코크층의 단열효과로 튜브온도 상승→침탄증가와 같은 반응에 의해 반복적으로 진행된다.At this time, carburization occurs on the metal surface of the equipment used in the high temperature range and deterioration of the material is promoted by the change of volume, coefficient of thermal expansion, thermal conductivity, etc. The reaction proceeds repeatedly by forming a coke layer, reducing the effective cross-sectional area of the tube, and increasing the tube temperature and increasing the carburization due to the adiabatic effect of the coke layer.

또한, 크리프는 고온 고압하에서 가동중인 설비에 주로 발생되는 것으로 오랜시간이 경과하면 재료내부에 캐비티(Cavity)라는 결함이 발생하고, 이러한 캐비티의 량은 시간과 함께 더욱더 증가하여 미세균열(Micro-crack)으로 발전하고, 궁극적으로 손상을 유발시키는 금속의 열화에 많은 영향을 끼치는 요인이다. 특히 크리프는 도 6의 크리프 손상을 5단계로 분류하여 초기단계에서 최종파단까지의 미세조직 상태가 나타나 있는 바와 같이 미세조직의 열화도 및 응력의 크기에 비례하는 것으로 알려져 있다.In addition, creep is mainly generated in a facility operating under high temperature and high pressure, and after a long time, a defect called a cavity occurs in the material, and the amount of such a cavity increases with time, thereby increasing micro-crack. ), And it has a great influence on the deterioration of metals that ultimately cause damage. In particular, creep is known to be proportional to the degree of deterioration and stress of the microstructure, as the creep damage of FIG. 6 is classified into five stages and the microstructure state from the initial stage to the final fracture is shown.

이러한 응력부식균열은 특정의 응력과 부식환경 조건에서 나타나는 손상의 한 종류로서 모든 금속소재에서 발생될 수 있다.These stress corrosion cracks are a type of damage that occurs under certain stress and corrosive environmental conditions and can occur in all metal materials.

그리고, 부식피로균열은 금속을 부식시키는 분위기 속에서 작용되는 주기적 인장응력(Cyclic Tensile Stress)의 결과로서 금속을 통해 전파되는 균열현상을 의미하는 것으로서 주기적 응력의 어느 임계값, 즉 피로한계 이상에서만 생기는 순수한 기계적 피로와는 대조적으로 부식피로는 매우 작은 응력에서도 발생한다. 응력부식균열(SCC)과는 대조적으로 이온과 금속의 특수한 조합에 관계없이 거의 모든 수용액에서 발생하며, 부식물질의 농축 없이도 일어날 수 있는 손상의 한 형태로 알려져 있다.Corrosion fatigue crack is a crack propagation through the metal as a result of cyclic tensile stress acting in the atmosphere that corrodes the metal and occurs only at a certain threshold of the periodic stress, that is, above the fatigue limit. In contrast to pure mechanical fatigue, corrosion fatigue occurs at very small stresses. In contrast to stress corrosion cracking (SCC), it occurs in almost all aqueous solutions, regardless of the specific combination of ions and metals, and is known as a form of damage that can occur without the concentration of corrosive substances.

뿐만 아니라, 수소손상은 고온에서 수소가 금속의 표면 또는 합금원소와 반응하여 균열을 유발하거나, 고온에서 수소를 함유한 강의 두꺼운 부위가 상온으로 급격히 냉각될 때 강속에 잔존해 있는 수소가 가스상태로 밖으로 빠져나오게 되는데 이때 수소가스의 압력에 의해 내부균열이 유발되는 손상의 한 형태이다.In addition, hydrogen damage may cause cracking by hydrogen reacting with metal surfaces or alloying elements at high temperatures, or hydrogen remaining in the gas in a gaseous state when a thick portion of steel containing hydrogen is rapidly cooled to room temperature at high temperatures. This is a form of damage in which internal cracks are caused by the pressure of hydrogen gas.

본 발명에서는 그레이드(열화등급)를 A~F 6단계로 분류하였는데 그 이유는 이러한 분류체계가 열화등급을 평가하는데 효과적이기 때문이며, 필요에 따라 좀더 세분하여 분류하는 것도 가능하다.In the present invention, grades (degradation grades) are classified into six levels A to F because the classification system is effective for evaluating degradation grades, and it is possible to further classify them as necessary.

본 발명에서 분류하고 있는 열화등급기준 및 대책방안은 다음표와 같다.Degradation grade criteria and countermeasures classified in the present invention are as follows.

열화등급  Degradation grade 상태 condition 잔존수명 Remaining life 대책방안 Countermeasures A  A 초기단계  Early stage 100% 100% 4년후 재점검 4 years later B  B A와C사이의 진행단계 Progress Steps Between A and C 80% 80% 2년후 재점검 Recheck after 2 years C  C 중간단계  Intermediate stage 60% 60% 주기적 점검 Periodic inspection D D C와E사이의 진행단계 Progress Steps Between C and E 40% 40% -주기 점검시 세부적 검토요 -샘플링 검사를 통한 수명 진단-Detailed review when checking cycles-Diagnosis of life through sampling inspection E  E 말기단계 Terminal stage 20% 20% -1년이내 재점검 -보수 또는 교체시기 결정-Recheck within one year -Determine when to repair or replace F  F 파괴단계  Destruction stage 0% 0% 즉각보수 또는 교체 Immediate repair or replacement

이하에 본 발명의 작용효과에 대하여 설명한다.The effect of this invention is demonstrated below.

먼저, 사용자가 평가를 원하는 설비의 소재를 촬영하여 소재의 미세조직사진이 나타난 레프리카 필름을 준비한 다음 인터넷의 검색시스템에 접속하여 강종, 파라메타를 선택하면 파라메타별로 그레이드가 화면에 나타난다.First, the user prepares a replica film showing the microstructure photograph of the material by photographing the material of the equipment that the user wants to evaluate, and then accesses a search system of the Internet, selects steel grade and parameter, and the grade for each parameter is displayed on the screen.

이때, 설비의 상태에 따라 어느 그레이드에 해당할 것인지를 판단하여 유사한 그레이드를 선택하면 여기에 해당되는 조직사진이 나타나고 이에 따라 사용자는 필름의 상태와 조직사진을 대조하여 동일 유사한지를 판단하여 해당 그레이드를 찾아낼 수 있다.At this time, if you select a similar grade by determining which grade according to the condition of the equipment, the corresponding organizational picture appears, and accordingly, the user judges whether the grade is the same by comparing the state of the film and the organizational picture to determine the corresponding grade. Can be found.

물론, 대조하는 기능을 자동화할 수 있는 자동프로그램을 개발하여 사용할 수 있음은 당연하다.Of course, it is natural to develop and use an automatic program that can automate the contrasting function.

그리고, 해당 그레이드를 확인한 사용자는 해당 그레이드에 명시된 대책방안대로 계획을 수립하여 업무를 수행할 수 있다.In addition, the user who confirms the grade can establish a plan and perform a task according to the measures specified in the grade.

도 1은 저탄소 저합금강의 미세조직 열화거동이 나타난 미세조직 상태도,1 is a microstructure state diagram showing the microstructure degradation behavior of low carbon low alloy steel,

도 2는 내열주강의 미세조직 열화거동을 보인 조직 상태도,Figure 2 is a state diagram showing the microstructure deterioration behavior of the heat-resistant cast steel,

도 3은 내열주강에서 오스테나이트 기지에 공정탄화물들이 여러 가지 형태로 존재하고 있음을 보여주는 사진,Figure 3 is a photograph showing that there are various forms of process carbides in the austenite base in the heat-resistant cast steel,

도 4는 20000시간 사용한 튜브의 심하게 열화된 미세조직을 나타낸 사진,4 is a photograph showing the severely deteriorated microstructure of the tube used for 20,000 hours,

도 5는 내식강 및 내열주강의 미세조직 열화거동을 보인 조직상태도,5 is a state diagram showing the microstructure deterioration behavior of the corrosion-resistant steel and heat-resistant cast steel,

도 6은 크리프 캐비티의 5단계 분류표.6 is a five-stage classification table of creep cavities.

Claims (5)

열화정도를 평가하고자하는 설비의 미세조직을 촬영하여 레프리카 필름을 준비하는 단계와, Preparing a replica film by photographing the microstructure of a facility to evaluate the degree of deterioration; 인터넷을 통하여 검색시스템에 접속하는 단계와,Accessing a search system via the Internet; 상기 검색시스템에서 설비의 강종 및 설비의 사용분위기에 따른 파라메타를 선택하는 단계와, Selecting a parameter according to the steel grade of the equipment and the use atmosphere of the equipment in the search system; 상기 레프리카 필름을 상기 파라메타에 등재된 조직사진과 상호 대비하여 가장 유사하다고 판단되는 그레이드를 선택하는 단계와,Selecting the grade which is judged to be the most similar to the replica film against the tissue photograph registered in the parameter, and 상기 선택된 그레이드에 따라 대책 마련하는 단계로 이루어 진 것을 특징으로 하는 설비의 열화도 평가방법.Evaluating the degree of deterioration of the facility, characterized in that the step of preparing a countermeasure according to the selected grade. 청구항 1에 있어서,The method according to claim 1, 상기 검색시스템은 강종별, 파라메타별, 그레이드별로 분류된 조직사진들을 검색할 수 있는 데이터 베이스가 구축되어 있는 것을 특징으로 하는 설비의 열화도 평가방법.The retrieval system is a method for evaluating deterioration of the facility, characterized in that a database for searching the organization pictures classified by steel type, parameter, grade, is established. 청구항 1에 있어서,The method according to claim 1, 상기 강종은 저탄소 저합금강, 내식강, 내열주강중 하나인 것을 특징으로 하는 설비의 열화도 평가방법.The steel grade is low carbon low alloy steel, corrosion resistance steel, heat resistance cast steel, characterized in that the evaluation method of the facility. 청구항 1에 있어서,The method according to claim 1, 상기 파라메타는 열화요인과 사용분위기등에 따라 열화정도, 크리프정도, 응력부식균열, 부식피로균열, 침탄, 수소손상, 공식으로 세분화 되어 있는 것을 특징으로 하는 설비의 열화도 평가방법.The parameter is a method for evaluating deterioration of the facility, characterized in that the degree of degradation, creep, stress corrosion cracking, corrosion fatigue cracking, carburizing, hydrogen damage, formulated according to the deterioration factors and use atmosphere. 청구항 1에 있어서,The method according to claim 1, 상기 그레이드는 탄화물의 조직상태, 케비티 결함, 피팅, 수소손상, 균열정도를 감안하여 A~F단계의 열화등급으로 분류되며, 설비의 잔존수명이 어느정도인지 나타내는 것을 특징으로 하는 설비의 열화도 평가방법.The grade is classified into degradation grades of A to F in consideration of the structure state of the carbides, cavity defects, fittings, hydrogen damage, cracking degree, and evaluation of the degradation degree of the equipment, characterized in that it indicates how long the remaining life of the equipment. Way.
KR1020070139552A 2007-12-28 2007-12-28 Estimating superannuation method of facilities KR100971898B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070139552A KR100971898B1 (en) 2007-12-28 2007-12-28 Estimating superannuation method of facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070139552A KR100971898B1 (en) 2007-12-28 2007-12-28 Estimating superannuation method of facilities

Publications (2)

Publication Number Publication Date
KR20090071685A true KR20090071685A (en) 2009-07-02
KR100971898B1 KR100971898B1 (en) 2010-07-22

Family

ID=41328990

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070139552A KR100971898B1 (en) 2007-12-28 2007-12-28 Estimating superannuation method of facilities

Country Status (1)

Country Link
KR (1) KR100971898B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210059373A (en) 2019-11-15 2021-05-25 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210073759A (en) * 2019-12-11 2021-06-21 주식회사 피레타 Austenite Stainless Steel Life Evaluation Method
CN113139734A (en) * 2021-04-30 2021-07-20 重庆城市管理职业学院 Intelligent manufacturing management system based on data mining

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010067604A (en) * 2001-02-21 2001-07-13 이동헌 A method and apparatus for managemant of equipment
JP2004247784A (en) 2003-02-10 2004-09-02 Mitsubishi Electric Corp Plant monitoring system and apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210134880A (en) 2019-11-15 2021-11-11 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210134585A (en) 2019-11-15 2021-11-10 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210134584A (en) 2019-11-15 2021-11-10 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210134583A (en) 2019-11-15 2021-11-10 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210059373A (en) 2019-11-15 2021-05-25 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210135958A (en) 2019-11-15 2021-11-16 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210135959A (en) 2019-11-15 2021-11-16 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210135961A (en) 2019-11-15 2021-11-16 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210135960A (en) 2019-11-15 2021-11-16 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210137412A (en) 2019-11-15 2021-11-17 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210137411A (en) 2019-11-15 2021-11-17 한국전력공사 Method for prediting the lifetime of high temperature parts based on cloud circumstance and cloud server therefor
KR20210073759A (en) * 2019-12-11 2021-06-21 주식회사 피레타 Austenite Stainless Steel Life Evaluation Method
CN113139734A (en) * 2021-04-30 2021-07-20 重庆城市管理职业学院 Intelligent manufacturing management system based on data mining

Also Published As

Publication number Publication date
KR100971898B1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
US9939359B2 (en) Method of measurement and determination on fracture toughness of structural materials at high temperature
US20100236333A1 (en) Method for assessing remaining lifespan of bolt used at high temperatures
JP3917113B2 (en) Method for determining hydrogen embrittlement cracking of materials used in high-temperature and high-pressure hydrogen environments
RU2737127C1 (en) Increased service life of power turbine disk subjected to corrosion damage during operation (embodiments)
KR100971898B1 (en) Estimating superannuation method of facilities
Yan et al. Statistical method for the fatigue life estimation of coke drums
CN112504863A (en) Method for quantitatively evaluating service life of material
CN103278525A (en) Safety assessment method for pressure-bearing equipment after fire disaster
CN110411863B (en) High-temperature creep life prediction method based on creep ductility
Kerezsi et al. A two-stage model for predicting crack growth due to repeated thermal shock
JP6721273B2 (en) Determination method, determination device, and determination program for chemical cleaning time of boiler water cooling wall pipe material
JP2005091028A (en) Method for diagnosing corrosion fatigue damage of boiler water wall tube
Álvarez et al. Fatigue life estimation of pre-corroded 42CrMo4 subjected to accelerated pitting corrosion method
JP6582753B2 (en) Life prediction method for heat-resistant steel
Sanjay et al. A failure analysis and remaining life assessment of boiler water wall tube
Roy et al. Creep deformation and damage evaluation of service exposed reformer tube
Loto et al. Failure analysis of metallic materials: morphological characteristics, mechanisms and laboratory investigation
Tsurui et al. Optimization and verification of ultra-miniature specimen for evaluating creep property of in-service component material under uniaxial loading
JP2009162647A (en) Method for designing lifetime of weld zone of high-temperature apparatus
JP6523816B2 (en) Life evaluation method of structure
Polyanskii et al. Metrological assurance of measurement of hydrogen concentration in metals–a basis for safety in the oil and gas industry
Donzella et al. Extension to finite life of a failure assessment diagram for contact fatigue loading
Prueter et al. An R5 Based Creep-Fatigue Critical Flaw Assessment of an In-Service Reformer Piping Tee Using Finite Element Analysis
Wei et al. Characterization and Ranking of Materials for Exhaust Systems Under Thermal-Cycling Condition
Dua et al. Life Extension of Power Turbine Disks Exposed to In-Service Corrosion Damage

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130708

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140428

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150506

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee