JPS6345457B2 - - Google Patents

Info

Publication number
JPS6345457B2
JPS6345457B2 JP11280384A JP11280384A JPS6345457B2 JP S6345457 B2 JPS6345457 B2 JP S6345457B2 JP 11280384 A JP11280384 A JP 11280384A JP 11280384 A JP11280384 A JP 11280384A JP S6345457 B2 JPS6345457 B2 JP S6345457B2
Authority
JP
Japan
Prior art keywords
arsenic
organic solvent
extraction
solvent phase
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11280384A
Other languages
Japanese (ja)
Other versions
JPS60258432A (en
Inventor
Tadao Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59112803A priority Critical patent/JPS60258432A/en
Publication of JPS60258432A publication Critical patent/JPS60258432A/en
Publication of JPS6345457B2 publication Critical patent/JPS6345457B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は銅電解液等に存在する砒素分を、該液
と有機溶媒相とを接触させて有機溶媒相中に抽出
して除去するという湿式冶金法に関する。 ここでいう“銅電解液等”とは、銅電解液、お
よび蒸発濃縮および/又は部分脱銅した銅電解液
までを包含する浄液工程の砒素含有液、および製
練煙灰または脱銅電解スライムなどの砒素含有製
錬中間物を酸浸出したときに得られる砒素含有水
溶液を意味する。 また、ここでいう“有機溶媒相”とは、例えば
りん酸トリブチル(TBP)、ブチルスルホン酸ジ
ブチルエステル(BPDBE)、酸化トリオクチル
フオスフイン(TOPO)或は4級アンモニウム
などの砒素抽出剤を含む有機溶媒相を意味する。 非鉄金製錬、特に銅製錬などで扱う原料鉱石中
には若干の砒素分が存在しており、銅製錬工程に
おいての砒素分の大部分は自溶炉、転炉、精製炉
等の乾式製錬工程で揮発し、煙灰あるいは亜硫酸
ガス捕集時のガス洗浄工程の廃硫酸中に捕集され
るが、他の一部は銅電解工程において銅電解液中
に集積されるようになる。したがつて、銅電解に
おいては砒素分を工程外に除去しない限り系内に
蓄積することが避けられない。 従来技術 上述した事情から、従来、銅電解液等から砒素
分を除去するための方法が種々提案されている。
例えば、銅電解液の浄液工程において脱銅電解と
いう方法の採用により砒素分を銅とともに電解ス
ライムという形態で系外に除去する方法および銅
電解液に硫化水素ガスを添加して砒素分を除去す
る方法等があるが、前者では電解スライムの銅と
砒素の分離が困難であるため、混合スライムの形
態で乾式製錬工程に繰返すので、砒素分を除去す
る根本的解決策とはならず、加うるに、脱銅電解
後半ではアルシン(AsH3)などの有毒ガスの発
生がみられ、その対策としての環境設備に費用を
要するとともに電流効率も低下して非能率的とな
る欠点がある。また、後者では硫化水素ガスの反
応率が低いと同時に銅分の共沈が避けられず、し
たがつて硫化砒素と硫化銅との混合沈澱から銅と
砒素とを分離する工程が必要となる等の欠点があ
る。 このような状況から、本発明者は、さきに銅電
解液等からの砒素分の除去に溶媒抽出法を適用す
ることにより、砒素分を除去する方法を開発した
(特公昭55−1354号)。この方法は、リン酸トリブ
チルを含む有機溶媒相を銅電解液等に接触させる
と、該液中の砒素分が有機溶媒相に選択的に抽出
し得るという知見に基づくものであつて、ほと
んどエネルギーを消費することなく砒素分を系外
に取り出し得ること、アルシンのような有毒ガ
スの発生による作業環境上の問題もないこと、お
よび砒素分のみを選択的に抽出分離できるため
砒素を注出した後の有機溶媒相から水相を用いて
逆抽出後液から純粋な亜砒酸を回収し得ること等
の従来法にみられない利点を有するため、実用的
な方法といえるものである。 しかしながら、その後の研究結果から、この方
法にも実際上種々の問題があることが判明し、そ
れを解決すべく本発明をなすに至つた。 発明が解決しようとする問題点 すなわち、上記溶媒抽出による脱砒方法では、
砒素を抽出した後の有機溶媒相の逆抽出に際して
少量の水では有機溶媒相の再生が不充分になり、
電解液等からの砒素抽出効率が低下する。而し
て、充分な再生のために多量の水を使用すると工
程全体での水バランスの保持が困難となり、又、
逆抽出後液からの亜砒酸の回収作業上からも不利
となること等の問題点があることがわかつた。 したがつて、本発明は、溶媒抽出により銅電解
液等から砒素分を除去する方法にみられる上記問
題点を解決して、工業的に有利に適用し得る。銅
電解液等から溶媒抽出により砒素分を除去する方
法を提供することを目的とする。 以下本発明を詳しく説明する。 発明の構成 本発明の構成上の特徴は、銅電解液等を砒素抽
出剤を含む有機溶媒相と接触させて該液中に存在
する砒素分を上記有機溶媒相に抽出し、ついで該
砒素担持有機溶媒相を水相と接触させて逆抽出す
ることにより、有機溶媒相から砒素分を水相に難
脱させる方法において、上記砒素担持有機溶媒相
を、硫酸アンモニウム含有アンモニア水溶液から
なる水相と接触させて逆抽出することにより、有
機溶媒相から砒素分を該水相に離脱させることに
ある。 また、本発明は、上記において有機溶媒相から
砒素分とともに硫酸を水相に離脱させて得られる
逆抽出後液に消石灰を添加することにより、該逆
抽出後液からアンモニアを再生させることもその
実施の態様として包含する。 本発明に係る溶媒抽出において、砒素抽出剤と
して例えばTBP、BPDBE、TOPO、4級アンモ
ニウムなどを含有する有機溶媒相は、抽出に際し
てはそのまま使用することもできるが、比重およ
び粘度を改善する目的で適当な有機溶剤、例えば
ケロシンなどで希釈して使用する場合もあり、さ
らに数種の抽出剤を混合して協同効果を期待する
こともでき、また、適当な改質剤、例えば2−エ
チルヘキサノールのような高級アルコールを添加
することもできる。銅電解液と上記有機溶媒相と
の接触は、室温(約20℃)乃至35℃程度の温度で
行なうとよく、温度が低い方が脱砒率が高くな
る。また、上記接触時の有機溶媒相と銅電解液等
(水溶液相)との容量比(以下“O/A比”と称
する)は特に限定されないのがO/A比が大きい
ほど電解液からの脱砒率が高くなる傾向がある。 上記有機溶媒相による抽出操作は1段の回分方
式並びに連続方式もしくは多段の連属方式が可能
であるが、砒素分の抽出を効率よく行なうために
は向流多段の連続方式が適している。抽出装置は
工業的に一般に用いられているミキサーセトラー
抽出装置、回転円板抽出塔、パステルカラム、遠
心抽出機などを使用し得る。 発明の作用効果 本発明は、上述のようにして銅電解液等から有
機溶媒相に抽出した砒素分を、硫酸アンモニウム
含有アンモニア水溶液からなる水相を用いて逆抽
出することによつて有機溶媒相から離脱させる方
法であつて、逆抽出後のPHが中性ないしアルカリ
性となるように操作することにより有機溶媒相か
ら砒素分をほぼ完全に除去することが可能であ
り、同時に逆抽出後液中の砒素濃度を高めること
も可能である。すなわち、有機溶媒相中の砒素抽
出剤が完全に再生されるとともに、以下述べるよ
うに逆抽出後液中にアンモニアを再生することも
容易となり、逆抽出系水相の循環使用が可能とな
るので、水バランスの問題点が解消され、同時に
逆抽出後液からの砒素分の回収も効率的となる。 本発明の実施にあたり、有機溶媒相による銅電
解液等からの砒素分除去に際し、該液中に存在す
る硫酸も多少砒素分とともに有機溶媒相中に抽出
されるので、この有機溶媒相から逆抽出により砒
素分を離脱するとき硫酸も同時に離脱される。な
お、この逆抽出を行なう前に、最終的に生成する
石膏の量を低減させるために、上記有機溶媒相を
少量の水で洗浄(スクラビング工程)して該溶媒
相中の硫酸の大部分を除去することは極めて有効
な方法であるが、このときにも硫酸の一部が有機
溶媒に残存することは避けられない。 硫酸アンモニウムを含有するアンモニア水溶液
を用いて逆抽出すると、逆抽出後液は砒酸アンモ
ニウムと硫酸アンモニウムの混合溶液となるの
で、本発明に従つて、逆抽出後液からアンモニア
を再生させるために該液に消石灰Ca(OH)2を添
加する。アンモニアの再生は下記式(1)および(2)に
よる。 2(NH43AsO4+3Ca(OH)2→Ca3As2O8
+6NH3+6H2O(1) (NH42SO4+Ca(OH)2→CaSO4・2H2O↓
+2NH3(2) しかし、上記のようにしてアンモニアを再生す
るに当つて、90%以上の再生率を得るには100℃
付近までの加熱および/又は減圧蒸留を行なう必
要があるので、そのための設備およびエネルギー
面でのコスト上昇が避けられない欠点がある。 すなわち、本発明により逆抽出に用いられたア
ンモニアが過剰の硫酸アンモニウムの存在下で始
めて特殊な設備を必要とせずに逆抽出に要するに
充分な量だけ再生され、しかもそのことにより再
生後液が完全に逆抽出液として循環できる途が拓
かれた。 以下アンモニア再生工程について具体的実験例
を挙げて説明する。 本実験で用いた合成逆抽出後液は、1M/Lの
アンモニアおよび0.5M/Lの硫酸アンモニアを
含む水相を用いて、有機溶媒相(砒素1.7g/、
硫酸1.8g/)を担持)をO/A比=10で逆抽
出したときに得られたものである。したがつて、
アンモニウム基は2M/L含まれているので、ア
ンモニア再生率50%のときに逆抽出のための
1M/Lのアンモニアが溶液中に再生されること
になる。 実験結果は下記に示すとおりである。Ca(OH)2添加量 反応温度 アンモニア再生率 1倍当量 20℃ 21% 1 〃 80〜85℃ 30% 1.5〃 60〜70℃ 48% 2 〃 82〜86℃ 69% 3 〃 80〜90℃ 74% 実験結果から明らかなように、消石灰添加量
1.5倍当量(0.75mol/)、反応温度60〜70℃と
いう比較的温和な条件下においてもアンモニア再
生目的が達成されることになり、水相は逆抽出に
繰り返し利用し、沈澱(砒素カルシウム、石膏お
よび未反応の消石灰)は次の石膏および亜ヒ酸製
造工程で処理する。 なお、逆抽出後液中の砒酸アンモニウムと消石
灰の反応は、硫酸アンモニウムと消石灰の反応に
比較して極めて優先的であり、温和な条件(低
温、短時間、弱い撹拌等)下では後者の反応は比
較的その速度が遅いため、このアンモニウム再生
工程を向流2段の反応装置で行なうことによつ
て、消石灰使用量を更に少くすることも可能であ
る。 石膏製造工程では次式により砒酸カルシウムを
硫酸で分解し、石膏を製造し、 Ca3As2O8+3H2SO4+2H2O=2H3AsO4+CaSO4・2H2O
↓(3) ついで、得られた砒酸溶液を亜硫酸ガスと反応
させると、下記式(4)により砒酸は還元されて亜砒
酸になる。 2H3AsO4+2SO2→2s2O3↓+2H2SO4+H2O (4) 上記反応により生成したAs2O3の水に対する溶
解度はAs2O5のそれより小さいので亜砒酸は結晶
として効率よく回収することができる。 叙上のとおり、本発明によると、銅電解液等か
らの砒素分の除去が実質的に効率よく行ない得る
とともに、砒素分を抽出した後の有機溶媒相から
の逆抽出による砒素分の離脱も効率よく行なうこ
とができ、加うるに上記離脱した砒素分を含む逆
抽出後液からの、逆抽出液としての硫酸アンモニ
ウムを含有するアンモニア水溶液が簡易な操作で
再生し、これを循環使用することにより逆抽出系
水相を完全クローズド化することができ、かつア
ンモニア再生に際して生成する沈澱から亜砒酸を
有利に回収し得るという、従来法にみられない実
用上の効果が達成される。 以下に最も一般的な砒素抽出剤であるTBPを
用いた場合の実施例を示して本発明を更に具体的
に説明する。 実施例 As4.91g/およびH2SO4190g/を含む銅
電解液を、下記に示す条件で溶媒抽出処理を行な
つた。 なお、有機溶媒相としてリン酸トリブチルを希
釈しないで用い、また、抽出工程、スクラビング
工程および逆抽出工程はいずれもステンレス製の
同心円状のミキサー・セトラを用いて向流多段連
続方式を適用した。 抽出工程:5段 O/A比=2 温度35℃ スクラビング工程:2段 O/A比=10 温度45℃ 逆抽出工程:2段 O/A比=10 温度45℃ 結果は下記に示すとおりである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a hydrometallurgical method in which arsenic present in a copper electrolytic solution or the like is removed by bringing the solution into contact with an organic solvent phase and extracting it into the organic solvent phase. The term "copper electrolyte, etc." as used herein refers to copper electrolyte and arsenic-containing liquid used in the purification process, including evaporatively concentrated and/or partially decoppered copper electrolyte, and smelting smoke ash or decoppered electrolytic slime. It refers to an arsenic-containing aqueous solution obtained by acid leaching an arsenic-containing smelting intermediate such as. In addition, the "organic solvent phase" referred to here includes, for example, an arsenic extractant such as tributyl phosphate (TBP), butylsulfonic acid dibutyl ester (BPDBE), trioctylphosphine oxide (TOPO), or quaternary ammonium. means an organic solvent phase. A small amount of arsenic is present in the raw material ore used in nonferrous metal smelting, especially copper smelting, and most of the arsenic in the copper smelting process is produced in dry smelters such as flash furnaces, converters, and refining furnaces. It volatilizes during the smelting process and is collected in smoke ash or waste sulfuric acid from the gas cleaning process during sulfur dioxide gas collection, but some of it is accumulated in the copper electrolyte during the copper electrolysis process. Therefore, in copper electrolysis, unless arsenic is removed outside the process, it is inevitable that the arsenic will accumulate in the system. Prior Art Due to the above-mentioned circumstances, various methods have been proposed to remove arsenic from copper electrolytes and the like.
For example, in the copper electrolyte purification process, arsenic is removed from the system in the form of electrolytic slime along with copper by using a method called decopper electrolysis, and arsenic is removed by adding hydrogen sulfide gas to the copper electrolyte. However, in the former method, it is difficult to separate the copper and arsenic in the electrolytic slime, so the pyro-smelting process is repeated in the form of a mixed slime, so it is not a fundamental solution to removing the arsenic content. In addition, toxic gases such as arsine (AsH 3 ) are generated in the latter half of copper removal electrolysis, which requires the expense of environmental equipment as a countermeasure, and the current efficiency also decreases, resulting in inefficiency. In addition, in the latter case, the reaction rate of hydrogen sulfide gas is low and co-precipitation of copper is unavoidable, so a process is required to separate copper and arsenic from the mixed precipitate of arsenic sulfide and copper sulfide. There are drawbacks. Under these circumstances, the present inventor first developed a method for removing arsenic from copper electrolytes by applying a solvent extraction method to the removal of arsenic (Japanese Patent Publication No. 55-1354). . This method is based on the knowledge that when an organic solvent phase containing tributyl phosphate is brought into contact with a copper electrolyte, the arsenic content in the solution can be selectively extracted into the organic solvent phase, and it requires almost no energy. Arsenic was poured out because the arsenic content could be taken out of the system without consuming it, there was no problem with the working environment due to the generation of toxic gases such as arsine, and only the arsenic content could be selectively extracted and separated. This method can be said to be a practical method because it has advantages not found in conventional methods, such as being able to recover pure arsenous acid from the liquid after back extraction using the aqueous phase from the organic solvent phase. However, subsequent research results revealed that this method also had various practical problems, and the present invention was developed to solve these problems. Problems to be solved by the invention Namely, in the above-mentioned method of dearsenization by solvent extraction,
When back-extracting the organic solvent phase after extracting arsenic, a small amount of water will not regenerate the organic solvent phase sufficiently;
Arsenic extraction efficiency from electrolyte etc. decreases. Therefore, if a large amount of water is used for sufficient regeneration, it becomes difficult to maintain water balance throughout the process, and
It was found that there were problems such as disadvantages in terms of recovery work of arsenous acid from the liquid after back extraction. Therefore, the present invention solves the above-mentioned problems encountered in the method of removing arsenic from a copper electrolyte or the like by solvent extraction, and can be advantageously applied industrially. The object of the present invention is to provide a method for removing arsenic from a copper electrolyte or the like by solvent extraction. The present invention will be explained in detail below. Structure of the Invention The structure of the present invention is characterized in that a copper electrolyte or the like is brought into contact with an organic solvent phase containing an arsenic extractant to extract arsenic present in the liquid into the organic solvent phase, and then the arsenic is supported. In a method for making it difficult to remove arsenic from an organic solvent phase into an aqueous phase by bringing the organic solvent phase into contact with an aqueous phase and performing back extraction, the arsenic-supported organic solvent phase is brought into contact with an aqueous phase consisting of an ammonia aqueous solution containing ammonium sulfate. The purpose is to separate arsenic from the organic solvent phase into the aqueous phase by back-extracting the organic solvent. In addition, the present invention also provides a method for regenerating ammonia from the back-extraction solution by adding slaked lime to the back-extraction solution obtained by separating sulfuric acid from the organic solvent phase together with arsenic into the aqueous phase. It is included as an embodiment. In the solvent extraction according to the present invention, the organic solvent phase containing, for example, TBP, BPDBE, TOPO, quaternary ammonium, etc. as an arsenic extractant can be used as it is during extraction, but it can be used for the purpose of improving specific gravity and viscosity. It may be used diluted with an appropriate organic solvent such as kerosene, and several extractants may be mixed to achieve a synergistic effect, or an appropriate modifier such as 2-ethylhexanol may be used. Higher alcohols such as can also be added. The contact between the copper electrolyte and the organic solvent phase is preferably carried out at a temperature of about room temperature (approximately 20° C.) to 35° C., and the lower the temperature, the higher the arsenic removal rate. In addition, the capacity ratio (hereinafter referred to as "O/A ratio") between the organic solvent phase and the copper electrolyte (aqueous solution phase) during the above-mentioned contact is not particularly limited; however, the larger the O/A ratio, the more The arsenization rate tends to be high. The above-mentioned extraction operation using the organic solvent phase can be carried out in a one-stage batch system, a continuous system, or a multi-stage continuous system, but a countercurrent multi-stage continuous system is suitable for efficiently extracting the arsenic component. As the extraction device, commonly used industrial mixer-settler extraction devices, rotating disk extraction towers, pastel columns, centrifugal extractors, etc. can be used. Effects of the Invention The present invention is capable of extracting arsenic from the organic solvent phase by back-extracting the arsenic extracted from the copper electrolyte etc. into the organic solvent phase as described above using an aqueous phase consisting of an ammonia aqueous solution containing ammonium sulfate. It is a separation method, and by operating so that the pH after back extraction is neutral or alkaline, it is possible to almost completely remove arsenic from the organic solvent phase, and at the same time, it is possible to remove arsenic from the organic solvent phase. It is also possible to increase the arsenic concentration. In other words, the arsenic extractant in the organic solvent phase is completely regenerated, and as described below, it is also easy to regenerate ammonia in the liquid after back extraction, making it possible to recycle the aqueous phase of the back extraction system. , the problem of water balance is solved, and at the same time, the recovery of arsenic from the liquid after back extraction becomes efficient. In carrying out the present invention, when removing arsenic from a copper electrolyte using an organic solvent phase, sulfuric acid present in the solution is also extracted into the organic solvent phase together with some arsenic, so it is back-extracted from this organic solvent phase. When arsenic is removed, sulfuric acid is also removed at the same time. Before performing this back extraction, in order to reduce the amount of gypsum that will ultimately be produced, the organic solvent phase is washed with a small amount of water (scrubbing step) to remove most of the sulfuric acid in the solvent phase. Although removal is an extremely effective method, it is inevitable that some sulfuric acid will remain in the organic solvent even at this time. When back extraction is performed using an ammonia aqueous solution containing ammonium sulfate, the solution after back extraction becomes a mixed solution of ammonium arsenate and ammonium sulfate. According to the present invention, slaked lime is added to the solution after back extraction in order to regenerate ammonia from the solution after back extraction. Add Ca(OH) 2 . Ammonia regeneration is performed according to the following formulas (1) and (2). 2(NH 4 ) 3 AsO 4 +3Ca(OH) 2 →Ca 3 As 2 O 8
+6NH 3 +6H 2 O(1) (NH 4 ) 2 SO 4 +Ca(OH) 2 →CaSO 4・2H 2 O↓
+2NH 3 (2) However, when regenerating ammonia as described above, in order to obtain a regeneration rate of 90% or more, the temperature must be 100℃.
Since it is necessary to perform heating to a certain temperature and/or vacuum distillation, there is an unavoidable increase in costs in terms of equipment and energy. In other words, according to the present invention, the ammonia used for back extraction is regenerated only in the presence of excess ammonium sulfate in an amount sufficient for back extraction without the need for special equipment. This opens the door for it to be recycled as a reverse extraction solution. The ammonia regeneration process will be explained below using specific experimental examples. The synthetic back-extraction solution used in this experiment was prepared using an aqueous phase containing 1 M/L ammonia and 0.5 M/L ammonia sulfate, and an organic solvent phase (arsenic 1.7 g/L,
This was obtained when 1.8g/) of sulfuric acid was back-extracted at an O/A ratio of 10. Therefore,
Since ammonium groups are included at 2M/L, when the ammonia regeneration rate is 50%, the
1M/L ammonia will be regenerated into the solution. The experimental results are shown below. Ca(OH) 2 addition amount Reaction temperature Ammonia regeneration rate 1 times equivalent 20℃ 21% 1 〃 80-85℃ 30% 1.5〃 60-70℃ 48% 2 〃 82-86℃ 69% 3 〃 80-90℃ 74 % As is clear from the experimental results, the amount of slaked lime added
The purpose of ammonia regeneration can be achieved even under relatively mild conditions of 1.5 times equivalent (0.75 mol/) and reaction temperature of 60 to 70°C.The aqueous phase is repeatedly used for back extraction, and precipitation (calcium arsenic, Gypsum and unreacted slaked lime) are processed in the next gypsum and arsenite manufacturing process. The reaction between ammonium arsenate and slaked lime in the liquid after back extraction is extremely preferential compared to the reaction between ammonium sulfate and slaked lime, and under mild conditions (low temperature, short time, weak stirring, etc.) the latter reaction is Since the rate is relatively slow, the amount of slaked lime used can be further reduced by carrying out this ammonium regeneration step in a two-stage countercurrent reactor. In the gypsum manufacturing process, calcium arsenate is decomposed with sulfuric acid to produce gypsum using the following formula: Ca 3 As 2 O 8 +3H 2 SO 4 +2H 2 O=2H 3 AsO 4 +CaSO 4・2H 2 O
↓(3) Next, when the obtained arsenic acid solution is reacted with sulfurous acid gas, arsenic acid is reduced to arsenous acid according to the following formula (4). 2H 3 AsO 4 +2SO 2 →2s 2 O 3 ↓+2H 2 SO 4 +H 2 O (4) Since the solubility of As 2 O 3 produced by the above reaction in water is lower than that of As 2 O 5 , arsenous acid is not effective as a crystal. Can be easily recovered. As described above, according to the present invention, arsenic can be substantially efficiently removed from a copper electrolyte, etc., and the arsenic can also be removed by back extraction from the organic solvent phase after arsenic has been extracted. It can be carried out efficiently, and in addition, an ammonia aqueous solution containing ammonium sulfate as a back-extracted liquid is regenerated from the back-extracted liquid containing the arsenic content separated by a simple operation and recycled. The aqueous phase of the reverse extraction system can be completely closed, and arsenous acid can be advantageously recovered from the precipitate generated during ammonia regeneration, which is a practical effect not seen in conventional methods. The present invention will be explained in more detail below by showing examples in which TBP, which is the most common arsenic extractant, is used. Example A copper electrolytic solution containing 4.91 g of As and 190 g of H 2 SO 4 was subjected to solvent extraction treatment under the conditions shown below. Note that tributyl phosphate was used without dilution as the organic solvent phase, and a countercurrent multistage continuous method was applied to the extraction step, scrubbing step, and back extraction step using a stainless steel concentric mixer/settler. Extraction process: 5 stages O/A ratio = 2 Temperature 35°C Scrubbing process: 2 stages O/A ratio = 10 Temperature 45°C Back extraction process: 2 stages O/A ratio = 10 Temperature 45°C The results are as shown below. be.

【表】 再生逆抽出液 逆抽出後液
〓1N−NH 〓 〓As 10.0g/

[Table] Regenerated back-extraction solution Back-extraction solution 〓1N−NH 3 〓 〓As 10.0g/

Claims (1)

【特許請求の範囲】 1 銅電解液等を、砒素抽出剤を含む有機溶媒相
と接触させて該液中に存在する砒素分を上記有機
溶媒相に抽出し、ついで該砒素担持有機溶媒相を
水相と接触させて逆抽出することにより、有機溶
媒相から砒素分を水相に離脱させる方法におい
て、上記砒素担持有機溶媒相を硫酸アンモニウム
を含有するアンモニア水溶液からなる水相と接触
させて逆抽出することにより、有機溶媒相から砒
素分を該水相に離脱させることを特徴とする銅電
解液等から溶媒抽出により砒素分を除去する方
法。 2 上記逆抽出により得られた逆抽出後液に消石
灰を添加することにより、該逆抽出後液からアン
モニアを再生させる特許請求の範囲第1項記載の
方法。 3 上記逆抽出後液から再生させて得られる、硫
酸アンモニウム含有アンモニア水溶液を上記逆抽
出工程へ循環して利用する特許請求の範囲第2項
記載の方法。
[Claims] 1. A copper electrolyte or the like is brought into contact with an organic solvent phase containing an arsenic extractant to extract arsenic present in the solution into the organic solvent phase, and then the arsenic-supporting organic solvent phase is In a method of separating arsenic from an organic solvent phase into an aqueous phase by contacting with an aqueous phase and performing back extraction, the arsenic-supporting organic solvent phase is brought into contact with an aqueous phase consisting of an ammonia aqueous solution containing ammonium sulfate for back extraction. A method for removing arsenic from a copper electrolyte or the like by solvent extraction, the method comprising: separating arsenic from an organic solvent phase into an aqueous phase. 2. The method according to claim 1, wherein ammonia is regenerated from the back-extraction solution obtained by the back-extraction by adding slaked lime to the back-extraction solution. 3. The method according to claim 2, wherein the ammonium sulfate-containing ammonia aqueous solution obtained by regenerating the liquid after back extraction is recycled to the back extraction step.
JP59112803A 1984-06-01 1984-06-01 Method for removing arsenic from copper electrolytic solution or the like by solvent extraction Granted JPS60258432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59112803A JPS60258432A (en) 1984-06-01 1984-06-01 Method for removing arsenic from copper electrolytic solution or the like by solvent extraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59112803A JPS60258432A (en) 1984-06-01 1984-06-01 Method for removing arsenic from copper electrolytic solution or the like by solvent extraction

Publications (2)

Publication Number Publication Date
JPS60258432A JPS60258432A (en) 1985-12-20
JPS6345457B2 true JPS6345457B2 (en) 1988-09-09

Family

ID=14595917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59112803A Granted JPS60258432A (en) 1984-06-01 1984-06-01 Method for removing arsenic from copper electrolytic solution or the like by solvent extraction

Country Status (1)

Country Link
JP (1) JPS60258432A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3725611A1 (en) * 1987-08-01 1989-02-09 Henkel Kgaa METHOD FOR THE JOINT SEPARATION OF STONE ELEMENTS FROM VALUE METAL ELECTROLYTE SOLUTIONS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551354A (en) * 1978-06-21 1980-01-08 Toray Ind Inc Three component conjugate fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551354A (en) * 1978-06-21 1980-01-08 Toray Ind Inc Three component conjugate fiber

Also Published As

Publication number Publication date
JPS60258432A (en) 1985-12-20

Similar Documents

Publication Publication Date Title
RU2105824C1 (en) Method of hydrometallurgical recovery of metals from complex ore
CN111498918B (en) Wet treatment process for ferronickel material
US4288304A (en) Hydrometallurgical process for treatment of sulphur ores
IE44035L (en) Recovering zinc.
US3907966A (en) Nickel extraction and stripping using oximes and ammoniacal carbonate solutions
JP6176491B2 (en) Method for removing copper from aqueous nickel chloride solution
FI93972C (en) Method for separating interfering substances from precious metal electrolyte solutions
US4150976A (en) Method for the recovery of metallic copper
CN112210679A (en) Method for preparing nickel sulfate from nickel hydroxide cobalt
JP2008266774A (en) Zinc recovery method
NO172652B (en) PROCEDURE FOR SIMILAR SEPARATION OF DISPOSABLE ELEMENTS FROM ELECTROLYTE SOLUTIONS OF VALUE METALS
JPH06206080A (en) Removal of arsenic from acidic solution containing arsenic and iron
US6471849B1 (en) Process for the recovery of zinc from a zinc sulphide ore or concentrate
EP0090119B1 (en) Selectively stripping iron ions from an organic solvent
JPS61261446A (en) Method for recovering zn from zn containing material
CA1083830A (en) Ion exchange treatment of zinc values
JPS6345457B2 (en)
AU2001287468A1 (en) Pressure leaching process for zinc recovery from sulphidic ore materials
CN114686683B (en) Method for recycling multiple metal elements from molybdenite based on molybdenum calcine
CN114686705B (en) Method for recovering metal elements from molybdenite
US4430309A (en) Acid wash of second cycle solvent in the recovery of uranium from phosphate rock
JPS6035415B2 (en) Separation method for copper and arsenic
JPH1053821A (en) Method for recovering cadmium and zinc from dust
Meyers et al. Sulfur dioxide pressure leaching. New pollution-free method to process copper ore
JPH0432712B2 (en)