JPS6345303A - Composite iron powder for soft magnetic sintering material - Google Patents

Composite iron powder for soft magnetic sintering material

Info

Publication number
JPS6345303A
JPS6345303A JP61189233A JP18923386A JPS6345303A JP S6345303 A JPS6345303 A JP S6345303A JP 61189233 A JP61189233 A JP 61189233A JP 18923386 A JP18923386 A JP 18923386A JP S6345303 A JPS6345303 A JP S6345303A
Authority
JP
Japan
Prior art keywords
powder
iron powder
composite iron
alloy
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61189233A
Other languages
Japanese (ja)
Other versions
JPH0680161B2 (en
Inventor
Takehiko Hayami
早見 威彦
Yoshihiro Igai
猪飼 善弘
Hitoshi Sakuma
均 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61189233A priority Critical patent/JPH0680161B2/en
Publication of JPS6345303A publication Critical patent/JPS6345303A/en
Publication of JPH0680161B2 publication Critical patent/JPH0680161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain composite iron powder for a soft magnetic sintering material by which a sintered body having good dimensional stability and magnetic characteristics is obtainable by specifying the compsn. consisting of P, Sn and Fe of the composite iron powder diffused and bonded with Fe-P alloy powder and Sn powder on the surface of iron powder particles. CONSTITUTION:This composite iron powder for the soft magnetic sintering material consists of the composite iron powder diffused and bonded with the Fe-P alloy powder and Sn powder on the surface of the iron powder particles and the chemical compsn. thereof consists of 0.3-1.0wt% P, 1-4% Sn and the balance substantially Fe. The segregation of the P and Sn components into a molding at the time of molding is obviated and the dispersion in the dimensional accuracy and magnetic characteristics is surely prevented. The above-mentioned composite iron powder is obtd. by mixing atomized iron powder and fine powder of the Fe-P alloy contg. about 14-17wt% P at a prescribed ratio, diffusing and bonding the Fe-P alloy powder to the surface of the Fe powder particles in a reducing or nonoxidizing atmosphere, then mixing the fine Sn powder therewith at a prescribed ratio and diffusing the bonding the same at about 250-300 deg.C in the nonoxidizing atmosphere except H2 atmosphere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気機器の鉄芯など鉄系軟磁性焼結材の原料
金属粉として使用されるものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a metal powder used as a raw material metal powder for iron-based soft magnetic sintered materials such as iron cores of electrical equipment.

(従来の技術) 電気機器の鉄芯のうち、小形のものや形状複雑なものは
、ロストワックス法等の精密鋳造法や焼結法によって製
作されている。
(Prior Art) Among the iron cores of electrical equipment, small ones or those with complicated shapes are manufactured by precision casting methods such as the lost wax method or sintering methods.

焼結法は、磁性金属粉末を所期の形状に圧縮成形した後
、これを焼結して粉末を冶金学的に一体化する方法であ
る。前記磁性金属粉末としてFe −Al系合金粉、F
e−5i系合金粉が広(使用されているが、これらの鉄
系軟質磁性合金粉末は、圧縮成形性、焼結性に劣るとい
う欠点があった。
The sintering method is a method in which magnetic metal powder is compressed into a desired shape and then sintered to metallurgically integrate the powder. As the magnetic metal powder, Fe-Al alloy powder, F
Although e-5i alloy powders are widely used, these iron-based soft magnetic alloy powders have the drawback of poor compression moldability and sinterability.

そこで、叙上の欠点を解消するため鉄粉とSn扮とP粉
とを所定のυ1合で混合したものを焼結原料粉として用
い、これを圧縮成形後焼結するという方法(以下、混合
法という。)が特公昭51−43008号公報において
提案された。
Therefore, in order to eliminate the above-mentioned drawbacks, a method is used in which a mixture of iron powder, Sn powder, and P powder at a predetermined ratio of υ1 is used as the sintering raw material powder, and this is compressed and then sintered (hereinafter, mixed ) was proposed in Japanese Patent Publication No. 51-43008.

(発明が解決しようとする問題点) しかしながら、上記の方法では、混合後圧縮成形までの
間に粉末が偏析し易く、これに起因して焼結体に歪が生
じ易く、寸法精度が安定しないという問題があった。ま
た、Sn粉が偏析すると磁束密度が低下し、要求される
磁気特性が得られないという問題も生じた。
(Problems to be Solved by the Invention) However, in the above method, the powder tends to segregate after mixing and before compression molding, which tends to cause distortion in the sintered body and unstable dimensional accuracy. There was a problem. Furthermore, when the Sn powder segregates, the magnetic flux density decreases, resulting in a problem that required magnetic properties cannot be obtained.

本発明は、かかる問題点に鑑みなされたもので、寸法安
定性に優れ、かつ磁気特性にも侵れた焼結体を容易に得
ることができる軟磁性焼結材用原料粉末を提供すること
を目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a raw material powder for soft magnetic sintered material that can easily produce a sintered body with excellent dimensional stability and good magnetic properties. With the goal.

(問題点を解決するための手段) 叙上の目的を達成するために講じられた本発明の特徴と
するところは、原料粉として、鉄粉粒子表面にFe−2
合金粉およびSn粉を拡散結合した複合鉄粉を用い、か
つ複合鉄粉におけるPおよびSnの含有量を、重量%で
、 p:0.3〜1.0% Sn:1〜4 % 残部実質的にFe とした点にある。
(Means for Solving the Problems) The present invention is characterized by the fact that Fe-2 is added to the surface of iron powder particles as raw material powder.
A composite iron powder in which alloy powder and Sn powder are diffusion bonded is used, and the content of P and Sn in the composite iron powder is determined in weight%: p: 0.3 to 1.0% Sn: 1 to 4% The balance is real The point is that it is Fe.

(実施例) 本発明に係る複合鉄粉は、鉄粉粒子表面にFe −2合
金粉およびSn粉が拡散結合されたものである。
(Example) The composite iron powder according to the present invention has Fe-2 alloy powder and Sn powder diffusion bonded to the surface of iron powder particles.

複合鉄粉の基粉となる鉄粉としては、純鉄粉が好ましい
。純鉄粉は、磁気特性に優れ、かつ圧縮成形性にも優れ
るからである。純鉄粉は、還元鉄粉よりもアトマイズ鉄
粉の方が高純度のものが得易く好適である。
As the iron powder that becomes the base powder of the composite iron powder, pure iron powder is preferable. This is because pure iron powder has excellent magnetic properties and compression moldability. As for the pure iron powder, atomized iron powder is more preferable than reduced iron powder because it is easier to obtain high purity iron powder.

Fe−2合金粉を鉄粉粒子表面に拡散結合するのは、木
質的には、鉄粉にPを付与するためである。
The reason why the Fe-2 alloy powder is diffused and bonded to the surface of the iron powder particles is to add P to the iron powder in terms of wood quality.

しかし、P粉を直接拡散結合させると、Pが鉄粉中へ拡
散され易く、鉄粉硬度の上昇を招来し、圧縮性が低下す
るという問題が生じろ。そこで、Fe−2合金粉を用い
、Pの拡散を抑えつつPを鉄粉に付与せしめている。
However, if P powder is directly diffused and bonded, P will be easily diffused into the iron powder, resulting in an increase in the hardness of the iron powder and a decrease in compressibility. Therefore, Fe-2 alloy powder is used to add P to the iron powder while suppressing the diffusion of P.

鉄粉にPを付与するのは、鉄粉の焼結時の収縮性を増大
させ、焼結体の密度を向上させ、延いては磁気特性特に
磁束密度並びに電気抵抗を向上させるためである。
The purpose of adding P to the iron powder is to increase the shrinkage of the iron powder during sintering, improve the density of the sintered body, and thereby improve the magnetic properties, particularly the magnetic flux density and electrical resistance.

複合鉄粉におけるPの含有量は、重量%で0.3〜1.
0%とされる。0.3%未満では収縮に寄与せず、その
結果大きな磁束密度が得られない。一方、1.0%を越
えると焼結時に凝集し易くなり、収縮率が安定し難くな
る。
The content of P in the composite iron powder is 0.3 to 1% by weight.
It is assumed to be 0%. If it is less than 0.3%, it does not contribute to contraction, and as a result, a large magnetic flux density cannot be obtained. On the other hand, if it exceeds 1.0%, it tends to aggregate during sintering, making it difficult to stabilize the shrinkage rate.

また、Sn粉を鉄粉粒子に拡散結合させるのは、1つに
は、鉄粉にSnを付与することによって、複合鉄粉の成
形性を向上させ、延いては成形圧力の軽減に寄与させる
ためである。鉄粉は、それ自体圧縮成形性は良好なので
あるが、Pの拡散によって成形性が損われる。これを補
填するためにSnが付与される。また、Snの付与によ
って、Pによる焼結時の収縮に伴う寸法のバラツキを抑
制する作用をなす。
In addition, the diffusion bonding of Sn powder to iron powder particles improves the formability of the composite iron powder by adding Sn to the iron powder, which in turn contributes to reducing the forming pressure. It's for a reason. Although iron powder itself has good compression moldability, the diffusion of P impairs the moldability. Sn is added to compensate for this. Furthermore, the provision of Sn has the effect of suppressing dimensional variations due to shrinkage during sintering due to P.

複合鉄粉におけるSnの含有量は、重量%で1〜4%と
される。1%未満では、成形性並びに寸法安定性の向上
に寄与しない。一方、4%を越えると、Snが焼結時に
凝集し易くなり、寸法安定性を劣化させると共に、非磁
性金属であるSnの凝集により磁気特性を劣化させる。
The content of Sn in the composite iron powder is 1 to 4% by weight. If it is less than 1%, it does not contribute to improving moldability and dimensional stability. On the other hand, if it exceeds 4%, Sn tends to aggregate during sintering, degrading dimensional stability and degrading magnetic properties due to aggregation of Sn, which is a non-magnetic metal.

次に、本発明の複合鉄粉の製造方法について説明する。Next, a method for producing composite iron powder of the present invention will be explained.

まず、鉄粉とFe−2合金粉とを混合し、還元性もしく
は非酸化性雰囲気で、鉄粉粒子表面にFe −2合金粉
を拡散結合させる。
First, iron powder and Fe-2 alloy powder are mixed, and the Fe-2 alloy powder is diffusion bonded to the surface of the iron powder particles in a reducing or non-oxidizing atmosphere.

鉄粉としては、既述した通り、純鉄粉が容易に得られる
アトマイズ鉄粉が好ましい。鉄粉粒子の大きさとしては
、通常、粉末冶金原料として使用される60メツシユ以
下のものが用いられる。
As the iron powder, as described above, atomized iron powder is preferable because pure iron powder can be easily obtained. The size of the iron powder particles is usually 60 mesh or less, which is used as a raw material for powder metallurgy.

Fe−2合金粉としては、P含有量が14〜17重量%
のものがよ(、例えばFe3 P (P含有量約16%
)を例示できる。Fe−2合金粉の粒径は、小さいほど
拡散結合性、寸法安定性、磁気特性が良好となるが、容
易に拡散結合できる範囲として10μm以下のものが好
ましい。前記Fe3Pは、4μm程度の大きさのものま
で市場に供給されており人手容易である。もっとも、他
のFe−P合金を粉砕して使用してもよいことは勿論で
ある。
As Fe-2 alloy powder, the P content is 14 to 17% by weight.
For example, Fe3P (P content about 16%
) can be exemplified. The smaller the particle size of the Fe-2 alloy powder, the better the diffusion bonding properties, dimensional stability, and magnetic properties, but it is preferably 10 μm or less as it allows for easy diffusion bonding. The Fe3P is supplied on the market up to a size of about 4 μm and is easy to handle. However, it goes without saying that other Fe-P alloys may be used after being ground.

Fe−2合金粉の拡散結合温度は750〜900℃が好
ましい。750℃未満では拡散結合が困難であり、一方
900℃を越えると、Fe−2合金粉を用いているにも
拘らず、合金中のPの鉄粉中への拡散が促進されて、鉄
粉の硬度を上昇させ、圧縮成形性を劣化させる。上記温
度範囲における保持時間は、60〜15分程度で十分な
拡散結合状態が得られる。
The diffusion bonding temperature of the Fe-2 alloy powder is preferably 750 to 900°C. Diffusion bonding is difficult at temperatures below 750°C, while at temperatures above 900°C, the diffusion of P in the alloy into the iron powder is promoted, even though Fe-2 alloy powder is used. increases the hardness of the material and deteriorates compression moldability. A sufficient diffusion bonding state can be obtained with a holding time of about 60 to 15 minutes in the above temperature range.

上記熱処理によって得られたケーキは、60メソンユ以
下に粉砕された後、Sn粉と混合され、Sn粉を鉄粉粒
子表面に拡散結合させる。
The cake obtained by the above heat treatment is pulverized to 60 mesunyu or less, and then mixed with Sn powder to diffusely bond the Sn powder to the surface of the iron powder particles.

Sn粉の大きさは、Fe−2合金粉の場合と同様小径は
ど良いが、寸法安定性および経済性を考慮して45μm
以下(350メツシユのフルイを通過したもの)のもの
を使用する。SnはFe −Pより低融点であり、拡散
結合が容易なことから、Fe−P粉より大径でも拡散結
合性にはそれほど問題ないが、あまり大きいと寸法安定
性に問題が生じ、又凝集し易くなり磁気特性を劣化させ
る。
The size of the Sn powder can be as small as the Fe-2 alloy powder, but it is set to 45 μm in consideration of dimensional stability and economical efficiency.
Use the following (those passed through a 350 mesh sieve). Sn has a lower melting point than Fe-P and is easier to bond by diffusion, so even if the diameter is larger than that of Fe-P powder, there is no problem with diffusion bonding, but if it is too large, there will be problems with dimensional stability and agglomeration. The magnetic properties of the magnetic material deteriorate.

Sn粉の拡散結合温度は、250〜300℃とするのが
よい。Snの融点は約230℃であり、250℃未満で
は鉄粉の表面へのSnの拡散が困難となり、一方300
℃を越えるとSnの凝集が生じ、寸法安定性および磁気
特性を害する。上記温度における保持時間は、60〜1
5分程度で十分な拡散結合状態が得られる。
The diffusion bonding temperature of the Sn powder is preferably 250 to 300°C. The melting point of Sn is about 230°C, and below 250°C it becomes difficult for Sn to diffuse onto the surface of the iron powder.
If the temperature exceeds .degree. C., Sn agglomeration occurs, impairing dimensional stability and magnetic properties. The holding time at the above temperature is 60 to 1
A sufficient diffusion bonding state can be obtained in about 5 minutes.

尚、Sn扮の拡散結合に際しては、還元性水素雰囲気下
における加熱は、爆発の危険性があるので、かかる雰囲
気を除(非酸化性雰囲気で行う必要がある。
In addition, when performing diffusion bonding of Sn, heating in a reducing hydrogen atmosphere poses a risk of explosion, so such an atmosphere must be removed (it must be performed in a non-oxidizing atmosphere).

次に、具体的な実施例を掲げて説明する。Next, specific examples will be listed and explained.

(1)複合粉末の製造 ■ 60メフシユ以下の高純度のアトマイズ鉄粉と、平
均粒径約4μmのFe3P粉末とを、第1表の組成とな
るように混合した後、この混合粉末を還元性のアンモニ
ア分解ガス(N2と82の混合ガス。以下、AXガスと
いう。)雰囲気で880℃×30分間拡散結合した。
(1) Manufacture of composite powder■ After mixing high-purity atomized iron powder of 60 mf or less and Fe3P powder with an average particle size of about 4 μm so as to have the composition shown in Table 1, this mixed powder is Diffusion bonding was carried out at 880° C. for 30 minutes in an ammonia decomposition gas (mixed gas of N2 and 82, hereinafter referred to as AX gas) atmosphere.

尚、第1表における組成は、純鉄粉とFe3P粉とSn
粉との総量に対する各粉末割合(重量%)を示している
The composition in Table 1 is pure iron powder, Fe3P powder, and Sn.
The ratio of each powder (weight %) to the total amount of powder is shown.

■ Fe3P粉末が拡散結合したケーキを60メツシユ
以下に解粒した後、同表の組成となるように、350メ
ソシユ以下のSn粉末を添加混合し、N2ガス雰囲気で
280℃×30分間拡散結合し、第1表の組成を有する
複合鉄粉を得た。
■ After disintegrating the cake with diffusion bonded Fe3P powder to 60 mesh or less, add and mix Sn powder of 350 mesh or less to have the composition shown in the table, and diffusion bond at 280°C for 30 minutes in a N2 gas atmosphere. , a composite iron powder having the composition shown in Table 1 was obtained.

次       葉 第1表 注、 単位 重量% 残f+、l渓質的にFe (2)焼結体の製造 ■ (11で製造された複合鉄粉(Th1〜7.11〜
16)を用いて、これに潤滑剤としてステアリン酸亜鉛
を複合鉄$5)重量に対して0.75%添加し、7to
n/cIIlで外径45×内径33×厚さ6 (単位m
s)のリング体に圧縮成形後、1150℃×30分間、
AXガス雰囲気中で焼結した。リング状焼結体試料は各
々20@製作した。
Table 1 Note: Unit Weight % Remaining f+, l Fe (2) Production of sintered body (Composite iron powder manufactured in 11 (Th1~7.11~
16), 0.75% zinc stearate was added to it as a lubricant based on the weight of composite iron $5),
n/cIIl, outer diameter 45 x inner diameter 33 x thickness 6 (unit: m
After compression molding into the ring body of s), 1150°C x 30 minutes,
Sintering was carried out in an AX gas atmosphere. 20 ring-shaped sintered body samples were produced each.

■ 比較のため、混合法によって、第1表と同組成のリ
ング状焼結体を各々20個製作した。潤滑剤添加量およ
び成形圧並びに焼結条件は■と同様に設定した。
(2) For comparison, 20 ring-shaped sintered bodies having the same composition as shown in Table 1 were manufactured using the mixing method. The amount of lubricant added, molding pressure, and sintering conditions were set in the same manner as in ①.

(3)結 果 各試料の成形体密度、焼結体密度、焼結による外径寸法
収縮率および同標準偏差(試料総数n=20)をSn含
有量およびP含有量で整理したものを第1図〜第4図に
示す。尚、リング状成形体並びに焼結体は、第1表に対
応させてtla(b)〜7a(bl、 lla (bl
〜16a (b)と番号を付して区別し、同図中に示し
た。aは複合鉄わ)を用いたもの、bは混合法によるも
のを示す。
(3) Results The compact density, sintered compact density, outer diameter shrinkage rate due to sintering, and standard deviation (total number of samples n = 20) of each sample were organized by Sn content and P content. Shown in Figures 1 to 4. In addition, the ring-shaped molded body and the sintered body are tla (b) to 7a (bl, lla (bl
~16a (b) and are numbered to distinguish them and shown in the same figure. A shows the one using composite iron (a), and b shows the one using the mixing method.

(4)評 価 ■ 第1図はSn含有量と成形体密度および焼結体密度
との関係を示し、第2図はSn含有量と外径寸法収縮率
および同収縮率の枕準偏差との関係を示すグラフ図であ
る。
(4) Evaluation■ Figure 1 shows the relationship between Sn content, compact density, and sintered compact density, and Figure 2 shows the relationship between Sn content, outer diameter dimensional shrinkage rate, and standard deviation of the shrinkage rate. It is a graph diagram showing the relationship.

第1図(下図)より、Snの含有は成形体密度の向上す
なわち成形性の向上に寄与していることが確認された。
From FIG. 1 (lower diagram), it was confirmed that the inclusion of Sn contributed to improving the density of the compact, that is, improving the moldability.

特に、複合鉄粉を用いたm2a〜5aにおいて、Sn1
%以上でこの傾向が著しい。
In particular, in m2a to 5a using composite iron powder, Sn1
% or more, this tendency is remarkable.

第2図(上図)より、複合鉄粉を用いたlTh1a〜7
aは、混合法によって得られたmlb〜7bに対して、
すべてのSn範囲において、外径寸法収縮率の標乍偏差
が小さい。これは、複合鉄粉を用いることによって、寸
法安定性の向上を図れることを意味する。特に、本発明
範囲内のm2a〜5aおよび範囲外のff16aは寸法
安定性に優れている。また、Snの含有量の増大に従っ
て焼結体密度並びに外径収縮率が低下しており、このこ
とより、Snの含有によって、焼結時の寸法収縮が緩和
されることが確認された。
From Figure 2 (above), lTh1a~7 using composite iron powder
a is for mlb ~ 7b obtained by the mixed method,
In all Sn ranges, the standard deviation of the shrinkage rate of outer diameter is small. This means that dimensional stability can be improved by using composite iron powder. In particular, m2a to 5a within the range of the present invention and ff16a outside the range have excellent dimensional stability. Furthermore, as the Sn content increased, the sintered body density and the outer diameter shrinkage rate decreased, which confirmed that the dimensional shrinkage during sintering was alleviated by the Sn content.

■ 第3図はP含有量と成形体密度および焼結体密度と
の関係を示し、第4図はP含有量と外径寸法収縮率およ
び同収縮率の標準偏差との関係を示すグラフ図である。
■ Figure 3 shows the relationship between P content and compact density and sintered body density, and Figure 4 is a graph showing the relationship between P content, outer diameter dimensional shrinkage rate, and standard deviation of the shrinkage rate. It is.

第3図(下図)より、Pの含有に従って、成形性を低下
させ、一方、第4図(下図)より焼結に際して収縮し、
焼結体密度を上昇させることが確認された。
From Fig. 3 (lower figure), the formability decreases as P content increases, while from Fig. 4 (lower figure) it shrinks during sintering.
It was confirmed that this increases the density of the sintered body.

第4図(下図)より、Pが0.3%以上で、大きな収縮
が得られることが確認された。また、第4図(上図)よ
り、Pが0.3%以上で、複合鉄粉を用いたに3aおよ
びNn13a〜16aは混合法によるm3bおよびTh
13b〜16bよりすべて収縮率の標準偏差が小さく、
特に本発明範囲内の隘3aおよびlTh1a〜7aは標
準偏差が小さく、寸法安定性が良好であることが確認さ
れた。
From FIG. 4 (lower figure), it was confirmed that large shrinkage was obtained when P was 0.3% or more. In addition, from Figure 4 (upper figure), when P is 0.3% or more and composite iron powder is used, N3a and Nn13a to 16a are m3b and Th by the mixing method.
The standard deviation of shrinkage rate is all smaller than 13b to 16b,
In particular, it was confirmed that the dimensions 3a and 1Th1a to 7a within the scope of the present invention had small standard deviations and good dimensional stability.

(5)  磁気特性の評価 ■ 第2図(上部)および第4図(上図)から、複合鉄
粉を用いた焼結体のうち寸法収縮率の標準偏差の小さい
もの(克2a〜6a、 13a〜15a)を選び、直流
磁気特性を測定した。この際、比較のため、同組成の混
合法による焼結体(lTh2b〜6b、 13b −1
5b)並びに純鉄粉によって製作されたものについても
同様の測定を行った。
(5) Evaluation of magnetic properties■ From Figure 2 (top) and Figure 4 (top), among the sintered bodies using composite iron powder, those with a small standard deviation of dimensional shrinkage rate (Ex 2a to 6a, 13a to 15a) were selected and their DC magnetic properties were measured. At this time, for comparison, sintered bodies (lTh2b to 6b, 13b -1
5b) and those manufactured using pure iron powder were also subjected to similar measurements.

■ その結果を第2表に示す。磁気特性のうち、特に磁
束密度は焼結体密度に大きく依存するため、同表には焼
結体密度も併せて表示した。同表中、B、。は磁界の強
さ5000 A/mにおける磁束密度(単位T:テラス
)を示す。
■ The results are shown in Table 2. Among the magnetic properties, the magnetic flux density in particular greatly depends on the sintered body density, so the sintered body density is also shown in the same table. In the same table, B. indicates the magnetic flux density (unit: T: terrace) at a magnetic field strength of 5000 A/m.

第2表 ワ ニ]i ■ 第2表によると、焼結体密度が各試料で相違するの
で(1集密度を比較することができない。
Table 2 Crocodile] i According to Table 2, the sintered body density is different for each sample (1) It is not possible to compare the density.

そこで、下記式に示すように、試料と同密度の純鉄粉焼
結体のB5゜との差ΔB、。を調べて評価することにし
た。
Therefore, as shown in the following formula, the difference ΔB between the sample and B5° of a pure iron powder sintered body having the same density. I decided to investigate and evaluate.

ΔB、。=A−α A:試料のB、。ΔB,. =A-α A: Sample B.

α:試料と同密度の純鉄粉焼結体のB5゜ΔB、。はゼ
ロに近いほど、磁気特性上、純鉄粉焼結体と等価である
ことを示し、試料における鉄粉以外の混合物の影響が少
ないことを示す。
α: B5°ΔB of pure iron powder sintered body with the same density as the sample. The closer to zero, the more equivalent the magnetic properties are to a pure iron powder sintered body, indicating that the influence of mixtures other than iron powder in the sample is small.

尚、純鉄粉焼結体の密度と磁束密度との関係は、本発明
者の研究により B、。=0.508 x焼結体密度−2,23となるこ
とが明らかにされているので、この弐によってαのイ直
を与えた。
The relationship between the density and magnetic flux density of the pure iron powder sintered body is B based on research by the present inventor. = 0.508 x sintered body density - 2.23, so the value of α was given by this value.

(4)  ΔB、。を計算した結果を第3表に示す。(4) ΔB,. Table 3 shows the calculation results.

次       葉 第  3  表 注、 単位 T(テラス) ■ 第2表および第3表より、複合鉄粉を用いた焼結体
のうち6aを除(もの(本発明実施例に該当)は、いず
れもB、。が1.52T以上で、ΔB、。
Table 3 Note: Unit: T (terrace) ■ From Tables 2 and 3, all of the sintered bodies using composite iron powder excluding 6a (corresponding to the examples of the present invention) are B,. is 1.52T or more, ΔB,.

もO〜−0,01であり、混合法によるものに比べて極
めて優れた磁束密度を示すことがGTli LHされた
GTli LH was also found to have a magnetic flux density of O~-0.01, which is extremely superior to that obtained by the mixing method.

尚、磁気特性のうち、保磁力については、複合鉄粉を用
いたもの及び、混合法により製作されたものは共に純鉄
粉焼結体よりも良好な結果が得られている。
Among the magnetic properties, regarding coercive force, both those using composite iron powder and those manufactured by the mixing method have obtained better results than pure iron powder sintered bodies.

k6aの磁気特性が劣っζいるのは、Snが多くなると
焼結時にSnが凝集するためと考えられる。
The reason why the magnetic properties of k6a are inferior is considered to be that when the amount of Sn increases, Sn aggregates during sintering.

(発明の効果) 以上説明した通り、本発明の軟磁性焼結材用複合鉄粉は
、鉄粉粒子表面にFe−P合金粉およびSn粉が拡散結
合されているから、成形時にP乃至Sn成分が成形体中
に偏在するおそれがまったくなく、かかる偏在に起因し
た寸法精度並びに磁気特性のバラツキをも1実に防止す
ることができる。
(Effects of the Invention) As explained above, the composite iron powder for soft magnetic sintered materials of the present invention has Fe-P alloy powder and Sn powder diffusion bonded to the surface of the iron powder particles, so P to Sn There is no risk that the components will be unevenly distributed in the molded article, and variations in dimensional accuracy and magnetic properties caused by such uneven distribution can be completely prevented.

また、PおよびSnの含有範囲を特定の範囲に制限して
いるので、寸法安定性および磁気特性の良好な焼結体を
確実に得ることができる。
Furthermore, since the content ranges of P and Sn are limited to a specific range, a sintered body with good dimensional stability and magnetic properties can be reliably obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSn含有量と成形体密度および焼結体密度との
関係を示すグラフ図、第2図はSn含有量と外径寸法収
縮率および同収縮率の標準偏差との関係を示すグラフ図
、第3図はP含有量と成形体密度および焼結体密度との
関係を示すグラフ図、第4図はP含有量と外径寸法収縮
率および同収縮率の標準偏差との関係を示すグラフ図で
ある。
Figure 1 is a graph showing the relationship between Sn content, compact density, and sintered body density, and Figure 2 is a graph showing the relationship between Sn content, outer diameter dimensional shrinkage rate, and standard deviation of the shrinkage rate. Figure 3 is a graph showing the relationship between P content and compact density and sintered body density, and Figure 4 is a graph showing the relationship between P content, outer diameter shrinkage rate, and standard deviation of the shrinkage rate. FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)鉄粉粒子表面にFe−P合金粉およびSn粉が拡
散結合された複合鉄粉であって、化学組成が重量%で、
P:0.3〜1.0% Sn:1〜4% 残部実質的にFe であることを特徴とする軟磁性焼結材用複合鉄粉。
(1) A composite iron powder in which Fe-P alloy powder and Sn powder are diffusion bonded to the surface of iron powder particles, the chemical composition is in weight%,
A composite iron powder for a soft magnetic sintered material, characterized in that P: 0.3 to 1.0% Sn: 1 to 4%, the balance being substantially Fe.
JP61189233A 1986-08-11 1986-08-11 Composite iron powder for soft magnetic sintered materials Expired - Lifetime JPH0680161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189233A JPH0680161B2 (en) 1986-08-11 1986-08-11 Composite iron powder for soft magnetic sintered materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189233A JPH0680161B2 (en) 1986-08-11 1986-08-11 Composite iron powder for soft magnetic sintered materials

Publications (2)

Publication Number Publication Date
JPS6345303A true JPS6345303A (en) 1988-02-26
JPH0680161B2 JPH0680161B2 (en) 1994-10-12

Family

ID=16237827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189233A Expired - Lifetime JPH0680161B2 (en) 1986-08-11 1986-08-11 Composite iron powder for soft magnetic sintered materials

Country Status (1)

Country Link
JP (1) JPH0680161B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505760A (en) * 1991-08-26 1996-04-09 Hoganas Ab Powder-metallurgical composition having good soft magnetic properties

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123955A (en) * 1981-01-26 1982-08-02 Mitsubishi Metal Corp Free graphite dispersion type sintered sliding iron material and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123955A (en) * 1981-01-26 1982-08-02 Mitsubishi Metal Corp Free graphite dispersion type sintered sliding iron material and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505760A (en) * 1991-08-26 1996-04-09 Hoganas Ab Powder-metallurgical composition having good soft magnetic properties

Also Published As

Publication number Publication date
JPH0680161B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
CA2823267C (en) Iron based powders for powder injection molding
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
JP4078512B2 (en) Highly compressible iron powder
CN105263653A (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
CN105695846A (en) Phosphorus-contained iron-based powder metallurgy material and preparing process thereof
JPH02290002A (en) Fe-si based alloy dust core and its manufacture
JP4556755B2 (en) Powder mixture for powder metallurgy
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JPS596353A (en) Manufacture of high pressure thermal molding powder iron alloy with machinability
JPS6345303A (en) Composite iron powder for soft magnetic sintering material
US4169730A (en) Composition for atomized alloy bronze powders
KR20070112875A (en) Fe-based sintered alloy
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JP2007169736A (en) Alloy steel powder for powder metallurgy
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
JPH01165702A (en) Manufacture of alloy steel sintered compact having high density and high strength
JPS6314838A (en) Production of fe-si type sintered soft magnetic material
JP2000087194A (en) Alloy for electromagnet and its manufacture
JP3694968B2 (en) Mixed powder for powder metallurgy
JPS61127848A (en) Manufacture of sintered alnico magnet
JPH07197101A (en) Iron-phosphorus steel powder for powder metallurgy and production of sintered parts
JPS6123701A (en) Raw material powder of powder metallurgy for producing ferrous parts
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JP2004197115A (en) Method for producing complex soft magnetic material having high density and high resistance
JPH10324960A (en) Soft magnetic sintered metal, its manufacture, and magnetic part using it