JPS634507B2 - - Google Patents
Info
- Publication number
- JPS634507B2 JPS634507B2 JP56063400A JP6340081A JPS634507B2 JP S634507 B2 JPS634507 B2 JP S634507B2 JP 56063400 A JP56063400 A JP 56063400A JP 6340081 A JP6340081 A JP 6340081A JP S634507 B2 JPS634507 B2 JP S634507B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- thin film
- refractive index
- high refractive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010408 film Substances 0.000 claims description 44
- 239000010409 thin film Substances 0.000 claims description 34
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 30
- 230000004888 barrier function Effects 0.000 claims description 30
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 22
- 229910052786 argon Inorganic materials 0.000 claims description 16
- 238000000992 sputter etching Methods 0.000 claims description 12
- 238000010030 laminating Methods 0.000 claims description 4
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 238000005530 etching Methods 0.000 description 16
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 13
- 229910052709 silver Inorganic materials 0.000 description 13
- 239000004332 silver Substances 0.000 description 13
- -1 polyethylene terephthalate Polymers 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 229910000881 Cu alloy Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 7
- 229910001928 zirconium oxide Inorganic materials 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- HTWCLRQKVPERIM-UHFFFAOYSA-N [Er].[Zr] Chemical compound [Er].[Zr] HTWCLRQKVPERIM-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- QOGLYAWBNATGQE-UHFFFAOYSA-N copper;gold;silver Chemical compound [Cu].[Au][Ag] QOGLYAWBNATGQE-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Description
æ¬çºæã¯éžæå
ééæ§ç©å±€äœã«é¢ãããæŽã«è©³
现ã«ã¯éæåºæäžã«ãéå±å±€ãšé«å±æçåå°é²æ¢
å±€ãç©å±€ããŠåŸãããéžæå
ééæ§ç©å±€äœã«é¢ã
ãã
éžæå
ééæ§ç©å±€äœã¯ãäŸãã°å¯èŠå
åã®å
ã«
察ããŠéæã§ããããèµ€å€å
ã«å¯ŸããŠã¯åå°èœã
æããŠããã®ã§ãéææç±èãšããŠæçšã§ããã
åŸã€ãŠå€ªéœãšãã«ã®ãŒéç±åšïŒæž©æ°ŽåšïŒå€ªéœç±çº
é»ãã°ãªãŒã³ããŠã¹ã建ç¯ç©ã®çªéšãå·èµå·åã·
ãšãŒã±ãŒã¹ãªã©ã«äœ¿çšããåŸããç¹ã«è¿ä»£å»ºç¯ç©
ã«ãããŠãå£é¢ã®å€§ããªå²åããããçªããã®å€ª
éœãšãã«ã®ãŒå©çšåã³ãšãã«ã®ãŒæŸå°ãé²ããé
ææç±çªãšããŠã®æ©èœã¯ä»åŸãŸããŸãéèŠæ§ãå¢
ããšæãããã
åãäŸãã°éããããããã€é¡çã®èŸ²æ¥ãæå®
çã®æ œå¹ã«å¿
èŠãªã°ãªãŒã³ããŠã¹çšãã€ã«ã ãšã
ãŠãã®éèŠæ§ã¯å€§ããã
ãã®æ§ã«ãéžæå
ééæ§ç©å±€äœã¯å€ªéœãšãã«ã®
ãŒå©çšã®èŠ³ç¹ããéèŠã§ãããå質ã§é«æ§èœãªè
ãå·¥æ¥çã«å®äŸ¡ã«äžã€å€§éã«äŸçµŠãããããšãåœ
該æ¥çããæãŸããŠããã
ãããéžæå
ééæ§ç©å±€äœã«ãããéžæå
éé
æ§èãšããŠãåŸæ¥ããç¥ãããŠãããã®ã¯ã
éãé
ãéããã©ãžãŠã çã®éå±èèã
é
žåã€ã³ãžãŠã ãé
žåã¹ãºããšãŠåé
çã®å
åç©åå°äœèãããã³
éãéãé
ããã©ãžãŠã çã®å°é»æ§éå±èã
ããæ³¢é·é åã«ãããéžæçã«éæã«ãããã®
ãç¥ãããŠãããèµ€å€å
åå°èœã®é«ãéžæå
éé
æ§èãšããŠãæ°åãªã³ã°ã¹ãããŒã ã®èåã®é
žå
ã€ã³ãžãŠã èåã¯é
žåé«èãããã³éå±èãšéæ
å°é»äœèã®ç©å±€èçãç¥ãããŠãããããããªã
ããããããæ§èœã®éžæå
ééæ§èãå·¥æ¥çã«å®
䟡ã«è£œé ãããã«è³ã€ãŠããªãã®ãçŸç¶ã§ããã
å³ã¡ãäžèšã®éå±èèã¯ãéå±ãåºãæ³¢é·é
åã«ãããåå°èœåã¯åžåèœãé«ããããå¯èŠå
ééçã®é«ããã®ãåŸããé£ããå¯èŠå
ééçã
é«ãããšãèµ€å€å
åå°èœãèããäœäžããããã
ã®ããšãèµ€å€å
åå°èœãé«ããããã«ãéå±èè
ã®èåãé«ãããšãå¯èŠå
ééçãèããäœäžã
ãã®ã§ãäž¡è
ã®æ§è³ªã«ãããŠããããéžæå
éé
æ§èãåŸãããªãã
äžèšã®ååç©åå°äœèèã¯ãäŸãã°ç空èžç
æ³ãã¹ããã¿ãªã³ã°æ³çã®ç空äžã«ãããèè圢
ææ³ã§åœ¢æãããããç空äžã«ãããååç©ã®èž
çºã«ããæ¹æ³ã§ã¯ãèžçºååç©ã®å解ã«ãšããªã
åé¡ã被èç¹æ§ãåäžã«å¶åŸ¡ããããã«è圢æé
床ãå®éäžé
ãããšãèžçºæºã®å€§ãããå¶éãã
ãããã倧é¢ç©åºæ¿ãžã®é©çšãå¶çŽãããåé¡
çãå·¥æ¥çç£æ§ã«æ¬ ããå®äŸ¡ãªè£œåãšãªãåŸãª
ããé
žåã€ã³ãžãŠã çã®åå°äœã§ãããããéžæ
å
ééæ§èãåŸãããã«ãæ°åãªã³ã°ã¹ãããŒã
çšåºŠã®èåã®é
žåã€ã³ãžãŠã çã®åå°äœè¢«èãæ
æ¡ãããŠããããèã®çç£é床ãèããé
ããªã
ã°ããã§ãªãã貎éãªã€ã³ãžãŠã çã®è³æºãå€ã
æ¶è²»ããããšã«ãªãããã®çµæãèã®è£œé ã³ã¹ã
ãèããé«ããªããæŽã«åãã®èã§ã¯èµ€å€å
åå°
èœã®å
åã«é«ããã®ãåŸãããŠããªãã
äžèšã®éžæå
ééæ§èã¯éå±èèåã³éæé«
å±æçèèã«ããæ§æãããç©å±€äœã§ãããäŸã
ã°éå±èèïŒå±€ãšéæé«å±æçèèå±€ïŒå±€ãšã§æ§
æãããéžæå
ééæ§èã®äŸãšããŠã¯ç空èžçã
åå¿æ§èžçåã¯ã¹ããã¿ãªã³ã°ã§åœ¢æããã
Bi2O3ïŒAuïŒBi2O3ãZnSïŒAgïŒZnSåã¯TiO2ïŒ
AgïŒTiO2çã®ãµã³ãã€ããç¶æ§é ã®ç©å±€èãæ
æ¡ãããŠããã
å°ãïŒå±€ã®éå±èèãšïŒå±€ã®éæé«å±æçèè
ãšã§æ§æãããç©å±€èãäžå
åãªããéžæå
éé
æ§èãšãªããããäžèšããåŠãéå±å±€ãšããŠéã
çšãããšãéèªäœããã€å
åŠçç¹æ§ã«ãããå¯èŠ
å
é åã«ãããéææ§åã³èµ€å€å
ã«å¯Ÿããåå°ç¹
æ§ãç¹ã«åªããŠããããšããŸãå°é»æ§ã«ãããŠã
奜ãŸããç¹æ§ãæããŠããããšçã®ç¹ããç©å±€è
ãšããŠç¹ã«åªããŠããã
ããããªãããéæé«å±æçèèå±€ã«ãããã
ãããéèèå±€ãããªãç©å±€èã¯ãç±ã»å
ã»ã¬ã¹
çã«ããæ§èœã®å£åãããããç°å¢å®å®æ§ã«ãã
ãŠåé¡ããã€ãããã®å£åã®åå ã®å€ãã¯ãç°å¢
å åã«ããéã®è¡šé¢æ¡æ£ã«ããçºããã®æ¹åã¯é
åžžã«éèŠãªåé¡ãšãªã€ãŠããã
æ¬çºæè
ãã¯ãéå±èèå±€ãšé«å±æçåå°é²æ¢
å±€ãšãçµåãã§ç©å±€ãããŠãªãéžæå
ééæ§èã®
ç°å¢å®å®æ§ãæ¹åãã¹ãéæç 究ããçµæãã¢ã«
ãŽã³ã€ãªã³ã«ãããšããã³ã°é床ãåœè©²é«å±æç
åå°é²æ¢å±€ããå°ãããšããã®ããªã€ãŒå±€ãåœè©²
éå±å±€ã«æ¥ããŠèšããããšã«ããèä¹
æ§ã倧巟ã«
åäžãããããšãåºæ¥ãããšãèŠåºããæ¬çºæã«
å°éãããã®ã§ããã
å³ã¡æ¬çºæã¯éå±èèå±€(A)åã³é«å±æçåå°é²
æ¢å±€(B)ãçµåãç©å±€ãããŠãªãéžæå
ééæ§èã
éææ圢ç©åºæäžã«èšããç©å±€äœã«ãããŠãåœè©²
éžæå
ééæ§èãå°ãªããšãäžå±€ã®ããªã€ãŒå±€(C)
ãæããåœè©²ããªã€ãŒå±€(C)ã¯åœè©²é«å±æçåå°é²
æ¢å±€(B)ãããå°ããã¢ã«ãŽã³ã€ãªã³ãšããã³ã°é
床ã瀺ããäžã€éææ圢ç©åºæãåºæºã«ããŠåœè©²
éå±å±€(A)ãïœçªç®ãšãããšãã«ïœïŒïŒçªç®ã®å±€ã§
ããããšãç¹åŸŽãšããç©å±€äœã§ããã
æ¬çºæã«ãããŠéå±èèå±€(A)ã«çšããããéå±€
ãšããŠã¯ãå¯èŠå
é åã®åžåæ倱ã®å°ãªãéå±
ïŒåéãå«ãïŒã§ããã°ãããªããã®ã§ããã
ãããäŸãã°éãéãé
ãã¢ã«ãããŠã ããã©ãž
ãŠã åã¯ãããã®åéã奜ãŸããçšãããããå
éãšããŠã¯äŸãã°é
ã0.1ã30ééïŒ
ã奜ãŸãã
ã¯0.3ã15ééïŒ
éã«å«æããããã®ãæãããã
é
ã®æ·»å ã«ããéèèã®èå
æ§ãèããæ¹è¯ãã
ããšãåºæ¥ãã
ãŸãéãïŒã30ééïŒ
éã«å«æããããåéã
éã®èç±æ§ãæ¹åãããã®ãšããŠå¥œãŸããããã
ããŠæã奜ãŸããåéã¯éâé
âéç³»åéã§ã
ãã
äžèšã®éå±èèå±€(A)ã®èåã¯50ã300â«å¥œãŸã
ãã¯70ã200â«ã§ãããèããããšèµ€å€ç·åå°ç
åã³èç±æ§ãäœããªããããåããããšå¯èŠå
é
éçãäœããªããããã
éå±èèå±€(A)ã®åœ¢ææ¹æ³ã¯åŸæ¥å
¬ç¥ã®ãã€ãžã«
ã«ã»ããŒããŒã»ãããžã·ãšã³æ³ãé©çšã§ããã
é«å±æçåå°é²æ¢å±€(B)ã¯äŸãã°ãã¿ã³ãã€ã³ãž
ãŠã ãäºéãé«ãã€ãããªãŠã ããšã«ããŠã ãžã«
ã³ããŠã ãã»ãªãŠã ãã¿ã³ã¿ã«åã³ããããŠã ãª
ã©ããéžã°ããäžçš®ä»¥äžã®éå±ã®é
žåç©ã®å±€ã§ã
ãããããã¯å¯èŠå
ã«éæã§ãã€å¯èŠå
ã«ããã
å±æçãé«ããã®ã§ãããå±æçã1.6以äžç¹ã«
1.8以äžã奜ãŸããã
é«å±æçåå°é²æ¢å±€(B)ã®èåã¯50ã500â«å¥œãŸ
ããã¯150ã400â«ã§ããããã®ç¯å²ããã¯ããã
ãšå¯èŠå
ã®ééçãäœäžããã
é«å±æçåå°é²æ¢å±€(B)ã¯ç空èžçãã€ãªã³ãã¬
ãŒãã€ã³ã°ãã¹ããã¿ãªã³ã°ã湿åŒå¡å·¥ãªã©ã®æ¹
æ³ã«ãã€ãŠèšããããšãã§ããã湿åŒå¡å·¥æ³ã®å Ž
åãäŸãã°ææ©ãã¿ã³ååç©ãææ©ãžã«ã³ããŠã
ååç©ãã圢æãããææ©åºã0.1ãïŒééïŒ
å«
æããé
žåãã¿ã³ãé
žåãžã«ã³ããŠã ã®èãåå°
é²æ¢èãšããŠçšããããšãã§ããçç£æ§ãé«ãå©
ç¹ãæããŠããã
ãŸããããªã€ãŒå±€(C)ã¯ãäŸãã°ãã¿ã³ãã€ã³ãž
ãŠã ãäºéãé«ãã€ãããªãŠã ããšã«ããŠã ããž
ã«ã³ããŠã ãã»ãªãŠã ãã¿ã³ã¿ã«åã³ããããŠã
ãªã©ããéžã°ããïŒçš®ä»¥äžã®éå±ã®é
žåç©åã¯åœ
該éå±é
žåç©ãšåœè©²éå±ãšã®æ··åç©ãããªãå±€ã§
ãããã¢ã«ãŽã³ã€ãªã³ãšããã³ã°é床ãåœè©²é«å±
æçåå°é²æ¢å±€(B)ããå°ãããã®ã§ãããããªã€
ãŒå±€(C)ãšé«å±æçåå°é²æ¢å±€(B)ãšã®ã¢ã«ãŽã³ã€ãª
ã³ãšããã³ã°é床ã®æ¯ã¯1.0æªæºã§ãªããã°ãªã
ããéåžž0.6以äžãæŽã«å¥œãŸããã¯0.4以äžã§ã
ãã
ãããããªã€ãŒå±€(C)ãæ§æããã¢ã«ãŽã³ã€ãªã³
ãšããã³ã°é床ã®å°ããèã¯ããã®èã®é
žå床ã
調æŽããããšã«ãã圢æããããäŸãã°ã¹ããã¿
æ³ã«ããå Žåã«ã¯ã¿ãŒã²ããã®çµæãè圢ææã®
é°å²æ°ã¬ã¹ã®çµæçã調æŽããããšã«ããåŸãã
ãšãã§ãããåŸè¿°ã®å®æœäŸã«ç€ºãããã«ãäŸãã°
TiãTiOã¿ãŒã²ãããçšããå Žåã«ã¯ArïŒ95ïŒ
ïŒ
ïŒO2ïŒïŒïŒ
ïŒã®é°å²æ°ã¬ã¹ã§ãè¯å¥œãªèãåŸãã
ãããTiO2ã¿ãŒã²ããã§ã¯ArïŒ100ïŒ
ïŒã§ãè¯å¥œ
ãªèã¯åŸãããªããåTiOã¿ãŒã²ããã«ãããŠã
ArïŒ60ïŒ
ïŒïŒO2ïŒ40ïŒ
ïŒã®æ¡ä»¶äžã§ã¯ãšããã³ã°é
床ã倧ãããªããè¯å¥œãªèã¯åŸãããªããããªã
ã¡èã®é
žå床ãäœããªãããã«è圢ææ¡ä»¶ãéžå®
ããããšã«ãããè¯å¥œãªããªã€ãŒå±€(C)ãåŸãããš
ãã§ããã
ãããããªã€ãŒå±€(C)ã®åãã¯100â«ã奜ãŸãã
ã¯80â«ä»¥äžã§ããåããããšå¯èŠå
ééçãäœäž
ããã
æ¬çºæã«ãããŠã¯ããªã€ãŒå±€(C)ãæŽã«éå±èè
å±€(A)ã®äžåŽã«ãæ¥ããŠååšããããšãåºæ¥ããã®
å Žåãéå±èèå±€(A)ã¯ããªã€ãŒå±€(C)ã§ãµã³ãã€ã
ãç¶ã«æŸãŸããããšã«ãªãããããæ§æã®å Žåã
ããªã€ãŒå±€(C)ã®åãã¯äžäžåèšã§140â«ä»¥äžã§ã
ãããšãæãŸããã
æ¬çºæã§çšããéææ圢ç©åºæãšããŠã¯ãäŸã
ã°éæãªã·ãŒãç¶åºæã奜é©ã§ããããããéæ
ãªã·ãŒãç¶åºæãšããŠã¯äŸãã°ããªãšãã¬ã³ãã¬
ãã¿ã¬ãŒãæš¹èãããªãšãã¬ã³ããã¿ã¬ãŒãæš¹
èãããªã«ãŒãããŒãæš¹èãã¢ã¯ãªã«æš¹èã
ABSæš¹èãããªã¹ãã¬ã³æš¹èãããªã¢ã»ã¿ãŒã«
æš¹èãããªãšãã¬ã³æš¹èãããªãããã¬ã³æš¹èã
ããªã¢ããæš¹èãããçŽ æš¹èãªã©ã®ç±å¯å¡æ§æš¹
èãæŽã«ã¯äŸãã°ãšããã·æš¹èãã·ã¢ãªã«ãã¿ã¬
ãŒãæš¹èãããšããŒã«ç³»æš¹èãå°¿çŽ æš¹èãªã©ã®ç±
硬åæ§æš¹èãæŽã«ã¯ããªããã«ã¢ã«ã³ãŒã«ãããª
ã¢ã¯ãªã«ãããªã«ãããªãŠã¬ã¿ã³ãè³éŠæãããª
ã¢ãããããªã€ããæš¹èãªã©ã®æº¶å€å¯æº¶åæš¹èãª
ã©ã®ã·ãŒãç¶æåç©ããããããããããã¯åç¬
éåç©ãåã¯å
±éåç©ãšããŠåç¬åã¯ïŒçš®ä»¥äžã®
æ··åç©ãšããŠçšããããã
ç¡æ©æåç©ãšããŠã¯ããœãŒãã»ã¬ã©ã¹ãããŠç¡
é
žã¬ã©ã¹ãç¡
é
žã¬ã©ã¹ãªã©ã®ã¬ã©ã¹è³ªãã¢ã«ã
ãããã°ãã·ã¢ããžã«ã³ãã¢ãã·ãªã«ç³»ãªã©ã®é
å±é
žåç©ãã¬ãªãŠã âãçŽ ãã€ã³ãžãŠã âãªã³ç
ã®ååç©åå°äœãã·ãªã³ã³ãã²ã«ãããŠã çã®å
å°äœçã®æåç©ããããããã
ãªããã·ãŒãç¶åºæã®åã¿ã¯ç¹ã«éå®ãããã
ããããæ¿ç¶ã®ãã®ãããã€ã«ã ç¶ã®ãã®ãŸã§ã®
åºçŸ©ãªå
容ãè¡šãããã®ã§ããã
æ¬çºæã«ãããŠã¢ã«ãŽã³ã€ãªã³ãšããã³ã°é床
ã¯ç¹ã«èšããªãããã次ã®ããã«ããŠæž¬å®ããã
(1) è£
眮 æ¥æ¬é»å(æ ª)補ESCAè£
眮ïŒJESCAâ
ïŒïŒ
ïŒããªã€ã³(æ ª)補ã€ãªã³ã¬ã³931â2043ïŒ
(2) 枬å®æ¹æ³
åºæ¿äžã«é«å±æçåå°é²æ¢å±€ïŒB1ïŒãéå±å±€
(A)ãããªã€ãŒå±€(C)åã³é«å±æçåå°é²æ¢å±€
ïŒB2ïŒãèšèŒã®é åºã«èšããç©å±€äœã«ã€ããŠèª¬
æãããåºæ¿ãïŒæçšæãããã®äžã®ïŒæã®åº
æ¿(1)ã«ã€ããŠã¯äžèšãã¹ãŠã®å±€ã圢æããã
ããäžèšåºæ¿(1)äžã«å±€ïŒB1ïŒã(C)åã³ïŒB2ïŒã
圢æããããåå·¥çšã«ãããŠãããããæ®ãïŒ
æã®åºæ¿(2)ã(3)åã³(4)ã䜵眮ããŠåºæ¿(1)äžã«å±€
ïŒB1ïŒã(C)åã³ïŒB2ïŒããããã圢æãããã®
ãšå
šãåäžæ¡ä»¶äžã§åºæ¿(2)äžã«å±€ïŒB1ïŒâ²ãã
åºæ¿(3)äžã«å±€(C)â²ããæŽã«åºæ¿(4)äžã«å±€
ïŒB2ïŒâ²ã圢æãããããããããŠäžèšïŒçš®
(i) åºæ¿(1)ïŒå±€ïŒB1ïŒïŒå±€(A)ïŒå±€(C)ïŒå±€ïŒB2ïŒ
(ii) åºæ¿(2)ïŒå±€ïŒB1ïŒâ²
(iii) åºæ¿(3)ïŒå±€(C)â²
(iv) åºæ¿(4)ïŒå±€ïŒB2ïŒâ²
ã®ãµã³ãã«ãäœæããããµã³ãã«(ii)ã(iii)åã³(iv)
ã«ãããåºæ¿äžã®åå±€ã®åããæ±ãã次ãã§ã¢
ã«ãŽã³ã€ãªã³ãšããã³ã°ããŠåå±€ããšããã³ã°
ãããæéãæ±ãããåºæ¿(1)äžã®å±€(C)ïŒå±€
ïŒB2ïŒã®ãšããã³ã°æéã¯ãåºæ¿(3)åã³åºæ¿(4)
äžã®å±€åã
ã«ã€ããŠæ±ãããšããã³ã°æéã®å
ã«çžåœããããšããã³ã°é床ãšã¯ãå±€åã
ïŒâ«ïŒããšããã³ã°æéïŒåïŒã§ãã€ãå€
ïŒâ«ïŒåïŒã§ããã
(3) ãšããã³ã°æ¡ä»¶ãšESCA枬å®æ¡ä»¶
ãšããã³ã°æ¡ä»¶ïŒã¢ã«ãŽã³ïŒÃ10-4TorrïŒèå§
ïŒÃ10-7TorrïŒ
ã¢ã«ãŽã³å
¥å°è§45ãããšããã·ãšã³é»æµ25
ïœïŒ¡ãè©Šæé»æµ15ÎŒAãããŒã ãšãã«ã®ãŒ
2.75KV
ESCA枬å®æ¡ä»¶ïŒïŒžç· ã¿ãŒã²ããMg
ãšããã·ãšã³é»æµ50ïœïŒ¡
å°å é»å§9KV
å
é»ååæ æ€åºåšé»å§3KV
ã¹ããããŠã€ãã¹0.30V
ã¹ãããã¿ã€ã 0.1ç§
ç©ç®åæ°80å
ç空床 ïŒÃ10-8Torr
æ¬çºæã«ãããŠéžæå
ééæ§èã®ç°å¢å®å®æ§ã
æ¹è¯ããã®ã«é«å±æçåå°é²æ¢å±€ã«æ¯ããŠãã¢ã«
ãŽã³ã€ãªã³ãšããã³ã°é床ã®å°ããå±€ïŒããªã€ãŒ
å±€ïŒãéå±å±€ã«æ¥ããŠèšããããšããããªãçç±
ã§æå¹ã§ããã®ãã«ã€ããŠã¯ãã ãã§ã¯ãªããã
ããããã¯ã¢ã«ãŽã³ã€ãªã³ãšããã³ã°é床ãå±€ã®
ã¡ã¿ã€æ§ã極æ§çã®æ§é å åãåæ ããç¹æ§ã§ã
ããšããããšã«é¢ä¿ããããšèããããã
以äžå®æœäŸãçšããŠæ¬çºæãããå
·äœçã«èª¬æ
ããã
å®æœäŸïŒãïŒãæ¯èŒäŸïŒãïŒ
å
ééç86ïŒ
ãèå50ÎŒïœã®äºè»žå»¶äŒžããªãšã
ã¬ã³ãã¬ãã¿ã¬ãŒããã€ã«ã äžã«åã200â«ã®é
ž
åãã¿ã³èèå±€(B)ãåã150â«ã®éåã³é
ã®åé
ãããªãèèå±€(A)ïŒé92ééïŒ
ãé
ïŒééïŒ
ïŒã
ããªã€ãŒå±€(C)åã200â«ã®é
žåãã¿ã³èèå±€(B)ã
é 次ç©å±€ããéžæå
ééæ§ç©å±€äœãåŸãã
é
žåãã¿ã³èèå±€ã¯ããããããã©ããã«ãã¿
ããŒãã®ïŒéäœïŒéšãã€ãœãããã«ã¢ã«ã³ãŒã«97
éšãããªã溶液ãããŒã³ãŒã¿ãŒã§å¡åžã120âïŒ
åéå ç±ããŠèšããã
éâé
åéå±€ã¯ãéâé
åéïŒé92ééïŒ
ãé
ïŒééïŒ
ïŒãã¿ãŒã²ãããšããçŽæµã¹ããã¿ãªã³
ã°ã§èšããã
ããªã€ãŒå±€ã®è£œé æ¹æ³ãããªã€ãŒå±€ã®åããéž
æå
ééæ§ç©å±€äœã®å¯èŠå
ééçåã³èµ€å€å
ïŒ10ÎŒïŒåå°çã«ã€ããŠã¯è¡šïŒã«ç€ºããã
è¡šïŒã«ã¯æ¬çºæã®æ¹æ³ã«ããéžæå
ééæ§ç©å±€
äœã®ããªã€ãŒå±€ãšããã³ã°é床ãããªã€ãŒå±€ãšã
ãã³ã°é床ãšé«å±æçåå°é²æ¢å±€ãšã®æ¯ã瀺ãã
ãŸãã該éžæå
ééæ§ç©å±€äœã90ãã«èšå®ããç±
颚也ç¥æ©ã«ãããŠç±å£åä¿é²ãã¹ããè¡ããèµ€å€
å
ïŒ10ÎŒïŒåå°çãåæå€ã®85ïŒ
ã«ãªããŸã§ã®æ
éã枬å®ãããããå£åæéãšå®çŸ©ã瀺ããããŸ
ãæ¯èŒäŸã䜵ã瀺ããã
The present invention relates to a selectively transparent laminate. More specifically, the present invention relates to a selective light transmitting laminate obtained by laminating a metal layer and a high refractive index antireflection layer on a transparent substrate. The selective light transmitting laminate is transparent to light in the visible light range, for example, but has the ability to reflect infrared light, so it is useful as a transparent heat insulating film.
Therefore, it can be used in solar energy collectors (water heaters), solar thermal power generation, greenhouses, building windows, refrigerated and frozen cases, etc. Particularly in modern buildings, the function of transparent insulating windows that can prevent solar energy utilization and energy radiation from windows that occupy a large proportion of the wall surface is expected to become increasingly important in the future. Furthermore, it is of great importance as a film for greenhouses, which is necessary for the cultivation of wild vegetables, citrus fruits, etc., and the cultivation of fruits, etc. As described above, selective light transmitting laminates are important from the viewpoint of solar energy utilization, and the industry has desired that homogeneous, high-performance films can be supplied industrially at low cost and in large quantities. Conventionally known selective light transmitting films in such selective light transmitting laminates include metal thin films such as gold, copper, silver, and palladium, and compound semiconductor films such as indium oxide, tin oxide, and copper iodide. It is known that conductive metal films such as gold, silver, copper, and palladium are selectively transparent over a certain wavelength range. As a selective light transmitting film with high infrared light reflecting ability, an indium oxide film or a tin oxide film with a thickness of several thousand angstroms, and a laminated film of a metal film and a transparent conductor film are known. However, at present, selective light transmitting films with excellent performance have not yet been produced industrially and at low cost. That is, it is difficult to obtain the above-mentioned metal thin film with high visible light transmittance because metal has high reflective ability or absorbing ability over a wide wavelength range. When visible light transmittance is increased, infrared light reflection ability is significantly reduced. If the thickness of the metal thin film is increased in order to improve the infrared reflective ability, the visible light transmittance will be significantly lowered, making it impossible to obtain a selective light transmitting film that is excellent in both properties. The above compound semiconductor thin film is formed by a thin film forming method in vacuum such as vacuum evaporation method or sputtering method. The film formation rate is actually slow due to the control, and the size of the evaporation source is limited, which limits its application to large-area substrates.It lacks industrial productivity and cannot be a cheap product. . In order to obtain films with excellent selective light transmission using semiconductors such as indium oxide, a film of semiconductors such as indium oxide with a film thickness of several thousand angstroms has been proposed, but the production speed of the film is significantly slowed down. Therefore, a large amount of valuable resources such as indium are consumed, and as a result, the manufacturing cost of the membrane increases significantly. Furthermore, this film does not have sufficiently high infrared light reflectivity. The selective light transmitting film described above is a laminate composed of a metal thin film and a transparent high refractive index thin film. For example, a selective light transmitting film composed of one metal thin film layer and two transparent high refractive index thin film layers. Examples include vacuum evaporation,
formed by reactive vapor deposition or sputtering
Bi 2 O 3 /Au/Bi 2 O 3 , ZnS/Ag/ZnS or TiO 2 /
Laminated films with a sandwich structure such as Ag/TiO 2 have been proposed. Incidentally, a laminated film composed of one layer of metal thin film and one layer of transparent high refractive index thin film can also serve as a selective light transmitting film, although it is insufficient. As mentioned above, when silver is used as the metal layer, due to the optical properties of silver itself, it has particularly excellent transparency in the visible light region and reflection properties for infrared light, and also has favorable properties in terms of conductivity. It is particularly excellent as a laminated film because of the fact that it is However, the laminated film consisting of a silver thin film layer covered with a transparent high refractive index thin film layer has a problem in environmental stability because its performance deteriorates due to heat, light, gas, etc. Since most of the causes of this deterioration are surface diffusion of silver due to environmental factors, improvement has become a very important issue. The present inventors have conducted intensive research to improve the environmental stability of a selectively transparent film formed by laminating a combination of a metal thin film layer and a high refractive index antireflection layer. The present invention was achieved based on the discovery that durability can be greatly improved by providing a barrier layer with a smaller refractive index than the antireflection layer in contact with the metal layer. That is, the present invention provides a laminate in which a selective light transmitting film formed by laminating a combination of a metal thin film layer (A) and a high refractive index antireflection layer (B) is provided on a transparent molded substrate. Barrier layer with at least one membrane (C)
, the barrier layer (C) exhibits a lower argon ion etching rate than the high refractive index antireflection layer (B), and the metal layer (A) is nth This is a laminate characterized in that it is the n+1th layer when . The gold layer used for the metal thin film layer (A) in the present invention may be any metal (including alloys) with low absorption loss in the visible light region, such as gold, silver, copper, aluminum, Palladium or an alloy thereof is preferably used. Examples of alloys include those containing 0.1 to 30% by weight of copper, preferably 0.3 to 15% by weight of silver;
The addition of copper can significantly improve the light resistance of silver thin films. Also, an alloy containing 3 to 30% by weight of gold in silver is also preferred as it improves the heat resistance of silver. Thus, the most preferred alloys are silver-copper-gold based alloys. The thickness of the metal thin film layer (A) is 50 to 300 Ã
, preferably 70 to 200 Ã
; if it is too thin, the infrared reflectance and heat resistance will be too low, and if it is too thick, the visible light transmittance will be too low. As a method for forming the metal thin film layer (A), a conventionally known physical paper deposition method can be applied. The high refractive index antireflection layer (B) is a layer of oxide of one or more metals selected from, for example, titanium, indium, zinc, tin, yttrium, erbium zirconium, cerium, tantalum, and hafnium. These are transparent to visible light and have a high refractive index in visible light, especially those with a refractive index of 1.6 or more.
1.8 or more is preferable. The film thickness of the high refractive index antireflection layer (B) is 50 to 500 Ã
, preferably 150 to 400 Ã
. Outside this range, visible light transmittance decreases. The high refractive index antireflection layer (B) can be provided by methods such as vacuum deposition, ion plating, sputtering, and wet coating. In the case of the wet coating method, for example, titanium oxide or zirconium oxide films formed from organic titanium compounds or organic zirconium compounds and containing 0.1 to 5% by weight of organic groups can also be used as antireflection films, and have the advantage of high productivity. have. In addition, the barrier layer (C) is made of an oxide of one or more metals selected from titanium, indium, zinc, tin, yttrium, erbium, zirconium, cerium, tantalum, hafnium, etc., or a combination of the metal oxide and the metal. The argon ion etching rate is lower than that of the high refractive index antireflection layer (B). The ratio of argon ion etching rates between the barrier layer (C) and the high refractive index antireflection layer (B) must be less than 1.0, usually less than 0.6, more preferably less than 0.4. A film having a low argon ion etching rate constituting the barrier layer (C) can be formed by adjusting the degree of oxidation of the film. For example, when using the sputtering method, it can be obtained by adjusting the composition of the target, the composition of the atmospheric gas during film formation, etc. As shown in the examples below, for example
Ar (95%) when using Ti, TiO targets
A good film can be obtained even with an atmosphere gas of +O 2 (5%), but a good film cannot be obtained with a TiO 2 target even with Ar (100%). Also in TiO target
Under the conditions of Ar (60%) + O 2 (40%), the etching rate increases and a good film cannot be obtained. That is, by selecting the film forming conditions so that the degree of oxidation of the film is low, a good barrier layer (C) can be obtained. The thickness of the barrier layer (C) is 100 Ã
, preferably 80 Ã
or less; if it is too thick, the visible light transmittance will decrease. In the present invention, the barrier layer (C) can also be present in contact with the lower side of the metal thin film layer (A), in which case the metal thin film layer (A) is sandwiched between the barrier layer (C) in a sandwich pattern. It will happen. In such a configuration,
It is desirable that the total thickness of the barrier layer (C) is 140 Ã
or less in total. As the transparent molded base material used in the present invention, for example, a transparent sheet-like base material is suitable, and such transparent sheet-like base materials include, for example, polyethylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, acrylic resin,
ABS resin, polystyrene resin, polyacetal resin, polyethylene resin, polypropylene resin,
Thermoplastic resins such as polyamide resins and fluororesins, thermosetting resins such as epoxy resins, sialyl phthalate resins, phenolic resins, and urea resins, as well as polyvinyl alcohol, polyacrylonitrile, polyurethane, aromatics, and polyamides. Examples include sheet-shaped molded products such as solvent-soluble resins such as polyimide resins. These may be used alone or as a mixture of two or more as homopolymers or copolymers. Inorganic molded products include glass such as soda glass, borosilicate glass, and silicate glass, metal oxides such as alumina, magnesia, zirconia, and silica, compound semiconductors such as gallium-arsenic, indium-phosphorous, and silicon. , molded products of semiconductors such as germanium. Note that the thickness of the sheet-like base material is not particularly limited,
It represents a wide range of contents, from so-called plate-like objects to film-like objects. In the present invention, the argon ion etching rate was measured as follows unless otherwise specified. (1) Equipment ESCA equipment manufactured by JEOL Ltd. (JESCA-
4) (Ion gun 931-2043 manufactured by Balyan Co., Ltd.) (2) Measurement method High refractive index anti-reflection layer (B 1 ) and metal layer on the substrate
A laminate in which (A), a barrier layer (C), and a high refractive index antireflection layer (B 2 ) are provided in the stated order will be described. Four substrates are prepared, and all of the above layers are formed on one substrate (1). In each step of forming layers (B 1 ), (C) and (B 2 ) on the substrate (1), the remaining 3
Under exactly the same conditions as when the layers (B 1 ), (C) and (B 2 ) are respectively formed on the substrate (1) by placing the substrates (2), (3) and (4) side by side. Layer (B 1 )â² on substrate (2),
A layer (C)' is formed on the substrate (3), and a layer (B 2 )' is further formed on the substrate (4). Thus, the following four types (i) Substrate (1)/layer (B 1 )/layer (A)/layer (C)/layer (B 2 ) (ii) Substrate (2)/layer (B 1 )â² (iii) Substrate (3)/layer (C)â² (iv) Create a sample of substrate (4)/layer (B 2 )â². Samples (ii), (iii) and (iv)
Determine the thickness of each layer on the substrate, then perform argon ion etching and determine the time it takes for each layer to be etched. The etching time for layer (C)/layer (B 2 ) on substrate (1) is the same as that for substrate (3) and substrate (4).
This corresponds to the sum of the etching times determined for each of the upper layers. The etching rate is the layer thickness (Ã
) divided by the etching time (minutes) (Ã
/min). (3) Etching conditions and ESCA measurement conditions Etching conditions: Argon 2Ã10 -4 Torr (back pressure 5Ã10 -7 Torr) Argon incident angle 45°, emission current 25
mA, sample current 15ÎŒA, beam energy
2.75KV ESCA measurement conditions: X-ray target Mg Emission current 50mA Applied voltage 9KV Photoelectron analysis Detector voltage 3KV Step width 0.30V Step time 0.1 seconds Integration number 80 times Vacuum degree 5Ã10 -8 Torr In the present invention, selective light transmitting membrane It is unclear why it is effective to provide a layer (barrier layer) with a lower argon ion etching rate in contact with the metal layer than a high refractive index antireflection layer to improve environmental stability. No, but
This is probably related to the fact that the argon ion etching rate is a characteristic that reflects structural factors such as layer honeyness and polarity. The present invention will be described in more detail below using Examples. Examples 1 to 7, Comparative Examples 1 to 3 Titanium oxide thin film layer (B) with a thickness of 200 Ã
on a biaxially stretched polyethylene terephthalate film with a light transmittance of 86% and a thickness of 50 ÎŒm, and an alloy of silver and copper with a thickness of 150 Ã
A thin film layer (A) consisting of (92% by weight silver, 8% by weight copper),
A barrier layer (C) and a titanium oxide thin film layer (B) having a thickness of 200 Ã
were sequentially laminated to obtain a selectively transparent laminate. The titanium oxide thin film layer is made of 3 parts of tetramer of tetrabutyl titanate and 97% of isopropyl alcohol.
Apply a solution consisting of
Heat and set for a minute. The silver-copper alloy layer was formed by direct current sputtering targeting a silver-copper alloy (92% by weight silver, 8% by weight copper). Table 1 shows the method for manufacturing the barrier layer, the thickness of the barrier layer, the visible light transmittance and the infrared light (10Ό) reflectance of the selective light transmitting laminate. Table 2 shows the barrier layer etching rate and the ratio of the barrier layer etching rate to the high refractive index antireflection layer of the selectively transparent laminate according to the method of the present invention,
In addition, a thermal deterioration acceleration test was performed by placing the selective light transmitting laminate in a hot air dryer set at 90°, and the time required for the infrared light (10 Ό) reflectance to reach 85% of the initial value was measured. This is defined as the deterioration time. Comparative examples are also shown.
ãè¡šããtableã
ãè¡šã
è¡šïŒããæ¬çºæã®å¹æã¯æããã§ããã
å®æœäŸïŒã11ãæ¯èŒäŸïŒãïŒ
å®æœäŸïŒãšåæ§ã®æ¹æ³ã§ããã éåã³é
ã®åé
ãããªãèèå±€(A)ã®äž¡åŽã«ããªã€ãŒå±€(C)ãèšããŠ
ç¹æ§ãè©äŸ¡ãããçµæãè¡šâïŒã«ç€ºããã¢ã³ããŒ
ããªã€ãŒãšãããããªã€ãŒã¯åãæ¹æ³ã§äœè£œã
ãã[Table] From Table 2, the effects of the present invention are clear. Examples 8 to 11, Comparative Examples 4 and 5 In the same manner as in Example 1, barrier layers (C) were provided on both sides of the thin film layer (A) made of an alloy of silver and copper, and the characteristics were evaluated. The results are shown in Table-3. The under barrier and top barrier were fabricated using the same method.
ãè¡šã
å®æœäŸ12ãæ¯èŒäŸïŒ
å®æœäŸïŒã®æ¹æ³ã«ãããŠãé
žåãã¿ã³èèå±€(B)
ã®ãããã«é
žåãžã«ã³ããŠã èèå±€(B)ãç©å±€ãã
æŽã«ãããªã€ãŒå±€(C)ãšããŠãTiã®ãããã«Zrã
ã¿ãŒã²ãããšããŠRFã¹ããã¿ãè¡ãªãç©å±€ãã
ããšã«ããå
éžæééæ§ç©å±€äœãåŸãã
該ç©å±€äœã®æ§æã¯ããªãšãã¬ã³ãã¬ãã¿ã¬ãŒã
ãã€ã«ã é
žåãžã«ã³ããŠã èèå±€(B)ïŒ200â«ïŒ
éâé
åéå±€(A)ïŒ150â«ïŒïŒŒããªã€ãŒå±€(C)ïŒ30
â«ïŒïŒŒé
žåãžã«ã³ããŠã èèå±€(B)ïŒ200â«ïŒã§ã
ãã
ããã§é
žåãžã«ã³ããŠã èèå±€ã¯ããã©ããã«
ãžã«ã³ããŒãïŒéšãã€ãœãããã«ã¢ã«ã³ãŒã«97éš
ãããªã溶液ãããŒã³ãŒã¿ãŒã§å¡åžãã120âïŒ
åéå ç±ããŠèšããã
該ç©å±€äœã®ã¢ã«ãŽã³ã€ãªã³ã«ãããšããã³ã°é
床ã®æž¬å®ã¯ããšããã³ã°ãäžå®ã®æéè¡ã€ãåŸ
ã«ã該ç©å±€äœã«æ®åããŠãããžã«ã³ããŠã ã®éã
ããå
ç·æ³ã«ãããå®éããããšã«ããè¡ã€
ãã
ãšããã³ã°ããåã®ZrKaç·ã®åŒ·åºŠã1.0ãšãã
ã¢ã«ãŽã³ã€ãªã³ãšããã³ã°ãçš®ã
ã®æéè¡ã€ãåŸ
ã®ç©å±€äœã®ZrKaç·ã®çžå¯ŸåŒ·åºŠãå³ç€ºãããã®ã
å³âïŒã§ããã
æŽã«ããªã€ãŒå±€(C)ã®ååšããªãç©å±€äœãåæ§ã®
æ¹æ³ã§äœè£œããã該ç©å±€äœã®ã¢ã«ãŽã³ã€ãªã³ãšã
ãã³ã°ã«ã€ããŠãæ¯èŒäŸïŒãšããŠäœµã瀺ããã
ã®é åã¯æ¯èŒäŸïŒãå®æœäŸ12ãšãé
žåãžã«ã³
ããŠã èèå±€(B)ã®ãšããã³ã°ã瀺ããå®æœäŸ12ã§
ã¯ã®é åã¯ããªã€ãŒå±€(C)ãã®é åã¯éâé
å
éå±€ã瀺ããæ¯èŒäŸïŒã§ã¯ãã®é åã¯éâé
å
éå±€ã瀺ãã
ãããããé
žåãžã«ã³ããŠã èèå±€(B)ãããªã€
ãŒå±€(C)ã®ã¢ã«ãŽã³ã€ãªã³ã«ããå¹³åé床ã¯ããã
ãã11â«ïŒåã2.0â«ïŒåã§ãããããªã€ãŒå±€ãš
ããã³ã°é床ã¯ããå°ããããšããããã
å¯èŠå
ééçãèµ€å€å
åå°çãå£åæéãè¡šâ
ïŒã«ç€ºãã[Table] Example 12, Comparative Example 6 In the method of Example 1, titanium oxide thin film layer (B)
Instead, a zirconium oxide thin film layer (B) is laminated,
Further, as a barrier layer (C), RF sputtering was performed using Zr as a target instead of Ti, and the layer was laminated to obtain a light selectively transmitting laminate. The structure of the laminate is polyethylene terephthalate film\zirconium oxide thin film layer (B) (200Ã
)
\Silver-copper alloy layer (A) (150Ã
) \Barrier layer (C) (30
Ã
)\Zirconium oxide thin film layer (B) (200 Ã
). Here, the zirconium oxide thin film layer was coated with a solution consisting of 3 parts of tetrabutyl zirconate and 97 parts of isopropyl alcohol using a bar coater, and
Heat and set for a minute. The etching rate of the laminate with argon ions was measured by quantifying the amount of zirconium remaining in the laminate using a fluorescent X-ray method after etching for a certain period of time. The intensity of the ZrKa line before etching is set to 1.0,
Figure 1 shows the relative intensity of ZrKa lines in the laminate after argon ion etching for various times. Furthermore, a laminate without the barrier layer (C) was produced in the same manner. Argon ion etching of the laminate is also shown as Comparative Example 6. The area shown in FIG. 3 shows etching of the zirconium oxide thin film layer (B) in both Comparative Example 6 and Example 12. In Example 12, the region indicates the barrier layer (C), and the region indicates the silver-copper alloy layer. In Comparative Example 6, the area indicates a silver-copper alloy layer. From this, it can be seen that the average etching rates of the zirconium oxide thin film layer (B) and the barrier layer (C) by argon ions are 11 Ã
/min and 2.0 Ã
/min, respectively, and the barrier layer etching rate is smaller. Table of visible light transmittance, infrared light reflectance, and deterioration time.
4.
å³âïŒã¯ãšããã³ã°é床ã瀺ãå³ã§ããã Figure 1 is a diagram showing the etching speed.
Claims (1)
åãç©å±€ãããŠãªãéžæå ééæ§èãéææ圢ç©
åºæäžã«èšããç©å±€äœã«ãããŠãåœè©²éžæå éé
æ§èãå°ãªããšãäžå±€ã®ããªã€ãŒå±€(C)ãæããåœ
該ããªã€ãŒå±€(C)ã¯åœè©²é«å±æçåå°é²æ¢å±€(B)ãã
ãå°ããã¢ã«ãŽã³ã€ãªã³ãšããã³ã°é床ã瀺ãã
äžã€éææ圢ç©åºæãåºæºã«ããŠåœè©²éå±å±€(A)ã
ïœçªç®ãšãããšãã«ïœïŒïŒçªç®ã®å±€ã§ããããšã
ç¹åŸŽãšããç©å±€äœã ïŒ åœè©²ããªã€ãŒå±€(C)ãšåœè©²é«å±æçåå°é²æ¢å±€
(B)ãšã®ã¢ã«ãŽã³ã€ãªã³ãšããã³ã°é床ã®æ¯ã0.6
以äžã§ããç¹èš±è«æ±ã®ç¯å²ç¬¬ïŒé èšèŒã®ç©å±€äœã[Scope of Claims] 1. In a laminate in which a selective light transmitting film formed by laminating a combination of a metal thin film layer (A) and a high refractive index antireflection layer (B) is provided on a transparent molded substrate, the light-transmissive film has at least one barrier layer (C), the barrier layer (C) exhibiting a lower argon ion etching rate than the high refractive index antireflection layer (B);
A laminate characterized in that the metal layer (A) is the n+1th layer when the metal layer (A) is the nth layer based on the transparent molded substrate. 2 The barrier layer (C) and the high refractive index antireflection layer
The ratio of argon ion etching rate to (B) is 0.6.
The laminate according to claim 1, which is as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56063400A JPS57193357A (en) | 1981-04-28 | 1981-04-28 | Laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56063400A JPS57193357A (en) | 1981-04-28 | 1981-04-28 | Laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57193357A JPS57193357A (en) | 1982-11-27 |
JPS634507B2 true JPS634507B2 (en) | 1988-01-29 |
Family
ID=13228211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56063400A Granted JPS57193357A (en) | 1981-04-28 | 1981-04-28 | Laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57193357A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4621028A (en) * | 1983-04-01 | 1986-11-04 | Beale Harry A | Glass having controllable infrared transmission |
US6440211B1 (en) * | 1997-09-02 | 2002-08-27 | Ut-Battelle, Llc | Method of depositing buffer layers on biaxially textured metal substrates |
-
1981
- 1981-04-28 JP JP56063400A patent/JPS57193357A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57193357A (en) | 1982-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4413877A (en) | Selectively light-transmitting laminated structure | |
EP0049083B1 (en) | Laminated film | |
EP0007224B1 (en) | Heat wave-reflective or electrically conductive laminated structure | |
US4320169A (en) | Heat wave-reflective or electrically conductive laminated structure | |
US4639069A (en) | Optical laminar structure | |
US20060057399A1 (en) | Infra-red reflecting layered structure | |
GB2031498A (en) | Multi-pane window structure | |
CN1019319B (en) | Durable splashing film of metal alloy oxide | |
CN112194383A (en) | Low-emissivity glass and preparation method thereof | |
JPS6226308B2 (en) | ||
JPS6250294B2 (en) | ||
CN112225469A (en) | Single-silver low-emissivity glass and preparation method thereof | |
JPS634507B2 (en) | ||
JPS635263B2 (en) | ||
JPS6151762B2 (en) | ||
JPS6134384B2 (en) | ||
CN214457645U (en) | Single-silver low-emissivity glass | |
JPH0116671B2 (en) | ||
JPS6226310B2 (en) | ||
JPS6362846B2 (en) | ||
JPS626495B2 (en) | ||
JPS6238432B2 (en) | ||
JPH0764598B2 (en) | Infrared blocking glass | |
JPS626497B2 (en) | ||
KR880000988B1 (en) | Sellectively light transmission laminates structure |