JPS634507B2 - - Google Patents

Info

Publication number
JPS634507B2
JPS634507B2 JP56063400A JP6340081A JPS634507B2 JP S634507 B2 JPS634507 B2 JP S634507B2 JP 56063400 A JP56063400 A JP 56063400A JP 6340081 A JP6340081 A JP 6340081A JP S634507 B2 JPS634507 B2 JP S634507B2
Authority
JP
Japan
Prior art keywords
layer
film
thin film
refractive index
high refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56063400A
Other languages
Japanese (ja)
Other versions
JPS57193357A (en
Inventor
Kazutomi Suzuki
Yoshinori Nose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP56063400A priority Critical patent/JPS57193357A/en
Publication of JPS57193357A publication Critical patent/JPS57193357A/en
Publication of JPS634507B2 publication Critical patent/JPS634507B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は遞択光透過性積局䜓に関する。曎に詳
现には透明基材䞊に、金属局ず高屈折率反射防止
局を積局しお埗られる遞択光透過性積局䜓に関す
る。 遞択光透過性積局䜓は、䟋えば可芖光域の光に
察しお透明であるが、赀倖光に察しおは反射胜を
有しおいるので、透明断熱膜ずしお有甚である。
埓぀お倪陜゚ネルギヌ集熱噚枩氎噚倪陜熱発
電、グリヌンハりス、建築物の窓郚、冷蔵冷凍シ
ペヌケヌスなどに䜿甚され埗る。特に近代建築物
においお、壁面の倧きな割合をしめる窓からの倪
陜゚ネルギヌ利甚及び゚ネルギヌ攟射を防げる透
明断熱窓ずしおの機胜は今埌たすたす重芁性を増
すず思われる。 又、䟋えば野さい、かんき぀類等の蟲業、果実
等の栜培に必芁なグリヌンハりス甚フむルムずし
おその重芁性は倧きい。 この様に、遞択光透過性積局䜓は倪陜゚ネルギ
ヌ利甚の芳点から重芁であり、均質で高性胜な膜
が工業的に安䟡に䞔぀倧量に䟛絊されるこずが圓
該業界から望たれおいた。 かかる遞択光透過性積局䜓における遞択光透過
性膜ずしお、埓来から知られおいるものは、 金、銅、銀、パラゞりム等の金属薄膜、 酞化むンゞりム、酞化スズ、ペり化銅等の化
合物半導䜓膜、および 金、銀、銅、パラゞりム等の導電性金属膜を
ある波長領域にわたり遞択的に透明にしたもの が知られおいる。赀倖光反射胜の高い遞択光透過
性膜ずしお、数千オングストロヌムの膜厚の酞化
むンゞりム膜又は酞化錫膜、および金属膜ず透明
導電䜓膜の積局膜等が知られおいる。しかしなが
ら、すぐれた性胜の遞択光透過性膜が工業的に安
䟡に補造されるに至぀おいないのが珟状である。 即ち、䞊蚘の金属薄膜は、金属が広い波長領
域にわたり反射胜又は吞収胜が高いため、可芖光
透過率の高いものが埗られ難い。可芖光透過率を
高めるず、赀倖光反射胜が著しく䜎䞋する。かく
のごずく赀倖光反射胜を高めるために、金属薄膜
の膜厚を高めるず、可芖光透過率が著しく䜎䞋す
るので、䞡者の性質においおすぐれた遞択光透過
性膜が埗られない。 䞊蚘の化合物半導䜓薄膜は、䟋えば真空蒞着
法、スパツタリング法等の真空䞭における薄膜圢
成法で圢成されるが、真空䞭における化合物の蒞
発による方法では、蒞発化合物の分解にずもなう
問題、被膜特性を均䞀に制埡するために膜圢成速
床が実際䞊遅いこず、蒞発源の倧きさが制限され
るため、倧面積基板ぞの適甚が制玄される問題
等、工業生産性に欠け、安䟡な補品ずなり埗な
い。酞化むンゞりム等の半導䜓で、すぐれた遞択
光透過性膜を埗るために、数千オングストロヌム
皋床の膜厚の酞化むンゞりム等の半導䜓被膜が提
案されおいるが、膜の生産速床が著しく遅くなる
ばかりでなく、貎重なむンゞりム等の資源を倚く
消費するこずになり、その結果、膜の補造コスト
が著しく高くなる。曎に又この膜では赀倖光反射
胜の充分に高いものが埗られおいない。 䞊蚘の遞択光透過性膜は金属薄膜及び透明高
屈折率薄膜により構成される積局䜓であり、䟋え
ば金属薄膜局ず透明高屈折率薄膜局局ずで構
成される遞択光透過性膜の䟋ずしおは真空蒞着、
反応性蒞着又はスパツタリングで圢成させた
Bi2O3AuBi2O3、ZnSAgZnS又はTiO2
AgTiO2等のサンドむツチ状構造の積局膜が提
案されおいる。 尚、局の金属薄膜ず局の透明高屈折率薄膜
ずで構成される積局膜も䞍充分ながら遞択光透過
性膜ずなりうる。䞊蚘した劂く金属局ずしお銀を
甚いるず、銀自䜓がも぀光孊的特性により、可芖
光領域における透明性及び赀倖光に察する反射特
性が特に優れおいるこず、たた導電性においおも
奜たしい特性を有しおいるこず等の点から積局膜
ずしお特に優れおいる。 しかしながら、透明高屈折率薄膜局によりおお
われた銀薄膜局からなる積局膜は、熱・光・ガス
等により性胜の劣化がおこり、環境安定性におい
お問題があ぀た。この劣化の原因の倚くは、環境
因子による銀の衚面拡散による為、この改善は非
垞に重芁な問題ずな぀おいた。 本発明者らは、金属薄膜局ず高屈折率反射防止
局ずが組合せで積局されおなる遞択光透過性膜の
環境安定性を改善すべく鋭意研究した結果、アル
ゎンむオンによる゚ツチング速床が圓該高屈折率
反射防止局より小さいずころのバリダヌ局を圓該
金属局に接しお蚭けるこずにより耐久性を倧巟に
向䞊させるこずが出来るこずを芋出し、本発明に
到達したものである。 即ち本発明は金属薄膜局(A)及び高屈折率反射防
止局(B)が組合せ積局されおなる遞択光透過性膜を
透明成圢物基材䞊に蚭けた積局䜓においお、圓該
遞択光透過性膜が少なくずも䞀局のバリダヌ局(C)
を有し、圓該バリダヌ局(C)は圓該高屈折率反射防
止局(B)よりも小さいアルゎンむオン゚ツチング速
床を瀺し、䞔぀透明成圢物基材を基準にしお圓該
金属局(A)を番目ずしたずきに番目の局で
あるこずを特城ずする積局䜓である。 本発明においお金属薄膜局(A)に甚いられる金局
ずしおは、可芖光領域の吞収損倱の少ない金属
合金も含むであればいかなるものでもよい
が、、䟋えば金、銀、銅、アルミニりム、パラゞ
りム又はこれらの合金が奜たしく甚いられる。合
金ずしおは䟋えば銅を0.1〜30重量、奜たしく
は0.3〜15重量銀に含有させたものが挙げられ、
銅の添加により銀薄膜の耐光性を著しく改良する
こずが出来る。 たた金を〜30重量銀に含有せしめた合金も
銀の耐熱性を改善したものずしお奜たしい。かく
しお最も奜たしい合金は銀−銅−金系合金であ
る。 䞊蚘の金属薄膜局(A)の膜厚は50〜300Å奜たし
くは70〜200Åであり、薄すぎるず赀倖線反射率
及び耐熱性が䜎くなりすぎ、厚すぎるず可芖光透
過率が䜎くなりすぎる。 金属薄膜局(A)の圢成方法は埓来公知のフむゞカ
ル・ペヌパヌ・デポゞシペン法が適甚できる。 高屈折率反射防止局(B)は䟋えばチタン、むンゞ
りム、亜鉛、錫、むツトリりム、゚ルビりムゞル
コニりム、セリりム、タンタル及びハフニりムな
どから遞ばれた䞀皮以䞊の金属の酞化物の局であ
る。これらは可芖光に透明でか぀可芖光における
屈折率が高いものであり、屈折率が1.6以䞊特に
1.8以䞊が奜たしい。 高屈折率反射防止局(B)の膜厚は50〜500Å奜た
しくは150〜400Åである。この範囲よりはずれる
ず可芖光の透過率が䜎䞋する。 高屈折率反射防止局(B)は真空蒞着、むオンプレ
ヌテむング、スパツタリング、湿匏塗工などの方
法によ぀お蚭けるこずができる。湿匏塗工法の堎
合、䟋えば有機チタン化合物や有機ゞルコニりム
化合物から圢成され、有機基を0.1〜重量含
有する酞化チタンや酞化ゞルコニりムの膜も反射
防止膜ずしお甚いるこずもでき、生産性が高い利
点を有しおいる。 たた、バリダヌ局(C)は、䟋えばチタン、むンゞ
りム、亜鉛、錫、むツトリりム、゚ルビりム、ゞ
ルコニりム、セリりム、タンタル及びハフニりム
などから遞ばれる皮以䞊の金属の酞化物又は圓
該金属酞化物ず圓該金属ずの混合物からなる局で
あり、アルゎンむオン゚ツチング速床が圓該高屈
折率反射防止局(B)より小さいものである。バリダ
ヌ局(C)ず高屈折率反射防止局(B)ずのアルゎンむオ
ン゚ツチング速床の比は1.0未満でなければなら
ず、通垞0.6以䞋、曎に奜たしくは0.4以䞋であ
る。 かかるバリダヌ局(C)を構成するアルゎンむオン
゚ツチング速床の小さい膜は、その膜の酞化床を
調敎するこずにより圢成される。䟋えばスパツタ
法による堎合にはタヌゲツトの組成、膜圢成時の
雰囲気ガスの組成等を調敎するこずにより埗るこ
ずができる。埌述の実斜䟋に瀺すように、䟋えば
Ti、TiOタヌゲツトを甚いた堎合にはAr95
O2の雰囲気ガスでも良奜な膜が埗られ
るが、TiO2タヌゲツトではAr100でも良奜
な膜は埗られない。又TiOタヌゲツトにおいおも
Ar60O240の条件䞋でぱツチング速
床が倧きくなり、良奜な膜は埗られない。すなわ
ち膜の酞化床が䜎くなるように膜圢成条件を遞定
するこずにより、良奜なバリダヌ局(C)を埗るこず
ができる。 かかるバリダヌ局(C)の厚さは100Å、奜たしく
は80Å以䞋であり厚すぎるず可芖光透過率が䜎䞋
する。 本発明においおはバリダヌ局(C)が曎に金属薄膜
å±€(A)の䞋偎にも接しお存圚するこずが出来、この
堎合、金属薄膜局(A)はバリダヌ局(C)でサンドむツ
チ状に挟たれるこずになる。かかる構成の堎合、
バリダヌ局(C)の厚さは䞊䞋合蚈で140Å以䞋であ
るこずが望たしい。 本発明で甚いる透明成圢物基材ずしおは、䟋え
ば透明なシヌト状基材が奜適であり、かかる透明
なシヌト状基材ずしおは䟋えばポリ゚チレンテレ
フタレヌト暹脂、ポリ゚チレンナフタレヌト暹
脂、ポリカヌボネヌト暹脂、アクリル暹脂、
ABS暹脂、ポリスチレン暹脂、ポリアセタヌル
暹脂、ポリ゚チレン暹脂、ポリプロピレン暹脂、
ポリアミド暹脂、フツ玠暹脂などの熱可塑性暹
脂、曎には䟋えば゚ポキシ暹脂、シアリルフタレ
ヌト暹脂、プノヌル系暹脂、尿玠暹脂などの熱
硬化性暹脂、曎にはポリビニルアルコヌル、ポリ
アクリルニトリル、ポリりレタン、芳銙族、ポリ
アミド、ポリむミド暹脂などの溶剀可溶型暹脂な
どのシヌト状成型物があげられる。これらは単独
重合物、又は共重合物ずしお単独又は皮以䞊の
混合物ずしお甚いられる。 無機成型物ずしおは、゜ヌダ・ガラス、ホり硅
酞ガラス、硅酞ガラスなどのガラス質、アルミ
ナ、マグネシア、ゞルコニア、シリカ系などの金
属酞化物、ガリりム−ヒ玠、むンゞりム−リン等
の化合物半導䜓、シリコン、ゲルマニりム等の半
導䜓等の成型物があげられる。 なお、シヌト状基材の厚みは特に限定されず、
いわゆる板状のものからフむルム状のものたでの
広矩な内容を衚わすものである。 本発明においおアルゎンむオン゚ツチング速床
は特に蚘さないかぎり次のようにしお枬定した。 (1) 装眮 日本電子(æ ª)補ESCA装眮JESCA−
 バリダン(æ ª)補むオンガン931−2043 (2) 枬定方法 基板䞊に高屈折率反射防止局B1、金属局
(A)、バリダヌ局(C)及び高屈折率反射防止局
B2を蚘茉の順序に蚭けた積局䜓に぀いお説
明する。基板を枚甚意し、その䞭の枚の基
板(1)に぀いおは䞊蚘すべおの局を圢成せしめ
る。䞊蚘基板(1)䞊に局B1、(C)及びB2を
圢成せしめる各工皋においお、それぞれ残り
枚の基板(2)、(3)及び(4)を䜵眮しお基板(1)䞊に局
B1、(C)及びB2それぞれが圢成されるの
ず党く同䞀条件䞋で基板(2)䞊に局B1′を、
基板(3)䞊に局(C)′を、曎に基板(4)䞊に局
B2′を圢成せしめる。かくしお䞋蚘皮 (i) 基板(1)局B1局(A)局(C)局B2 (ii) 基板(2)局B1′ (iii) 基板(3)局(C)′ (iv) 基板(4)局B2′ のサンプルを䜜成する。サンプル(ii)、(iii)及び(iv)
における基板䞊の各局の厚さを求め、次いでア
ルゎンむオン゚ツチングしお各局が゚ツチング
される時間を求める。基板(1)䞊の局(C)局
B2の゚ツチング時間は、基板(3)及び基板(4)
䞊の局各々に぀いお求めた゚ツチング時間の和
に盞圓する。゚ツチング速床ずは、局厚さ
Åを゚ツチング時間分でわ぀た倀
Å分である。 (3) ゚ツチング条件ずESCA枬定条件 ゚ツチング条件アルゎン×10-4Torr背圧
×10-7Torr アルゎン入射角45゜、゚ミツシペン電流25
、詊料電流15ÎŒA、ビヌム゚ネルギヌ
2.75KV ESCA枬定条件線 タヌゲツトMg ゚ミツシペン電流50 印加電圧9KV 光電子分析 怜出噚電圧3KV ステツプりむドス0.30V ステツプタむム0.1秒 積算回数80回 真空床 ×10-8Torr 本発明においお遞択光透過性膜の環境安定性を
改良するのに高屈折率反射防止局に比しお、アル
ゎンむオン゚ツチング速床の小さい局バリダヌ
局を金属局に接しお蚭けるこずがいかなる理由
で有効であるのかに぀いおはさだかではないが、
おそらくはアルゎンむオン゚ツチング速床が局の
ちみ぀性、極性等の構造因子を反映した特性であ
るずいうこずに関係があるず考えられる。 以䞋実斜䟋を甚いお本発明をより具䜓的に説明
する。 実斜䟋〜、比范䟋〜 光透過率86、膜厚50Όの二軞延䌞ポリ゚チ
レンテレフタレヌトフむルム䞊に厚さ200Åの酞
化チタン薄膜局(B)、厚さ150Åの銀及び銅の合金
よりなる薄膜局(A)銀92重量、銅重量、
バリダヌ局(C)厚さ200Åの酞化チタン薄膜局(B)を
順次積局し、遞択光透過性積局䜓を埗た。 酞化チタン薄膜局はいずれもテトラブチルチタ
ネヌトの量䜓郚、む゜プロピルアルコヌル97
郚からなる溶液をバヌコヌタヌで塗垃し120℃
分間加熱しお蚭けた。 銀−銅合金局は、銀−銅合金銀92重量、銅
重量をタヌゲツトずする盎流スパツタリン
グで蚭けた。 バリダヌ局の補造方法、バリダヌ局の厚さ、遞
択光透過性積局䜓の可芖光透過率及び赀倖光
10Ό反射率に぀いおは衚に瀺した。 衚には本発明の方法による遞択光透過性積局
䜓のバリダヌ局゚ツチング速床、バリダヌ局゚ツ
チング速床ず高屈折率反射防止局ずの比を瀺し、
たた、該遞択光透過性積局䜓を90゜に蚭定した熱
颚也燥機にいれお熱劣化促進テストを行い、赀倖
光10Ό反射率が初期倀の85になるたでの時
間を枬定し、これを劣化時間ず定矩し瀺した。た
た比范䟋を䜵せ瀺した。
The present invention relates to a selectively transparent laminate. More specifically, the present invention relates to a selective light transmitting laminate obtained by laminating a metal layer and a high refractive index antireflection layer on a transparent substrate. The selective light transmitting laminate is transparent to light in the visible light range, for example, but has the ability to reflect infrared light, so it is useful as a transparent heat insulating film.
Therefore, it can be used in solar energy collectors (water heaters), solar thermal power generation, greenhouses, building windows, refrigerated and frozen cases, etc. Particularly in modern buildings, the function of transparent insulating windows that can prevent solar energy utilization and energy radiation from windows that occupy a large proportion of the wall surface is expected to become increasingly important in the future. Furthermore, it is of great importance as a film for greenhouses, which is necessary for the cultivation of wild vegetables, citrus fruits, etc., and the cultivation of fruits, etc. As described above, selective light transmitting laminates are important from the viewpoint of solar energy utilization, and the industry has desired that homogeneous, high-performance films can be supplied industrially at low cost and in large quantities. Conventionally known selective light transmitting films in such selective light transmitting laminates include metal thin films such as gold, copper, silver, and palladium, and compound semiconductor films such as indium oxide, tin oxide, and copper iodide. It is known that conductive metal films such as gold, silver, copper, and palladium are selectively transparent over a certain wavelength range. As a selective light transmitting film with high infrared light reflecting ability, an indium oxide film or a tin oxide film with a thickness of several thousand angstroms, and a laminated film of a metal film and a transparent conductor film are known. However, at present, selective light transmitting films with excellent performance have not yet been produced industrially and at low cost. That is, it is difficult to obtain the above-mentioned metal thin film with high visible light transmittance because metal has high reflective ability or absorbing ability over a wide wavelength range. When visible light transmittance is increased, infrared light reflection ability is significantly reduced. If the thickness of the metal thin film is increased in order to improve the infrared reflective ability, the visible light transmittance will be significantly lowered, making it impossible to obtain a selective light transmitting film that is excellent in both properties. The above compound semiconductor thin film is formed by a thin film forming method in vacuum such as vacuum evaporation method or sputtering method. The film formation rate is actually slow due to the control, and the size of the evaporation source is limited, which limits its application to large-area substrates.It lacks industrial productivity and cannot be a cheap product. . In order to obtain films with excellent selective light transmission using semiconductors such as indium oxide, a film of semiconductors such as indium oxide with a film thickness of several thousand angstroms has been proposed, but the production speed of the film is significantly slowed down. Therefore, a large amount of valuable resources such as indium are consumed, and as a result, the manufacturing cost of the membrane increases significantly. Furthermore, this film does not have sufficiently high infrared light reflectivity. The selective light transmitting film described above is a laminate composed of a metal thin film and a transparent high refractive index thin film. For example, a selective light transmitting film composed of one metal thin film layer and two transparent high refractive index thin film layers. Examples include vacuum evaporation,
formed by reactive vapor deposition or sputtering
Bi 2 O 3 /Au/Bi 2 O 3 , ZnS/Ag/ZnS or TiO 2 /
Laminated films with a sandwich structure such as Ag/TiO 2 have been proposed. Incidentally, a laminated film composed of one layer of metal thin film and one layer of transparent high refractive index thin film can also serve as a selective light transmitting film, although it is insufficient. As mentioned above, when silver is used as the metal layer, due to the optical properties of silver itself, it has particularly excellent transparency in the visible light region and reflection properties for infrared light, and also has favorable properties in terms of conductivity. It is particularly excellent as a laminated film because of the fact that it is However, the laminated film consisting of a silver thin film layer covered with a transparent high refractive index thin film layer has a problem in environmental stability because its performance deteriorates due to heat, light, gas, etc. Since most of the causes of this deterioration are surface diffusion of silver due to environmental factors, improvement has become a very important issue. The present inventors have conducted intensive research to improve the environmental stability of a selectively transparent film formed by laminating a combination of a metal thin film layer and a high refractive index antireflection layer. The present invention was achieved based on the discovery that durability can be greatly improved by providing a barrier layer with a smaller refractive index than the antireflection layer in contact with the metal layer. That is, the present invention provides a laminate in which a selective light transmitting film formed by laminating a combination of a metal thin film layer (A) and a high refractive index antireflection layer (B) is provided on a transparent molded substrate. Barrier layer with at least one membrane (C)
, the barrier layer (C) exhibits a lower argon ion etching rate than the high refractive index antireflection layer (B), and the metal layer (A) is nth This is a laminate characterized in that it is the n+1th layer when . The gold layer used for the metal thin film layer (A) in the present invention may be any metal (including alloys) with low absorption loss in the visible light region, such as gold, silver, copper, aluminum, Palladium or an alloy thereof is preferably used. Examples of alloys include those containing 0.1 to 30% by weight of copper, preferably 0.3 to 15% by weight of silver;
The addition of copper can significantly improve the light resistance of silver thin films. Also, an alloy containing 3 to 30% by weight of gold in silver is also preferred as it improves the heat resistance of silver. Thus, the most preferred alloys are silver-copper-gold based alloys. The thickness of the metal thin film layer (A) is 50 to 300 Å, preferably 70 to 200 Å; if it is too thin, the infrared reflectance and heat resistance will be too low, and if it is too thick, the visible light transmittance will be too low. As a method for forming the metal thin film layer (A), a conventionally known physical paper deposition method can be applied. The high refractive index antireflection layer (B) is a layer of oxide of one or more metals selected from, for example, titanium, indium, zinc, tin, yttrium, erbium zirconium, cerium, tantalum, and hafnium. These are transparent to visible light and have a high refractive index in visible light, especially those with a refractive index of 1.6 or more.
1.8 or more is preferable. The film thickness of the high refractive index antireflection layer (B) is 50 to 500 Å, preferably 150 to 400 Å. Outside this range, visible light transmittance decreases. The high refractive index antireflection layer (B) can be provided by methods such as vacuum deposition, ion plating, sputtering, and wet coating. In the case of the wet coating method, for example, titanium oxide or zirconium oxide films formed from organic titanium compounds or organic zirconium compounds and containing 0.1 to 5% by weight of organic groups can also be used as antireflection films, and have the advantage of high productivity. have. In addition, the barrier layer (C) is made of an oxide of one or more metals selected from titanium, indium, zinc, tin, yttrium, erbium, zirconium, cerium, tantalum, hafnium, etc., or a combination of the metal oxide and the metal. The argon ion etching rate is lower than that of the high refractive index antireflection layer (B). The ratio of argon ion etching rates between the barrier layer (C) and the high refractive index antireflection layer (B) must be less than 1.0, usually less than 0.6, more preferably less than 0.4. A film having a low argon ion etching rate constituting the barrier layer (C) can be formed by adjusting the degree of oxidation of the film. For example, when using the sputtering method, it can be obtained by adjusting the composition of the target, the composition of the atmospheric gas during film formation, etc. As shown in the examples below, for example
Ar (95%) when using Ti, TiO targets
A good film can be obtained even with an atmosphere gas of +O 2 (5%), but a good film cannot be obtained with a TiO 2 target even with Ar (100%). Also in TiO target
Under the conditions of Ar (60%) + O 2 (40%), the etching rate increases and a good film cannot be obtained. That is, by selecting the film forming conditions so that the degree of oxidation of the film is low, a good barrier layer (C) can be obtained. The thickness of the barrier layer (C) is 100 Å, preferably 80 Å or less; if it is too thick, the visible light transmittance will decrease. In the present invention, the barrier layer (C) can also be present in contact with the lower side of the metal thin film layer (A), in which case the metal thin film layer (A) is sandwiched between the barrier layer (C) in a sandwich pattern. It will happen. In such a configuration,
It is desirable that the total thickness of the barrier layer (C) is 140 Å or less in total. As the transparent molded base material used in the present invention, for example, a transparent sheet-like base material is suitable, and such transparent sheet-like base materials include, for example, polyethylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, acrylic resin,
ABS resin, polystyrene resin, polyacetal resin, polyethylene resin, polypropylene resin,
Thermoplastic resins such as polyamide resins and fluororesins, thermosetting resins such as epoxy resins, sialyl phthalate resins, phenolic resins, and urea resins, as well as polyvinyl alcohol, polyacrylonitrile, polyurethane, aromatics, and polyamides. Examples include sheet-shaped molded products such as solvent-soluble resins such as polyimide resins. These may be used alone or as a mixture of two or more as homopolymers or copolymers. Inorganic molded products include glass such as soda glass, borosilicate glass, and silicate glass, metal oxides such as alumina, magnesia, zirconia, and silica, compound semiconductors such as gallium-arsenic, indium-phosphorous, and silicon. , molded products of semiconductors such as germanium. Note that the thickness of the sheet-like base material is not particularly limited,
It represents a wide range of contents, from so-called plate-like objects to film-like objects. In the present invention, the argon ion etching rate was measured as follows unless otherwise specified. (1) Equipment ESCA equipment manufactured by JEOL Ltd. (JESCA-
4) (Ion gun 931-2043 manufactured by Balyan Co., Ltd.) (2) Measurement method High refractive index anti-reflection layer (B 1 ) and metal layer on the substrate
A laminate in which (A), a barrier layer (C), and a high refractive index antireflection layer (B 2 ) are provided in the stated order will be described. Four substrates are prepared, and all of the above layers are formed on one substrate (1). In each step of forming layers (B 1 ), (C) and (B 2 ) on the substrate (1), the remaining 3
Under exactly the same conditions as when the layers (B 1 ), (C) and (B 2 ) are respectively formed on the substrate (1) by placing the substrates (2), (3) and (4) side by side. Layer (B 1 )′ on substrate (2),
A layer (C)' is formed on the substrate (3), and a layer (B 2 )' is further formed on the substrate (4). Thus, the following four types (i) Substrate (1)/layer (B 1 )/layer (A)/layer (C)/layer (B 2 ) (ii) Substrate (2)/layer (B 1 )′ (iii) Substrate (3)/layer (C)′ (iv) Create a sample of substrate (4)/layer (B 2 )′. Samples (ii), (iii) and (iv)
Determine the thickness of each layer on the substrate, then perform argon ion etching and determine the time it takes for each layer to be etched. The etching time for layer (C)/layer (B 2 ) on substrate (1) is the same as that for substrate (3) and substrate (4).
This corresponds to the sum of the etching times determined for each of the upper layers. The etching rate is the layer thickness (Å) divided by the etching time (minutes) (Å/min). (3) Etching conditions and ESCA measurement conditions Etching conditions: Argon 2×10 -4 Torr (back pressure 5×10 -7 Torr) Argon incident angle 45°, emission current 25
mA, sample current 15ÎŒA, beam energy
2.75KV ESCA measurement conditions: X-ray target Mg Emission current 50mA Applied voltage 9KV Photoelectron analysis Detector voltage 3KV Step width 0.30V Step time 0.1 seconds Integration number 80 times Vacuum degree 5×10 -8 Torr In the present invention, selective light transmitting membrane It is unclear why it is effective to provide a layer (barrier layer) with a lower argon ion etching rate in contact with the metal layer than a high refractive index antireflection layer to improve environmental stability. No, but
This is probably related to the fact that the argon ion etching rate is a characteristic that reflects structural factors such as layer honeyness and polarity. The present invention will be described in more detail below using Examples. Examples 1 to 7, Comparative Examples 1 to 3 Titanium oxide thin film layer (B) with a thickness of 200 Å on a biaxially stretched polyethylene terephthalate film with a light transmittance of 86% and a thickness of 50 ÎŒm, and an alloy of silver and copper with a thickness of 150 Å A thin film layer (A) consisting of (92% by weight silver, 8% by weight copper),
A barrier layer (C) and a titanium oxide thin film layer (B) having a thickness of 200 Å were sequentially laminated to obtain a selectively transparent laminate. The titanium oxide thin film layer is made of 3 parts of tetramer of tetrabutyl titanate and 97% of isopropyl alcohol.
Apply a solution consisting of
Heat and set for a minute. The silver-copper alloy layer was formed by direct current sputtering targeting a silver-copper alloy (92% by weight silver, 8% by weight copper). Table 1 shows the method for manufacturing the barrier layer, the thickness of the barrier layer, the visible light transmittance and the infrared light (10Ό) reflectance of the selective light transmitting laminate. Table 2 shows the barrier layer etching rate and the ratio of the barrier layer etching rate to the high refractive index antireflection layer of the selectively transparent laminate according to the method of the present invention,
In addition, a thermal deterioration acceleration test was performed by placing the selective light transmitting laminate in a hot air dryer set at 90°, and the time required for the infrared light (10 Ό) reflectance to reach 85% of the initial value was measured. This is defined as the deterioration time. Comparative examples are also shown.

【衚】【table】

【衚】 衚より本発明の効果は明らかである。 実斜䟋〜11、比范䟋、 実斜䟋ず同様の方法で、ただ銀及び銅の合金
よりなる薄膜局(A)の䞡偎にバリダヌ局(C)を蚭けお
特性を評䟡した。結果を衚−に瀺す。アンダヌ
バリダヌずトツプバリダヌは同じ方法で䜜補し
た。
[Table] From Table 2, the effects of the present invention are clear. Examples 8 to 11, Comparative Examples 4 and 5 In the same manner as in Example 1, barrier layers (C) were provided on both sides of the thin film layer (A) made of an alloy of silver and copper, and the characteristics were evaluated. The results are shown in Table-3. The under barrier and top barrier were fabricated using the same method.

【衚】 実斜䟋12、比范䟋 実斜䟋の方法においお、酞化チタン薄膜局(B)
のかわりに酞化ゞルコニりム薄膜局(B)を積局し、
曎に、バリダヌ局(C)ずしお、TiのかわりにZrを
タヌゲツトずしおRFスパツタを行ない積局する
こずにより光遞択透過性積局䜓を埗た。 該積局䜓の構成はポリ゚チレンテレフタレヌト
フむルム酞化ゞルコニりム薄膜局(B)200Å
銀−銅合金局(A)150Åバリダヌ局(C)30
Å酞化ゞルコニりム薄膜局(B)200Åであ
る。 ここで酞化ゞルコニりム薄膜局はテトラブチル
ゞルコネヌト郚、む゜プロピルアルコヌル97郚
からなる溶液をバヌコヌタヌで塗垃し、120℃
分間加熱しお蚭けた。 該積局䜓のアルゎンむオンによる゚ツチング速
床の枬定は、゚ツチングを䞀定の時間行぀た埌
に、該積局䜓に残存しおいるゞルコニりムの量を
けい光線法により、定量するこずにより行぀
た。 ゚ツチングする前のZrKa線の匷床を1.0ずし、
アルゎンむオン゚ツチングを皮々の時間行぀た埌
の積局䜓のZrKa線の盞察匷床を図瀺したものが
図−である。 曎にバリダヌ局(C)の存圚しない積局䜓を同様の
方法で䜜補した。該積局䜓のアルゎンむオン゚ツ
チングに぀いおも比范䟋ずしお䜵せ瀺した。 の領域は比范䟋、実斜䟋12ずも酞化ゞルコ
ニりム薄膜局(B)の゚ツチングを瀺す。実斜䟋12で
はの領域はバリダヌ局(C)、の領域は銀−銅合
金局を瀺す。比范䟋では、の領域は銀−銅合
金局を瀺す。 これより、酞化ゞルコニりム薄膜局(B)、バリダ
ヌ局(C)のアルゎンむオンによる平均速床は、それ
ぞれ11Å分、2.0Å分であり、バリダヌ局゚
ツチング速床はより小さいこずがわかる。 可芖光透過率、赀倖光反射率、劣化時間を衚−
に瀺す。
[Table] Example 12, Comparative Example 6 In the method of Example 1, titanium oxide thin film layer (B)
Instead, a zirconium oxide thin film layer (B) is laminated,
Further, as a barrier layer (C), RF sputtering was performed using Zr as a target instead of Ti, and the layer was laminated to obtain a light selectively transmitting laminate. The structure of the laminate is polyethylene terephthalate film\zirconium oxide thin film layer (B) (200Å)
\Silver-copper alloy layer (A) (150Å) \Barrier layer (C) (30
Å)\Zirconium oxide thin film layer (B) (200 Å). Here, the zirconium oxide thin film layer was coated with a solution consisting of 3 parts of tetrabutyl zirconate and 97 parts of isopropyl alcohol using a bar coater, and
Heat and set for a minute. The etching rate of the laminate with argon ions was measured by quantifying the amount of zirconium remaining in the laminate using a fluorescent X-ray method after etching for a certain period of time. The intensity of the ZrKa line before etching is set to 1.0,
Figure 1 shows the relative intensity of ZrKa lines in the laminate after argon ion etching for various times. Furthermore, a laminate without the barrier layer (C) was produced in the same manner. Argon ion etching of the laminate is also shown as Comparative Example 6. The area shown in FIG. 3 shows etching of the zirconium oxide thin film layer (B) in both Comparative Example 6 and Example 12. In Example 12, the region indicates the barrier layer (C), and the region indicates the silver-copper alloy layer. In Comparative Example 6, the area indicates a silver-copper alloy layer. From this, it can be seen that the average etching rates of the zirconium oxide thin film layer (B) and the barrier layer (C) by argon ions are 11 Å/min and 2.0 Å/min, respectively, and the barrier layer etching rate is smaller. Table of visible light transmittance, infrared light reflectance, and deterioration time.
4.

【衚】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図−ぱツチング速床を瀺す図である。 Figure 1 is a diagram showing the etching speed.

Claims (1)

【特蚱請求の範囲】  金属薄膜局(A)及び高屈折率反射防止局(B)が組
合せ積局されおなる遞択光透過性膜を透明成圢物
基材䞊に蚭けた積局䜓においお、圓該遞択光透過
性膜が少なくずも䞀局のバリダヌ局(C)を有し、圓
該バリダヌ局(C)は圓該高屈折率反射防止局(B)より
も小さいアルゎンむオン゚ツチング速床を瀺し、
䞔぀透明成圢物基材を基準にしお圓該金属局(A)を
番目ずしたずきに番目の局であるこずを
特城ずする積局䜓。  圓該バリダヌ局(C)ず圓該高屈折率反射防止局
(B)ずのアルゎンむオン゚ツチング速床の比が0.6
以䞋である特蚱請求の範囲第項蚘茉の積局䜓。
[Scope of Claims] 1. In a laminate in which a selective light transmitting film formed by laminating a combination of a metal thin film layer (A) and a high refractive index antireflection layer (B) is provided on a transparent molded substrate, the light-transmissive film has at least one barrier layer (C), the barrier layer (C) exhibiting a lower argon ion etching rate than the high refractive index antireflection layer (B);
A laminate characterized in that the metal layer (A) is the n+1th layer when the metal layer (A) is the nth layer based on the transparent molded substrate. 2 The barrier layer (C) and the high refractive index antireflection layer
The ratio of argon ion etching rate to (B) is 0.6.
The laminate according to claim 1, which is as follows.
JP56063400A 1981-04-28 1981-04-28 Laminate Granted JPS57193357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56063400A JPS57193357A (en) 1981-04-28 1981-04-28 Laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56063400A JPS57193357A (en) 1981-04-28 1981-04-28 Laminate

Publications (2)

Publication Number Publication Date
JPS57193357A JPS57193357A (en) 1982-11-27
JPS634507B2 true JPS634507B2 (en) 1988-01-29

Family

ID=13228211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56063400A Granted JPS57193357A (en) 1981-04-28 1981-04-28 Laminate

Country Status (1)

Country Link
JP (1) JPS57193357A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621028A (en) * 1983-04-01 1986-11-04 Beale Harry A Glass having controllable infrared transmission
US6440211B1 (en) * 1997-09-02 2002-08-27 Ut-Battelle, Llc Method of depositing buffer layers on biaxially textured metal substrates

Also Published As

Publication number Publication date
JPS57193357A (en) 1982-11-27

Similar Documents

Publication Publication Date Title
US4413877A (en) Selectively light-transmitting laminated structure
EP0049083B1 (en) Laminated film
EP0007224B1 (en) Heat wave-reflective or electrically conductive laminated structure
US4320169A (en) Heat wave-reflective or electrically conductive laminated structure
US4639069A (en) Optical laminar structure
US20060057399A1 (en) Infra-red reflecting layered structure
GB2031498A (en) Multi-pane window structure
CN1019319B (en) Durable splashing film of metal alloy oxide
CN112194383A (en) Low-emissivity glass and preparation method thereof
JPS6226308B2 (en)
JPS6250294B2 (en)
CN112225469A (en) Single-silver low-emissivity glass and preparation method thereof
JPS634507B2 (en)
JPS635263B2 (en)
JPS6151762B2 (en)
JPS6134384B2 (en)
CN214457645U (en) Single-silver low-emissivity glass
JPH0116671B2 (en)
JPS6226310B2 (en)
JPS6362846B2 (en)
JPS626495B2 (en)
JPS6238432B2 (en)
JPH0764598B2 (en) Infrared blocking glass
JPS626497B2 (en)
KR880000988B1 (en) Sellectively light transmission laminates structure