JPS634498B2 - - Google Patents

Info

Publication number
JPS634498B2
JPS634498B2 JP2022981A JP2022981A JPS634498B2 JP S634498 B2 JPS634498 B2 JP S634498B2 JP 2022981 A JP2022981 A JP 2022981A JP 2022981 A JP2022981 A JP 2022981A JP S634498 B2 JPS634498 B2 JP S634498B2
Authority
JP
Japan
Prior art keywords
temperature
layer
cup
sheet
surface layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2022981A
Other languages
Japanese (ja)
Other versions
JPS57135110A (en
Inventor
Kyoshi Kimura
Jinichi Yazaki
Sadao Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2022981A priority Critical patent/JPS57135110A/en
Publication of JPS57135110A publication Critical patent/JPS57135110A/en
Publication of JPS634498B2 publication Critical patent/JPS634498B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はカツプ状(広口状)多層プラスチツク
容器の製造方法に関し、より詳細には、ガスバリ
ヤー性、耐層間剥離性、外観特性及び肉厚の均一
性に優れたカツプ状多層プラスチツク容器の製造
方法に関し、更に前記多層プラスチツク容器を良
好な成形作業性をもつて製造する方法に関する。 従来、オレフイン系樹脂を両表面層、エチレン
ビニルアルコール共重合体のような酸素バリヤー
性樹脂を中間層とし、必要により両者の間に接着
剤樹脂層を介在させた多層プラスチツク容器は、
優れた酸素バリヤー性と耐湿性とを備えており、
内容物の保存性に優れた容器として周知のもので
ある。 これらの多層プラスチツク容器の内、カツプ状
(広口状)容器は、加熱された多層シートを真空
成形、プラグアシスト真空成形、プラグアシスト
圧空成形、プラグアシスト真空圧空成形、対型成
形、すべり成形、風圧成形、圧空成形等の手段で
熱成形することにより簡便に調製でき、しかもこ
のカツプ状容器は容器本体に継目がなく、しかも
フランジ部において蓋部材とヒートシール可能な
ことから、種々の食品包装の分野に広く使用され
るに至つている。 しかしながら、カツプ状多層プラスチツク容器
の製造においては、単層のプラスチツクから成る
カツプ状容器の製造の場合には認められない幾つ
かの問題がある。即ち、成形サイクルを短縮し得
るような比較的低温での熱成形では、カツプの底
の角部やフランジの付け根部分等で酸素バリヤー
性樹脂層の破断やクラツクが発生したり、層間の
界面での剥離が生じ易く、これによりガスバリヤ
ー性の低下、外観特性の低下及び落下衝撃強度の
低下等が生じるようになり、一方このようなトラ
ブルを避け得る比較的高温の成形では、両表面層
の垂れによる偏肉、縦筋等が発生し、成形サイク
ルも長くなるのを避け得ない。 本発明者等は、このような多層シートのカツプ
への熱成形に際して、中間層と両表面層との間に
一定の温度勾配をもたせて熱成形を行うと、前述
したトラブルが一挙に解消されることを見出し
た。 即ち、本発明の目的は、ガスバリヤー性、耐層
間剥離、外観特性及び肉厚の均一性に優れたカツ
プ状多層プラスチツク容器の製造方法を提供する
にある。 本発明の他の目的は、上述したカツプ状多層プ
ラスチツク容器を、良好な成形作業性と短かい成
形サイクルとで製造し得る方法を提供するにあ
る。 本発明によれば、酸素透過係数が5.5×10-12
c.c.・cm/cm2・sec・cmHg(37℃)以下の酸素バリ
ヤー性熱可塑性樹脂の中間層と、オレフイン系樹
脂の両表面層とをオレフイン系樹脂よりも小さい
温度伝導率を有する樹脂接着剤層を介して同時溶
融押出によりシートの形に押出し、押出された溶
融状態にある多層シートを、該シートの両表面層
を構成するオレフイン系樹脂の融点以上の温度で
且つ中間層の温度が両表面層の表面温度よりも2
乃至80℃高い温度条件となる迄徐冷し、次いでこ
の徐冷シートをカツプの形に熱成形することを特
徴とする多層プラスチツク容器の製造方法が提供
される。 本発明の好適な態様においては、上述した多層
構造の積層体を同時溶融押出によりシートの形に
押出し、押出されたシートを前述した温度条件と
なる迄徐冷し、次いでこの徐冷シートをカツプの
形に成形する。 添付図面第1図は、ポリプロピレン両表面層と
エチレン−ビニルアルコール共重合体の中間層と
を備えた同時溶融押出シートを放置した場合にお
ける両表面層の温度及び中間層の温度と放置時間
との関係を示す。尚、同時溶融押出シートの両表
面層温度は、鉄−コンスタンタン系熱電対を、こ
のシートの両表面に接触させることにより、また
この押出シートの中間層温度はこのシートをジス
ク状に打抜き、中間層部分に前記熱電対を挿入す
ることにより測定した。即ち、両表面層の測定温
度は当該層の表面温度である。また中間層につい
ては、該層は一般的に表面層よりも薄層であるこ
と及び高温の表面層の間にサンドイツチされた状
態であるため、その温度勾配は殆ど問題となら
ず、その測定箇所は任意の部分でよい。この第1
図を参照すると、両表面層及び中間層の温度は時
間の経過と共に指数函数的に低下するが、経過時
間の初期においては、両表面層温度の低下が中間
層温度の低下に比して大であり、多層シートの中
間層の温度が両表面層の温度よりも高い温度条件
を与え得ることが理解される。 本発明によれば、多層シートを、該シートの両
表面層を構成するオレフイン系樹脂の融点以上の
温度で且つ中間層の温度が両表面層の温度よりも
2乃至80℃高い温度条件、特に3乃至75℃高い温
度条件の下でカツプの形に熱成形する。 本発明によれば、両表面層と中間層との間に上
記範囲の温度勾配を設けて熱成形を行うことによ
り、両表面層の垂れによる偏肉や縦筋の発生を防
止し、しかも特にカツプの底の角部やフランジの
付け根部分における酸素バリヤー性樹脂の破断、
クラツク発生或いは層間界面での剥離を防止する
ことが可能となり、また成形に際しての圧力差を
小さくし得る等の成形作業性の向上と、型上での
冷却時間の短縮による成形サイクルの短縮とが可
能となる。 本発明の最も好適な態様においては、酸素バリ
ヤー性熱可塑性樹脂中間層とオレフイン系樹脂両
表面層との間に、温度伝導率が両表面層オレフイ
ン系樹脂よりも小さい熱可塑性樹脂接着剤を介在
させる。本明細書において、温度伝導率(α)と
は、電伝導率をλ、比熱をC、密度をdとしたと
き、下記式 α=λ/Cd で定義される値であり、より詳細には下記デイメ
ンジヨン、即ち式 α=Kcal/m・hr・℃/Kcal/Kg・℃×Kg/m2=m2
/hr のデイメンジヨンを有する値である。この値は、
伝熱に際しての温度勾配に関するものであり、数
値が小さい程、伝熱に際して温度勾配が大きくな
ることを示す。かくして、本発明のこの態様にお
いて、この樹脂接着剤層は中間層と両表面層との
接着に単に役立つばかりではなく、伝熱バリヤー
として作用し、前述した温度勾配の形成を一層容
易にする。 本明細書において、融点(Melting Point)と
は、例えばLeO Mandelkern著“CRYSTA−
LLIZATION OF POLYMERS”(McGraw−
Hill Book Company発行1964年)に記載されて
いるように、結晶性或いは半結晶性高分子の結晶
相が融解する熱力学的第一次転位点と定義され、
通常示差熱分析法、比熱−温度曲線法、偏光顕微
鏡法、X線回析法、赤外吸収スペクトル法などの
方法で容易に求める事ができる。 中間層を構成する酸素バリヤー性樹脂とは、酸
素透過係数が5.5×10-12c.c.・cm/cm2・sec・cmHg
以下となる様に選択される熱成形可能な樹脂であ
る。尚、この酸素透過係数は、熱成形時において
該係数を測定するものではなく、成形されたシー
ト状態において一定条件下(30℃、0%RH)で
測定するものである。かかる樹脂は、特にエチレ
ン−ビニルアルコール共重合体、ナイロン樹脂で
あり、これらの樹脂は水酸基、アミド基等の極性
基を重合体の主鎖または側鎖に含有し、それらの
融点或いは軟化点は極性基の含有率、化学組成の
変化などで大巾に変化する。 更に詳しく説明すれば、前記エチレン−ビニル
アルコール共重合体は米国特許第3183203号及び
第3419654号明細書に記載されている通り、エチ
レン或いはエチレンの大部分とプロピレン等の他
のオレフインの少量成分とギ酸ビニル、酢酸ビニ
ル、プロピオン酸ビニルなど低級脂肪酸のビニル
エステルとの共重合体、特にエチレン−酢酸ビニ
ル共重合体をケン化することにより得られる。こ
のエチレン−ビニルアルコール樹脂の示差熱分析
法などによる融点(Tm)とエチレンのモル含有
量(%)の関係は次式に従うことが分つている。 Tm=1.64X+68 上式においてTmはエチレン含有モル%が0乃
至80%のエチレン−ビニルアルコール共重合体の
融点、Xはビニルアルコール含有モル%を表わ
す。 前記ポリアミド樹脂は、開環重合型ナイロンは
アミノ酸モノマーの種類に従い、又縮重合型ナイ
ロンは酸、アミンの種類に従い、又共重合型ナイ
ロンは共重合組成に従い、又ポリマーブレンドは
ブレンド組成比に従い、表−1に示される様に示
差熱分析法などによる融点は変化する事が分つて
いる。
The present invention relates to a method for producing a cup-shaped (wide-mouthed) multilayer plastic container, and more particularly, a method for producing a cup-shaped multilayer plastic container that has excellent gas barrier properties, delamination resistance, appearance characteristics, and uniform wall thickness. Furthermore, the present invention relates to a method for manufacturing the multilayer plastic container with good molding workability. Conventionally, multilayer plastic containers have two surface layers made of olefin resin, an intermediate layer made of oxygen barrier resin such as ethylene vinyl alcohol copolymer, and an adhesive resin layer interposed between the two if necessary.
It has excellent oxygen barrier properties and moisture resistance,
It is well known as a container with excellent preservation of contents. Among these multilayer plastic containers, cup-shaped (wide-mouthed) containers are produced by vacuum forming heated multilayer sheets, plug-assisted vacuum forming, plug-assisted pressure forming, plug-assisted vacuum-pressure forming, twin-mold forming, slip forming, and air pressure forming. This cup-shaped container can be easily prepared by thermoforming by means such as molding or pressure forming, and has no seams in the container body, and can be heat-sealed to the lid member at the flange, making it suitable for various food packaging. It has come to be widely used in various fields. However, the manufacture of multilayer plastic cup containers presents several problems that are not present in the manufacture of single layer plastic cup containers. In other words, when thermoforming is performed at a relatively low temperature that can shorten the molding cycle, the oxygen barrier resin layer may break or crack at the bottom corner of the cup or the base of the flange, or cracks may occur at the interface between the layers. This tends to cause peeling of both surface layers, which causes deterioration of gas barrier properties, deterioration of appearance characteristics, and deterioration of drop impact strength.On the other hand, in relatively high temperature molding where such troubles can be avoided, the delamination of both surface layers It is unavoidable that uneven thickness, vertical streaks, etc. occur due to sagging, and the molding cycle becomes longer. The present inventors have discovered that when thermoforming such a multilayer sheet into a cup, the above-mentioned problems can be solved at once by creating a constant temperature gradient between the intermediate layer and both surface layers. I discovered that. That is, an object of the present invention is to provide a method for manufacturing a cup-shaped multilayer plastic container that is excellent in gas barrier properties, resistance to delamination, appearance characteristics, and uniformity of wall thickness. Another object of the present invention is to provide a method for producing the above-mentioned cup-shaped multilayer plastic container with good molding workability and a short molding cycle. According to the present invention, the oxygen permeability coefficient is 5.5×10 -12
A resin adhesive with a temperature conductivity lower than that of the olefin resin is used to connect the intermediate layer of oxygen barrier thermoplastic resin of cc・cm/cm 2・sec・cmHg (37℃) or less and both surface layers of olefin resin. The extruded multilayer sheet in a molten state is heated to a temperature higher than the melting point of the olefin resin constituting both surface layers of the sheet, and the temperature of the intermediate layer is both. 2 than the surface temperature of the surface layer
A method for manufacturing a multilayer plastic container is provided, which comprises slow cooling to a temperature condition of 80° C. higher, and then thermoforming the slow cooling sheet into a cup shape. In a preferred embodiment of the present invention, the above-described multilayered laminate is extruded into a sheet by simultaneous melt extrusion, the extruded sheet is slowly cooled until the temperature conditions described above are reached, and the slowly cooled sheet is then cut into pieces. Form into the shape of. Figure 1 of the accompanying drawings shows the temperature of both surface layers, the temperature of the intermediate layer, and the standing time when a co-melt extruded sheet comprising both surface layers of polypropylene and an intermediate layer of ethylene-vinyl alcohol copolymer is left to stand. Show relationships. The temperature of both surface layers of the simultaneously melt-extruded sheet can be determined by bringing iron-constantan thermocouples into contact with both surfaces of the sheet, and the temperature of the intermediate layer of this extruded sheet can be determined by punching this sheet into a disk shape and measuring the The measurement was performed by inserting the thermocouple into the layer portion. That is, the measured temperatures of both surface layers are the surface temperatures of the layers. Regarding the intermediate layer, since the layer is generally thinner than the surface layer and sandwiched between the high-temperature surface layers, the temperature gradient is hardly a problem, and the measurement location is can be any part. This first
Referring to the figure, the temperatures of both surface layers and the intermediate layer decrease exponentially with the passage of time, but at the beginning of the elapsed time, the decrease in the temperature of both surface layers is larger than the decrease in the intermediate layer temperature. It is understood that this can provide a temperature condition where the temperature of the middle layer of the multilayer sheet is higher than the temperature of both surface layers. According to the present invention, the multilayer sheet is prepared under a temperature condition in which the temperature is higher than the melting point of the olefin resin constituting both surface layers of the sheet, and the temperature of the intermediate layer is 2 to 80° C. higher than the temperature of both surface layers. It is thermoformed into a cup shape under elevated temperature conditions of 3 to 75°C. According to the present invention, by performing thermoforming with a temperature gradient within the above range between both surface layers and the intermediate layer, uneven thickness and vertical streaks due to sagging of both surface layers can be prevented, and in particular, Breakage of the oxygen barrier resin at the bottom corner of the cup or the base of the flange,
It is possible to prevent the occurrence of cracks or peeling at the interlayer interface, improve molding workability by reducing the pressure difference during molding, and shorten the molding cycle by shortening the cooling time on the mold. It becomes possible. In the most preferred embodiment of the present invention, a thermoplastic resin adhesive whose temperature conductivity is lower than that of the olefin resin of both surface layers is interposed between the oxygen barrier thermoplastic resin intermediate layer and the olefin resin surface layers. let In this specification, temperature conductivity (α) is a value defined by the following formula α=λ/Cd, where λ is electrical conductivity, C is specific heat, and d is density. The following dimension, that is, the formula α=Kcal/m・hr・℃/Kcal/Kg・℃×Kg/m 2 = m 2
/hr. This value is
It relates to the temperature gradient during heat transfer, and the smaller the value, the larger the temperature gradient during heat transfer. Thus, in this embodiment of the invention, the resin adhesive layer not only serves to bond the intermediate layer to both surface layers, but also acts as a heat transfer barrier, further facilitating the formation of the aforementioned temperature gradients. In this specification, melting point refers to, for example, "CRYSTA-" by LeO Mandelkern.
LLIZATION OF POLYMERS” (McGraw−
Hill Book Company, 1964), it is defined as the thermodynamic first dislocation point where the crystalline phase of a crystalline or semi-crystalline polymer melts.
It can usually be easily determined by methods such as differential thermal analysis, specific heat-temperature curve method, polarized light microscopy, X-ray diffraction, and infrared absorption spectroscopy. The oxygen barrier resin that makes up the intermediate layer has an oxygen permeability coefficient of 5.5×10 -12 cc・cm/cm 2・sec・cmHg
The thermoformable resin is selected to: Note that this oxygen permeability coefficient is not measured during thermoforming, but is measured under certain conditions (30° C., 0% RH) in the formed sheet state. Such resins are particularly ethylene-vinyl alcohol copolymers and nylon resins, and these resins contain polar groups such as hydroxyl groups and amide groups in the main chain or side chain of the polymer, and their melting points or softening points are It varies widely depending on the content of polar groups, changes in chemical composition, etc. More specifically, the ethylene-vinyl alcohol copolymer is composed of ethylene or a major portion of ethylene and a minor component of another olefin such as propylene, as described in U.S. Pat. Nos. 3,183,203 and 3,419,654. It can be obtained by saponifying a copolymer of a lower fatty acid with a vinyl ester such as vinyl formate, vinyl acetate, or vinyl propionate, particularly an ethylene-vinyl acetate copolymer. It has been found that the relationship between the melting point (Tm) of this ethylene-vinyl alcohol resin and the molar content (%) of ethylene according to differential thermal analysis etc. follows the following equation. Tm=1.64X+68 In the above formula, Tm represents the melting point of an ethylene-vinyl alcohol copolymer containing 0 to 80% ethylene, and X represents the mol% vinyl alcohol content. The polyamide resin is prepared according to the type of amino acid monomer for ring-opening polymerization type nylon, according to the type of acid and amine for condensation polymerization type nylon, according to the copolymerization composition for copolymerization type nylon, and according to the blend composition ratio for polymer blend, As shown in Table 1, it is known that the melting point varies according to differential thermal analysis.

【表】【table】

【表】 以上の如く、エチレン−ビニルアルコール共重
合体、ナイロン樹脂などの酸素などのガスに対し
バリヤー性を有する樹脂は水酸基、アミド基等の
極性基の含有量、或いは化学組成により融点、軟
化点が変化する。 尚表−2に37℃、絶乾状態における、前述の酸
素等のガスに対しバリヤー性の秀れたエチレン−
ビニルアルコール共重合体、ポリアミドの酸素透
過係数(PO2、c.c.・cm/cm2・sec・cmHg)を示し
た。
[Table] As shown above, resins that have barrier properties against gases such as oxygen, such as ethylene-vinyl alcohol copolymers and nylon resins, have melting points and softening depending on the content of polar groups such as hydroxyl groups and amide groups, or chemical composition. The points change. Table 2 shows ethylene, which has excellent barrier properties against gases such as oxygen mentioned above, at 37°C and in an absolutely dry state.
The oxygen permeability coefficient (PO 2 , cc·cm/cm 2 ·sec·cmHg) of vinyl alcohol copolymer and polyamide is shown.

【表】 ロン6)
オレフイン系樹脂としては、主たる構成単量体
がオレフインから成りしかも結晶性のものであ
り、低−、中−及び高−密度ポリエチレン、アイ
ソタクテイツクポリプロピレン、結晶性プロピレ
ン−エチレン共重合体、結晶性エチレン−ブテン
共重合体、結晶性エチレン−プロピレン−ブテン
共重合体或いはこれらのブレンド物等が使用され
る。結晶性であるという条件を満足する範囲内
で、エチレン−酢酸ビニル共重合体、エチレン−
アクリル酸エステル共重合体、イオン架橋オレフ
イン共重合体(アイオノマー)も、単独で或いは
他のオレフイン系樹脂との組合せで使用し得る。 オレフイン系樹脂よりも小さい温度伝導率を有
する樹脂接着剤としては、オレフイン系樹脂層と
酸素バリヤー性樹脂との両者に対して接着性を示
すそれ自体公知の熱可塑性樹脂が使用される。既
に前述した如く、好適な樹脂接着剤、これに接す
るオレフイン系樹脂よりも温度伝導率の小さいも
のである。かかる樹脂接着剤は、酸乃至は酸無水
物変性オレフイン樹脂であり、この変性オレフイ
ン樹脂はエチレン系不飽和カルボン酸乃至はその
無水物単位がグラフト、末端処理等の手段で導入
されていることに関連して、オレフイン系樹脂よ
りも小さい温度伝導率を示す。エチレン系不飽和
カルボン酸乃至はその無水物の適当な例は、アク
リル酸、メタクリル酸、マレイン酸、無水マレイ
ン酸、クロトン酸、アコニツト酸、イタコン酸、
無水イタコン酸、シトラコン酸、無水シトラコン
酸、テトラヒドロ無水フタル酸等であり、幹とな
るオレフイン系樹脂はポリエチレン、ポリプロピ
レン等の前に例示したオレフイン系樹脂であつて
よい。変性オレフイン系樹脂中に含まれる酸乃至
無水物の量は、0.1乃至25重量%、特に0.3乃至20
重量%の範囲内にあることが望ましい。好適な樹
脂接着剤は、組合せるオレフイン系樹脂の温度伝
導率よりも少なくとも0.05×10-4m2/hr以上小さ
い、特に0.1×10-4m2/hr以上小さい温度伝導率
を有する。 酸乃至酸無水物変性オレフイン系樹脂の温度伝
導率を低下させる最も簡便な手段は、この樹脂に
あるいはエラストマー的性質を有する熱可塑性樹
脂及びゴム状物質(以下ゴム状物質と記す)を配
合することである。かかるゴム状物質としては、
エチレン含有量65乃至98重量%のエチレン−プロ
ピレン共重合体、エチレン−プロピレンゴム
(EPR)、エチレン−プロピレン−非共役ジエン
ゴム(EPDM)、ポリイソブチレン、ブチルゴ
ム、ポリブタジエン、ポリイソプレン、スチレン
−ブタジエンゴム、ニトリル−ブタジエンゴム
等、およびスチレン・ブタジエンブロツク共重合
体、ポリエステル系エラストマー、ポリウレタン
系エラストマー、塩化ビニル系エラストマーなど
の熱可塑性エラストマーであり、更に酸乃至は酸
無水物で変性されたEPRやEPDMも使用し得る。
これらのゴム状物質は、酸乃至は酸無水物変性オ
レフイン系樹脂当り2乃至50重量%、特に5乃至
40重量%の量で配合される。 本発明によれば、上述した酸素バリヤー性熱可
塑性樹脂を中間層、オレフイン系樹脂を両表面層
とし、これら各層の間にオレフイン系樹脂よりも
小さい温度伝導率を有する樹脂接着剤層を介在さ
せて、多層多重ダイを通して同時溶融押出し、多
層シートを形成させる。同時溶融押出はそれ自体
周知のものであり、本発明においてもそれ自体周
知の装置を使用し、周知の条件下で行うことがで
きる。一般にはダイの出口温度を120乃至260℃の
温度として80乃至300Kg/cm2の圧力で押出を行う
のが好ましい。 多層シートの層構成は、5層構成の外に、成形
時に副生するバリ等の各樹脂のブレンド物を、中
間層と両表面層との間、或いは接着剤層と両表面
層との間に介在させて、より多い層構成とするこ
ともできる。多層シート全体の厚みは、所謂可撓
性のカツプ状容器からリジツドなカツプ状容器に
至る種々の容器を製造し得るように、0.1乃至5.0
mmの範囲で変化させることができる。また、中間
層Aと両表面層Bとの厚みの比は、酸素バリヤー
性と耐湿性との最適な組合せが得られるように、 A:B=1:500〜1:1 特に 1:50〜1:5 の範囲内にあるのが望ましく、一方接着剤層Cと
両表面層Bとは B:C=1:600〜1:5 特に 1:150〜1:10 の範囲内とするのが望ましい。 本発明によれば、押出されたままの熔融状態に
ある多層シートを徐冷し、既に詳述した温度条
件、即ちこの多層シートの両表面層を構成するオ
レフイン系樹脂の融点以上の温度ではあるが、中
間層の温度が両表面層の温度よりも2乃至80℃高
い温度条件下でカツプの形に熱成形する。この
際、オレフイン系樹脂から成る両表面層の温度
は、オレフイン系樹脂の融点よりも10乃至50℃高
い温度となつていることが、成形作業性、偏肉防
止、成形サイクル短縮等の見地から望ましい。中
間層の酸素バリヤー性樹脂は、オレフイン系樹脂
の融点よりもかなり高い融点、一般に5乃至90℃
高い融点を有するが、中間層及び両表面層の冷却
速度の差により、中間層は、その融点以上の温度
に保たれる。 押出された多層シートの徐冷は、このシートを
一般に空気或いは不活性雰囲気中に放置するか、
或いはこれらの気流と接触させることにより行わ
れるが、前者の場合には、全体の厚みや層の厚み
比によつても相違するが、3秒乃至10分間、特に
5秒乃至6分間の範囲の放置時間から、前述した
温度勾配が形成される時間を実験的に定めればよ
い。また、後者の場合には、気体の温度及び流量
等を勘案して所定の温度勾配が形成される冷却時
間を定めればよい。 カツプへの熱成形は、真空成形、プラグアシス
ト真空成形、プラグアシスト圧空成形、プラグア
シスト真空圧空成形、対型成形、すべり成形、風
圧成形、圧空成形等のそれ自体公知の手段により
容易に行うことができる。この熱成形に際して用
いる雌型は自然冷却下においても、或いは強制冷
却下においてもよいが、本発明によれば、これら
何れの場合にも、両表面層の温度を比較的低い温
度に維持してカツプ成形が可能なことから、雌型
上での冷却時間を著しく短縮することができる。
カツプの絞り比、即ち、カツプの高さ(H)/カツプ
の開口部の径(D)の比は、1/100乃至5/1、特
に1/50乃至3/1の範囲とすることができ、本
発明によれば、この絞り比を大きくした場合に
も、フランジ付け根部分での層間剥離傾向が有効
に防止される。この場合、カツプ(広口容器)の
形状は、円筒状、円錐状、三角状、四角状、五角
状、六角状、星角状、半球状等、開口部を有する
ものであれば、如何なる幾何学的形態であつても
よい。 本発明において、溶融押出された多層シートを
徐冷した後直ちにカツプへの熱成形に用いること
が、熱経済の点で有利である。しかしながら、例
えばT−ダイ法で予じめ多層シートを形成し、こ
の多層シートを再加熱した後、この多層シートに
前述した温度勾配を生じさせ、しかる後カツプへ
の熱成形を行つても同様な利点が達成されること
が当業者には理解されよう。 本発明を次の例で説明する。 なお各実施例における各種の測定は下記の方法
に従つておこなつた。 (i) 胴部肉厚の均一性(WTV): ポイントマイクロメーターを使用し、25℃の
温度で、各種カツプ胴中央部分を周方向に12点
の厚さをそれぞれ3個のカツプについて測定し
た。WTVの値は下記式に従つた。 WTV=100×標準偏差/平均厚さ (ii) 外観特性(App): 5名のパネルの視覚判定によつて主としてカ
ツプ縦方向のすじの有無を判定させた。実施例
中の各表において〇は縦すじのないもの(良
好)、×は縦すじの認められるもの(不良)を意
味する。 (iii) フランジ下付け根部分の剥離強度(Sp): カツプのフランジ下を周方向に4点、巾10
mm、長さ20mm切り取り、引張試験機を用いて20
℃、60%RH雰囲気中で剥離速度100mm/minの
場合の剥離強度(Sp)を求めた。 結果は内表面層と中間層および外表面層と中
間層間の剥離強度(各12点)の平均値である。 (iv) 酸素透過度(Qo2) ASTM−D−1434に基づいて測定する。即
ち、測定すべきシート又はカツプの壁部分を所
定の大きさに切断し、シート状にして測定に供
した。測定には東洋テスター工業(株)製のガス透
過性試験機を使用した。これは、サンプルを2
つのチエンバーの間に固定したのち、一方のチ
エンバーが10-2mmHg以下の低圧になる迄真空
引きをおこなう(低圧側)。その後他方のチエ
ンバー(高圧側)を、塩化カルシウムで除湿さ
れた酸素ガスが1気圧になるように置換したの
ち、低圧側の圧力増加の時間的変化をレコーダ
ーで読み取り、酸素ガス透過度Qo2を測定する
方法である。 測定は温度が37℃並びに20℃、高圧側の湿度
は塩化カルシウムを用いて0%RH並びに60%
RHの条件下でおこなつた。 (v) 酸素透過係数(PO2) 酸素透過係数(PO2)は、酸素過度から次式
により算出する。 PO2=1.52×10-15×h×Qo2 (c.c.・cm/cm2・sec・cmHg) 式中、hは測定サンプルの厚さ(μ)、 Qo2は測定サンプルの酸素透過度(c.c./m2
day・atm)を表わす。 実施例 1 スクリユー直径が90mm、同有効長さが1980mmの
寸法を有するメターリング型スクリユーを内蔵し
た両表面層用押出機、スクリユー直径が32mm、同
有効長さが640mmの寸法を有するメターリング型
スクリユーを内蔵した接着層用押出機およびスク
リユー直径が40mm、同有効長さが880mmのメター
リング型スクリユーを内蔵した中間層用押出機
と、特開昭51−68670号公開公報記載と同様な5
層型ダイを用いて、エチレン含有量が30モル%、
ビニルアルコール含有量が70モル%、昇温速度が
10℃/minの場合の示差熱分析法(DTA法)に
よる融点が182℃、温度37℃、相対湿度が0%
RHでの酸素透過係数が0.07×10-12c.c.・cm/cm2
sec・cmHgのエチレン・ビニルアルコール共重合
体を中間層とし、無水マレイン酸をグラフトした
アイソタクテイツクポリプロピレン(グラフト率
3%、温度伝導率2.54×10-4m2/hr)を接着層と
し、密度が0.912g/c.c.、温度伝導率が2.86×10-4
m2/hr前記融点が167℃のアイソタクテイツクポ
リプロピレンを両表面層とする5層構成の多層シ
ートの溶融押出成形をおこなつた。これらの各押
出機の押出条件、ダイ温度は下記の通りであつ
た: 1 両表面層用押出機; フイード部温度:180℃ メターリング部温度:219℃ スクリユー回転数:30rpm 2 接着層用押出機; フイード部温度:168℃ メターリング部温度:196℃ スクリユー回転数:7rpm 3 中間層用押出機; フイード部温度:179℃ メターリング部温度:234℃ スクリユー回転数:10rpm 4 多層ダイ指示温度;212℃ 5 全押出量;85Kg/hr 前記の押出条件で溶融押出された5層シートを
公知の真空成形法で口部の直径が71mm、高さが36
mmの円形カツプを成形した。ダイリツプより吐出
された時点から50秒間放置後のカツプ成形時にお
ける前記シート各層の温度は両表面層表面が198
℃、中間層が209℃であつた。 得られた5層カツプの全体の厚みは0.31mmであ
り、外表面層:接着層:中間層:接着層:内表面
層の構成比は15:0.1:1:0.1:15であつた。こ
のようにして得られた5層カツプを、以下Aと記
す。 次にAカツプの、(i)胴部肉厚の均一性
(WTV)、(ii)外観特性(App)、(iii)フランジ下の
付け根部分の剥離強度(Sp)、(iv)カツプ底部の酸
素透過度(Qo2)をそれぞれ明細書記載の各方法
に従つて測定した。 結果を表−3に示す。 比較のために前述した各押出機、多層ダイスお
よび前述した各合成樹脂を使用し、下記の押出条
件: 1 両表面層用押出機; フイード部温度:180℃ メターリング部温度:231℃ スクリユー回転数:26rpm 2 接着層用押出機; フイード部温度:168℃ メターリング部温度:196℃ スクリユー回転数:7rpm 3 中間層用押出機; フイード部温度:179℃ メターリング部温度:234℃ スクリユー回転数:10rpm 4 多層ダイ温度;217℃ 5 全押出量;86Kg/hr 前記の押出条件で溶融押出された5層シートを
公知の真空成形法で口部の直径が71mm、高さが36
mmの円形カツプを成形した。ダイリツプより吐出
された時点から50秒間放置後のカツプ成形時にお
ける前記シート各層の温度は両表面層表面が208
℃、中間層が209℃であつた。 得られた5層カツプの全体の厚みは0.31mmであ
り、外表面層:接着層:中間層:接着層:内表面
層の構成比は15:0.1:1:0.1:15であつた。こ
のようにして得られた5層カツプを、以下Bと記
す。 次にBカツプの、(i)胴部肉厚の均一性
(WTV)、(ii)外観特性(App)、(iii)フランジ下の
付け根部分の剥離強度(Sp)、(iv)カツプ底部の酸
素透過度(Qo2)をそれぞれ明細書記載の方法に
従つて測定した。 結果を表−3に併せて示す。 表−3から、両表面層表面と中間層の温度差を
11℃保たせた条件で製造したカツプAは、同じく
温度差を1℃とした条件で成形したカツプBより
前記諸性能が明らかに優れていることが知られ
る。
[Table] Ron 6)
Olefin resins include those whose main constituent monomer is olefin and are crystalline, such as low-, medium-, and high-density polyethylene, isotactic polypropylene, crystalline propylene-ethylene copolymer, crystalline Ethylene-butene copolymers, crystalline ethylene-propylene-butene copolymers, or blends thereof are used. Ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer and ethylene-vinyl acetate copolymer within the range that satisfies the condition of crystallinity.
Acrylic ester copolymers and ionically crosslinked olefin copolymers (ionomers) may also be used alone or in combination with other olefinic resins. As the resin adhesive having a lower temperature conductivity than the olefin resin, a thermoplastic resin known per se that exhibits adhesiveness to both the olefin resin layer and the oxygen barrier resin is used. As already mentioned above, a suitable resin adhesive has a lower temperature conductivity than the olefinic resin in contact with it. Such a resin adhesive is an acid- or acid-anhydride-modified olefin resin, and this modified olefin resin has an ethylenically unsaturated carboxylic acid or its anhydride unit introduced by means such as grafting or terminal treatment. Relatedly, they exhibit lower thermal conductivity than olefinic resins. Suitable examples of ethylenically unsaturated carboxylic acids or their anhydrides include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, crotonic acid, aconitic acid, itaconic acid,
Itaconic anhydride, citraconic acid, citraconic anhydride, tetrahydrophthalic anhydride, etc., and the main olefinic resin may be the olefinic resin exemplified above, such as polyethylene, polypropylene, etc. The amount of acid or anhydride contained in the modified olefin resin is 0.1 to 25% by weight, particularly 0.3 to 20% by weight.
It is desirable that the amount is within the range of % by weight. A suitable resin adhesive has a thermal conductivity that is at least 0.05×10 −4 m 2 /hr or more, particularly 0.1×10 −4 m 2 /hr or more lower than the temperature conductivity of the olefinic resin with which it is combined. The simplest means to lower the temperature conductivity of acid- or acid anhydride-modified olefin resin is to blend this resin with a thermoplastic resin and a rubbery substance (hereinafter referred to as rubbery substance) having elastomeric properties. It is. Such rubbery substances include:
Ethylene-propylene copolymer with an ethylene content of 65 to 98% by weight, ethylene-propylene rubber (EPR), ethylene-propylene-nonconjugated diene rubber (EPDM), polyisobutylene, butyl rubber, polybutadiene, polyisoprene, styrene-butadiene rubber, Thermoplastic elastomers such as nitrile-butadiene rubber, styrene-butadiene block copolymers, polyester elastomers, polyurethane elastomers, vinyl chloride elastomers, and EPR and EPDM modified with acids or acid anhydrides. Can be used.
These rubbery substances are present in an amount of 2 to 50% by weight, especially 5 to 50% by weight, based on the acid or acid anhydride modified olefin resin.
It is blended in an amount of 40% by weight. According to the present invention, the above-mentioned oxygen barrier thermoplastic resin is used as an intermediate layer, olefin resin is used as both surface layers, and a resin adhesive layer having a temperature conductivity lower than that of the olefin resin is interposed between these layers. and co-melt extrusion through a multi-layer die to form a multi-layer sheet. Simultaneous melt extrusion is well known per se, and can be carried out in the present invention using well known equipment and under known conditions. Generally, it is preferable to carry out extrusion at a pressure of 80 to 300 kg/cm 2 with a die outlet temperature of 120 to 260°C. In addition to the five-layer structure, the layer structure of the multilayer sheet is such that blends of various resins such as burrs produced by-product during molding are removed between the intermediate layer and both surface layers, or between the adhesive layer and both surface layers. It is also possible to create a structure with a larger number of layers by interposing the two layers. The overall thickness of the multilayer sheet ranges from 0.1 to 5.0 so that various containers ranging from so-called flexible cup-shaped containers to rigid cup-shaped containers can be manufactured.
It can be varied within the range of mm. In addition, the thickness ratio of the intermediate layer A and both surface layers B is A:B=1:500 to 1:1, especially 1:50 to 1:1, so as to obtain an optimal combination of oxygen barrier properties and moisture resistance. It is preferable that the ratio be within the range of 1:5, while the ratio of the adhesive layer C and both surface layers B is B:C=1:600 to 1:5, and it is particularly preferable that the ratio is within the range of 1:150 to 1:10. desirable. According to the present invention, a multilayer sheet in a molten state as extruded is slowly cooled under the already detailed temperature conditions, that is, a temperature higher than the melting point of the olefin resin constituting both surface layers of the multilayer sheet. However, it is thermoformed into a cup shape under a temperature condition in which the temperature of the middle layer is 2 to 80° C. higher than the temperature of both surface layers. At this time, the temperature of both surface layers made of olefin resin should be 10 to 50 degrees Celsius higher than the melting point of the olefin resin, from the viewpoint of molding workability, prevention of uneven thickness, shortening of molding cycle, etc. desirable. The oxygen barrier resin in the intermediate layer has a melting point much higher than that of the olefin resin, generally 5 to 90°C.
Although it has a high melting point, the difference in cooling rates between the intermediate layer and both surface layers keeps the intermediate layer at a temperature above its melting point. Slow cooling of an extruded multilayer sheet generally involves leaving the sheet in air or an inert atmosphere, or
Alternatively, it can be carried out by contacting with these air currents, but in the former case, the contact is carried out for a period of 3 seconds to 10 minutes, particularly 5 seconds to 6 minutes, depending on the overall thickness and layer thickness ratio. The time during which the temperature gradient described above is formed may be determined experimentally from the standing time. In the latter case, the cooling time for forming a predetermined temperature gradient may be determined by taking into consideration the temperature and flow rate of the gas. Thermoforming into a cup can be easily carried out by means known per se such as vacuum forming, plug-assisted vacuum forming, plug-assisted pressure forming, plug-assisted vacuum-pressure forming, mold-to-mold forming, slip forming, wind forming, and pressure forming. Can be done. The female mold used in this thermoforming may be cooled naturally or forced, but according to the present invention, in either case, the temperature of both surface layers is maintained at a relatively low temperature. Since cup molding is possible, the cooling time on the female mold can be significantly shortened.
The aperture ratio of the cup, that is, the ratio of cup height (H) to cup opening diameter (D), is preferably in the range of 1/100 to 5/1, particularly 1/50 to 3/1. According to the present invention, even when this drawing ratio is increased, the tendency of delamination at the base of the flange can be effectively prevented. In this case, the shape of the cup (wide mouth container) can be any geometric shape as long as it has an opening, such as cylindrical, conical, triangular, square, pentagonal, hexagonal, star-shaped, hemispherical, etc. It may be in the form of In the present invention, it is advantageous from the point of view of thermoeconomics to use the melt-extruded multilayer sheet for thermoforming into cups immediately after it has been slowly cooled. However, even if a multilayer sheet is formed in advance using the T-die method, the multilayer sheet is reheated, the multilayer sheet is subjected to the temperature gradient described above, and then thermoformed into a cup, the same result occurs. Those skilled in the art will appreciate that significant advantages are achieved. The invention is illustrated by the following example. In addition, various measurements in each example were performed according to the following methods. (i) Uniformity of body wall thickness (WTV): Using a point micrometer, the thickness was measured at 12 points in the circumferential direction of the central part of each cup body at a temperature of 25°C for 3 cups each. . The value of WTV was determined according to the following formula. WTV=100×Standard Deviation/Average Thickness (ii) Appearance Characteristics (App): The presence or absence of streaks in the vertical direction of the cup was mainly determined by visual judgment by a panel of 5 people. In each table in Examples, ◯ means no vertical streaks (good), and × means vertical streaks observed (bad). (iii) Peeling strength (Sp) of the lower base of the flange: 4 points in the circumferential direction under the flange of the cup, width 10
mm, cut out 20mm in length and use a tensile tester to test 20
The peel strength (Sp) was determined at a peel rate of 100 mm/min in an atmosphere of 60% RH at ℃. The results are the average values of the peel strength (12 points each) between the inner surface layer and the intermediate layer and between the outer surface layer and the intermediate layer. (iv) Oxygen permeability (Qo 2 ) Measured based on ASTM-D-1434. That is, the wall portion of the sheet or cup to be measured was cut into a predetermined size, and the sheet was used for measurement. A gas permeability tester manufactured by Toyo Tester Kogyo Co., Ltd. was used for the measurement. This converts the sample to 2
After fixing it between two chambers, vacuum the chamber until the pressure in one chamber reaches a low pressure of 10 -2 mmHg or less (low pressure side). After that, the other chamber (high pressure side) was replaced with oxygen gas dehumidified with calcium chloride so that the pressure became 1 atm, and then the temporal change in pressure increase on the low pressure side was read with a recorder, and the oxygen gas permeability Qo 2 was determined. It is a method of measurement. The temperature was 37℃ and 20℃, and the humidity on the high pressure side was 0%RH and 60% using calcium chloride.
This was done under RH conditions. (v) Oxygen permeability coefficient (PO 2 ) Oxygen permeability coefficient (PO 2 ) is calculated from the oxygen excess using the following formula. PO 2 = 1.52×10 -15 ×h×Qo 2 (cc・cm/cm 2・sec・cmHg) In the formula, h is the thickness of the measurement sample (μ), and Qo 2 is the oxygen permeability of the measurement sample (cc / m2
day・atm). Example 1 An extruder for both surface layers was equipped with a metering type screw having a screw diameter of 90 mm and an effective length of 1980 mm, and a metering type screw having a screw diameter of 32 mm and an effective length of 640 mm. A built-in extruder for the adhesive layer, an extruder for the intermediate layer with a built-in metering type screw with a screw diameter of 40 mm and an effective length of 880 mm, and 5 similar to those described in JP-A-51-68670.
Using a layered die, the ethylene content is 30 mol%,
Vinyl alcohol content is 70 mol%, heating rate is
Melting point measured by differential thermal analysis (DTA method) at 10°C/min is 182°C, temperature is 37°C, and relative humidity is 0%.
Oxygen permeability coefficient at RH is 0.07×10 -12 cc・cm/cm 2
The intermediate layer is an ethylene/vinyl alcohol copolymer with sec/cmHg, and the adhesive layer is isotactic polypropylene grafted with maleic anhydride (grafting rate: 3%, thermal conductivity: 2.54×10 -4 m 2 /hr). Density is 0.912g/cc, thermal conductivity is 2.86×10 -4
m 2 /hr A multilayer sheet having a five-layer structure having both surface layers made of isotactic polypropylene having a melting point of 167° C. was melt-extruded. The extrusion conditions and die temperature of each of these extruders were as follows: 1. Extruder for both surface layers; Feed section temperature: 180°C Metering section temperature: 219°C Screw rotation speed: 30 rpm 2. Extruder for adhesive layer ; Feed section temperature: 168℃ Metering section temperature: 196℃ Screw rotation speed: 7rpm 3 Extruder for intermediate layer; Feed section temperature: 179℃ Metering section temperature: 234℃ Screw rotation speed: 10rpm 4 Multilayer die indicated temperature: 212℃ 5 Total extrusion amount: 85 Kg/hr The 5-layer sheet melt-extruded under the above extrusion conditions was molded using a known vacuum forming method to form a sheet with a mouth diameter of 71 mm and a height of 36 mm.
A mm round cup was molded. The temperature of each layer of the sheet during cup forming after being left for 50 seconds after being discharged from the die lip was 198°C on both surface layers.
℃, and the middle layer was 209℃. The total thickness of the resulting five-layer cup was 0.31 mm, and the composition ratio of outer surface layer:adhesive layer:intermediate layer:adhesive layer:inner surface layer was 15:0.1:1:0.1:15. The five-layer cup thus obtained is hereinafter referred to as A. Next, we will examine the A cup's (i) body wall thickness uniformity (WTV), (ii) appearance characteristics (App), (iii) peel strength of the base under the flange (Sp), and (iv) the bottom of the cup. Oxygen permeability (Qo 2 ) was measured according to each method described in the specification. The results are shown in Table-3. For comparison, the extruders, multilayer dies, and synthetic resins described above were used under the following extrusion conditions: 1 Extruder for both surface layers; Feed section temperature: 180°C Metering section temperature: 231°C Screw rotation speed : 26rpm 2 Extruder for adhesive layer; Feed section temperature: 168℃ Metering section temperature: 196℃ Screw rotation speed: 7rpm 3 Extruder for intermediate layer; Feed section temperature: 179℃ Metering section temperature: 234℃ Screw rotation speed: 10rpm 4 Multilayer die temperature: 217℃ 5 Total extrusion amount: 86Kg/hr The 5-layer sheet melt-extruded under the above extrusion conditions was molded using a known vacuum forming method to form a sheet with a mouth diameter of 71mm and a height of 36mm.
A circular cup of mm was molded. The temperature of each layer of the sheet during cup forming after being left for 50 seconds after being discharged from the die lip was 208°C on both surface layers.
℃, and the middle layer was 209℃. The total thickness of the resulting five-layer cup was 0.31 mm, and the composition ratio of outer surface layer:adhesive layer:intermediate layer:adhesive layer:inner surface layer was 15:0.1:1:0.1:15. The five-layer cup thus obtained is hereinafter referred to as B. Next, we will examine the B cup's (i) body wall thickness uniformity (WTV), (ii) appearance characteristics (App), (iii) peel strength of the base under the flange (Sp), and (iv) the bottom of the cup. Oxygen permeability (Qo 2 ) was measured according to the method described in each specification. The results are also shown in Table 3. From Table 3, the temperature difference between the surface of both surface layers and the intermediate layer is
It is known that Cup A, which was manufactured under conditions where the temperature was maintained at 11°C, was clearly superior to Cup B, which was molded under the same conditions where the temperature difference was 1°C, in the above-mentioned performances.

【表】 実施例 2 実施例1に記載の3台の押出機及び多層ダイを
用いて、エチレン含有量が45モル%、ビニルアル
コール含有量が55モル%、実施例1に記載の
DTA法による融点が158℃、同じく酸素透過係数
(37℃、0%RH)が0.3×10-12c.c.・cm/cm2
sec・cmHgのエチレン・ビニルアルコール共重合
体を中間層とし、無水マレイン酸で変性されたエ
チレン・プロピレン共重合体(エチレン含有量が
7重量%、変性率が10%、温度伝導率が3.06×
10-4m2/hr)を接着層とし、密度が0.90g/c.c.、
前記融点が153℃、温度伝導率が4.77×10-4/hr
のエチレン・プロピレン共重合体を両表面層とす
る5層構成の多層シートの溶融押出成形をおこな
つた。 これらの各押出機の押出条件、ダイ温度は下記
の通りであつた: 1 両表面層用押出機; フイード部温度:165℃ メターリング部温度:202℃ スクリユー回転数:34rpm 2 接着層用押出機; フイード部温度:158℃ メターリング部温度:185℃ スクリユー回転数:9rpm 3 中間層用押出機; フイード部温度:166℃ メターリング部温度:215℃ スクリユー回転数:11rpm 4 多層ダイ温度;197℃ 5 全押出量;87Kg/hr 前記の押出条件で溶融押出された5層シートを
公知の真空成形法で口部の広さが115×115mm、高
さが38mmの四角形カツプを成形した。ダイリツプ
より吐出された時点から40秒後のカツプ成形時に
おける前記シート各層の温度は両表面層表面が
184℃、中間層が191℃であつた。 得られた5層カツプの全体の厚みは0.45mmであ
り、外表面層:接着層:中間層:接着層:内表面
層の構成比は20:0.1:1:0.1:20であつた。こ
のようにして得られた5層カツプを、以下Cと記
す。 次にCカツプの、(i)胴部肉厚の均一性
(WTV)、(ii)外観特性(App)、(iii)フランジ下の
付け根部分の剥離強度(Sp)、(iv)カツプ底部の酸
素透過度(Qo2)をそれぞれ明細書記載の各方法
に従つて測定した。 結果を表−4に示す。 比較のために前述した各押出機、多層ダイスお
よび前述した各合成樹脂を使用し、下記の押出条
件: 1 両表面層用押出機; フイード部温度:166℃ メターリング部温度:202℃ スクリユー回転数:32rpm 2 接着層用押出機; フイード部温度:158℃ メターリング部温度:185℃ スクリユー回転数:9rpm 3 中間層用押出機; フイード部温度:166℃ メターリング部温度:204℃ スクリユー回転数:13rpm 4 多層ダイ指示温度;195℃ 5 全押出量;85Kg/hr 前記押出条件で溶融押出された5層シートを公
知のプラグアシスト真空成形法で口部の外径が
115×115mm、高さが38mmの四角形カツプを成形し
た。ダイリツプより吐出された時点から40秒後の
カツプ成形時における前記シート各層の温度は両
表面層表面が184℃、中間層が183℃であつた。 得られた5層カツプの全体の厚みは0.44mmであ
り、外表面層:接着層:中間層:接着層:内表面
層の構成比は20:0.1:1:0.1:20であつた。こ
のようにして得られた5層カツプを、以下Dと記
す。 次にDカツプの、(i)胴部肉厚の均一性
(WTV)、(ii)外観特性(App)、(iii)フランジ下の
付け根部分の剥離強度(Sp)、(iv)カツプ底部の酸
素透過度(Qo2)をそれぞれ明細書記載の方法に
従つて測定した。 結果を表−4に併せて示す。 表−4から、両表面層表面と中間層との温度差
を7℃保たせた条件で製造したカツプCは同じく
温度差を1℃とした条件で成形したカツプDより
前記諸性能が明らかに優れていることが知られ
る。
[Table] Example 2 Using the three extruders and multilayer die described in Example 1, the ethylene content was 45 mol%, the vinyl alcohol content was 55 mol%, and the
The melting point according to the DTA method is 158℃, and the oxygen permeability coefficient (37℃, 0%RH) is 0.3×10 -12 cc・cm/cm 2
sec/cmHg ethylene/vinyl alcohol copolymer as the middle layer, ethylene/propylene copolymer modified with maleic anhydride (ethylene content: 7% by weight, modification rate: 10%, temperature conductivity: 3.06×
10 -4 m 2 /hr) as adhesive layer, density 0.90g/cc,
The melting point is 153℃ and the thermal conductivity is 4.77×10 -4 /hr.
A multilayer sheet with a five-layer structure having both surface layers of ethylene-propylene copolymer was melt-extruded. The extrusion conditions and die temperature of each of these extruders were as follows: 1. Extruder for both surface layers; Feed section temperature: 165°C Metering section temperature: 202°C Screw rotation speed: 34 rpm 2. Extruder for adhesive layer ; Feed section temperature: 158℃ Metering section temperature: 185℃ Screw rotation speed: 9rpm 3 Extruder for intermediate layer; Feed section temperature: 166℃ Metering section temperature: 215℃ Screw rotation speed: 11rpm 4 Multilayer die temperature: 197℃ 5 Total extrusion amount: 87 Kg/hr The five-layer sheet melt-extruded under the above extrusion conditions was molded into a rectangular cup with a mouth width of 115 x 115 mm and a height of 38 mm using a known vacuum forming method. The temperature of each layer of the sheet during cup forming 40 seconds after being discharged from the die lip is such that both surface layers are
The temperature was 184°C, and the middle layer was 191°C. The total thickness of the resulting five-layer cup was 0.45 mm, and the composition ratio of outer surface layer: adhesive layer: intermediate layer: adhesive layer: inner surface layer was 20:0.1:1:0.1:20. The five-layer cup thus obtained is hereinafter referred to as C. Next, we will examine the C cup's (i) uniformity of body wall thickness (WTV), (ii) appearance characteristics (App), (iii) peel strength (Sp) of the root part under the flange, and (iv) of the bottom of the cup. Oxygen permeability (Qo 2 ) was measured according to each method described in the specification. The results are shown in Table 4. For comparison, the extruders, multilayer dies, and synthetic resins described above were used under the following extrusion conditions: 1 Extruder for both surface layers; Feed section temperature: 166°C Metering section temperature: 202°C Screw rotation speed : 32 rpm 2 Extruder for adhesive layer; Feed section temperature: 158℃ Metering section temperature: 185℃ Screw rotation speed: 9 rpm 3 Extruder for intermediate layer; Feed section temperature: 166℃ Metering section temperature: 204℃ Screw rotation speed: 13 rpm 4 Multilayer die indicated temperature: 195℃ 5 Total extrusion amount: 85Kg/hr The five-layer sheet melt-extruded under the above extrusion conditions was molded using a known plug-assisted vacuum forming method to reduce the outer diameter of the mouth.
A rectangular cup measuring 115 x 115 mm and 38 mm in height was molded. The temperature of each layer of the sheet during cup forming 40 seconds after being discharged from the die lip was 184°C for both surface layers and 183°C for the middle layer. The total thickness of the resulting five-layer cup was 0.44 mm, and the composition ratio of outer surface layer: adhesive layer: intermediate layer: adhesive layer: inner surface layer was 20:0.1:1:0.1:20. The five-layer cup thus obtained is hereinafter referred to as D. Next, we will examine the D-cup's (i) uniformity of body wall thickness (WTV), (ii) appearance characteristics (App), (iii) peel strength of the base under the flange (Sp), and (iv) of the bottom of the cup. Oxygen permeability (Qo 2 ) was measured according to the method described in each specification. The results are also shown in Table-4. From Table 4, it is clear that Cup C, which was manufactured under conditions where the temperature difference between the surfaces of both surface layers and the intermediate layer was maintained at 7°C, had better performance than Cup D, which was molded under the same conditions where the temperature difference was 1°C. Known to be excellent.

【表】 実施例 3 スクリユー直径が65mm、同有効長さが1430mmの
寸法を有するメターリング型スクリユーを内蔵し
た両表面層用押出機、前記と同じ形状及び寸法を
有する、カツプ成形時に派生するバリを回収する
層(以下リプロ層と記す)を構成するための、リ
プロ層用押出機、スクリユー直径が45mm、同有効
長さが900mmの寸法を有するメターリング型スク
リユーを内蔵した接着層用押出機、接着層用押出
機と同じ形状及び寸法を有する中間層用押出機
と、特開昭51−68670号公開公報記載と同様な7
層型ダイを用いて、実施例1に記載のエチレン・
ビニルアルコール共重合体を中間層とし、実施例
1に記載の無水マレイン酸グラフトポリプロピレ
ンを接着層、それぞれ実施例1に記載のアイソタ
クテイツク・ポリプロピレン:無水マレイン酸グ
ラフトポリプロピレン:エチレン・ビニルアルコ
ール共重合体の混合比率が16:0.2:1の混合物
100重量部に対し、密度が0.922g/c.c.、温度伝導
率が5.69×10-4m2/hrの低密度ポリエチレンを
23.5部混入した混合物をリプロ層とし、更に実施
例1に記載のアイソタクテイツクポリプロピレン
と前記低密度ポリエチレンとの比率が80:20の混
合物を内外層とし、外表面層/リプロ層/接着
層/中間層/接着層/リプロ層/内表面層からな
る7層構成の多層シートの溶融押出成形をおこな
つた。これら各押出機の押出条件、ダイ部の指示
温度は下記の通りであつた: 1 両表面層用押出機 フイード部温度:175℃ メターリング部温度:215℃ スクリユー回転数:45rpm 2 リプロ層用押出機 フイード部温度:175℃ メターリング部温度:215℃ スクリユー回転数:21rpm 3 接着層用押出機 フイード部温度:170℃ メターリング部温度:195℃ スクリユー回転数:7rpm 4 中間層用押出機 フイード部温度:180℃ メターリング部温度:235℃ スクリユー回転数:10rpm 5 多層ダイ指示温度:209℃ 6 全押出量:65Kg/hr 前記の押出条件で溶融押出された7層シート
を、一旦室温迄徐冷した。その後前記シートを
200℃で2分間加熱したのち、10秒間室温に放置
し公知のプラグアシスト真空成形法で口部の広さ
が246×186mm、高さが40mmの四角形カツプ(四角
状広口容器)を成形した。カツプ成形時における
前記シート層の温度は両表面層表面が195℃、中
間層が198℃であつた。 得られた7層容器の全体の厚みは1.35mmであ
り、外表面層:リプロ層:接着層:中間層:接着
層:リプロ層:内表面層の構成比は10:5:
0.1:1:0.1:5:10であつた。このようにして
得られた7層容器を以下Eと記す。 比較のために前記シートを200℃で2分間加熱
した直後に前述した方法によつて、前記と同じ形
状、寸法および構成比を有する四角形カツプ(四
角形広口容器)を得た。この場合、カツプ成形時
における前記シートの層の温度は両表面層表面が
199℃、中間層は199℃であつた。このようにして
得られた7層容器を以下Fと記す。 次にEおよびFの各容器の、(i)胴部肉厚の均一
性(WTV)、(ii)外観特性(App)、(iii)フランジ下
の付け根部分の剥離強度(Sp)、(iv)カツプ底部の
酸素透過度(Qo2)をそれぞれ明細書記載の方法
に従つて測定した。 結果を表−5に併せて示す。 表−5から、両表面層表面と中間層の温度差を
3℃保たせた条件で製造した容器Eは両層の温度
差が0の条件で成形された広口容器Fよりも前記
諸性能が明らかに優れていることが知られる。
[Table] Example 3 An extruder for both surface layers equipped with a built-in metering-type screw having a screw diameter of 65 mm and an effective length of 1430 mm, having the same shape and dimensions as above, and eliminating burrs generated during cup molding. An extruder for the repro layer to form the layer to be recovered (hereinafter referred to as the repro layer), an extruder for the adhesive layer with a built-in metering-type screw having a screw diameter of 45 mm and an effective length of 900 mm, and adhesive. An extruder for intermediate layer having the same shape and dimensions as the extruder for layer, and 7 similar to that described in JP-A No. 51-68670.
Using a layered die, the ethylene
A vinyl alcohol copolymer is used as an intermediate layer, and a maleic anhydride-grafted polypropylene described in Example 1 is used as an adhesive layer. Isotactic polypropylene described in Example 1: Maleic anhydride-grafted polypropylene: Ethylene-vinyl alcohol copolymer Mixture with a combined mixing ratio of 16:0.2:1
Low-density polyethylene with a density of 0.922 g/cc and a thermal conductivity of 5.69 x 10 -4 m 2 /hr per 100 parts by weight.
A mixture of 23.5 parts mixed in is used as a repro layer, and a mixture of the isotactic polypropylene described in Example 1 and the low density polyethylene in a ratio of 80:20 is used as an inner and outer layer, and outer surface layer/repro layer/adhesive layer/ A multilayer sheet with a seven-layer structure consisting of an intermediate layer/adhesive layer/repro layer/inner surface layer was melt-extruded. The extrusion conditions of each of these extruders and the indicated temperature of the die section were as follows: 1. Extruder for both surface layers Feed section temperature: 175°C Metering section temperature: 215°C Screw rotation speed: 45 rpm 2. Extrusion for repro layer Machine Feed section temperature: 175℃ Metering section temperature: 215℃ Screw rotation speed: 21rpm 3 Adhesive layer extruder Feed section temperature: 170℃ Metering section temperature: 195℃ Screw rotation speed: 7rpm 4 Intermediate layer extrusion machine Feed section temperature : 180℃ Metering part temperature: 235℃ Screw rotation speed: 10rpm 5 Multilayer die indicated temperature: 209℃ 6 Total extrusion amount: 65Kg/hr The 7-layer sheet melt-extruded under the above extrusion conditions was once slowly cooled to room temperature. . Then the said sheet
After heating at 200° C. for 2 minutes, the mixture was left at room temperature for 10 seconds, and a rectangular cup (square wide-mouth container) with a mouth width of 246×186 mm and a height of 40 mm was formed using a known plug-assisted vacuum forming method. The temperature of the sheet layer during cup forming was 195°C for both surface layers and 198°C for the intermediate layer. The total thickness of the resulting 7-layer container was 1.35 mm, and the composition ratio of outer surface layer: repro layer: adhesive layer: intermediate layer: adhesive layer: repro layer: inner surface layer was 10:5:
It was 0.1:1:0.1:5:10. The seven-layer container thus obtained will be referred to as E hereinafter. For comparison, immediately after heating the sheet at 200° C. for 2 minutes, a square cup (square wide-mouthed container) having the same shape, dimensions, and composition ratio as above was obtained by the method described above. In this case, the temperature of the layers of the sheet during cup forming is
The temperature in the middle layer was 199°C. The seven-layer container thus obtained is hereinafter referred to as F. Next, for each container E and F, (i) uniformity of body wall thickness (WTV), (ii) appearance characteristics (App), (iii) peel strength of the root part under the flange (Sp), (iv ) The oxygen permeability (Qo 2 ) at the bottom of each cup was measured according to the method described in the specification. The results are also shown in Table-5. From Table 5, it can be seen that the container E manufactured under the condition that the temperature difference between the surfaces of both surface layers and the intermediate layer was maintained at 3°C has the above-mentioned performance than the wide-mouth container F manufactured under the condition that the temperature difference between both layers is 0. It is known to be clearly superior.

【表】 実施例 4 実施例1に記載の3台の押出機及び多層ダイを
用いて、エチレン含有量が55モル%、ビニルアル
コール含有量が45モル%、実施例1に記載の
DTA法による融点が144℃、同じく酸素透過係数
(37℃、0%RH)が3.8×10-12c.c.・cm/cm2
sec・cmHgのエチレン・ビニルアルコール共重合
体を中間層とし、無水マレイン酸で変性された高
密度ポリエチレン(変性率が1.4%、温度伝導率
が6.14×10-4m2/Hf)を接着層とし、密度が
0.958g/c.c.、前記融点が132℃、温度伝導率が
7.66×10-4m2/hrの高密度ポリエチレンを両表面
層とする5層構成の多層シートの溶融押出成形を
おこなつた。 これらの各押出機の押出条件、ダイ温度は下記
の通りであつた: 1 両表面層用押出機; フイード部温度:140℃ メターリング部温度:165℃ スクリユー回転数:47rpm 2 接着層用押出機; フイード部温度:135℃ メターリング部温度:161℃ スクリユー回転数:8rpm 3 中間層用押出機; フイード部温度:160℃ メターリング部温度:201℃ スクリユー回転数:30rpm 4 多層ダイ指示温度;172℃ 5 全押出量;65Kg/hr 前記の押出条件で溶融押出された5層シートを
公知のプラグアシスト真空圧空成形法で口部の直
径が93mm、高さが53mmの円形カツプを成形した。
ダイリツプから吐出された時点から1分30秒後の
カツプ成形時における前記シート各層の温度は両
表面層表面が152℃、中間層が171℃であつた。 得られた5層カツプの全体の厚みは0.50mmであ
り、外表面層:接着層:中間層:接着層:内表面
層の構成比は5:0.1:1:0.1:5であつた。こ
のようにして得られた5層カツプを、以下Gと記
す。 次にGにカツプの、(i)胴部肉厚の均一性
(WTV)、(ii)外観特性(App)、(iii)フランジ下の
付け根部分の剥離強度(Sp)、(iv)カツプ底部の酸
素透過度(Qo2)をそれぞれ明細書記載の各方法
に従つて測定した。 結果を表−6に示す。 比較のために前述した各押出機、多層ダイスお
よび前述した各合成樹脂を使用し、下記の押出条
件: 1 両表面層用押出機; フイード部温度:140℃ メターリング部温度:194℃ スクリユー回転数:44rpm 2 接着層用押出機; フイード部温度:135℃ メターリング部温度:161℃ スクリユー回転数:8rpm 3 中間層用押出機; フイード部温度:160℃ メターリング部温度:201℃ スクリユー回転数:30rpm 4 多層ダイ温度;184℃ 5 全押出量;66Kg/hr 前記の押出条件で溶融押出された5層シートを
公知の真空成形法で口部の直径が0.50mm、高さが
53mmの円形カツプを成形した。ダイリツプより吐
出された時点から1分30秒後のカツプ成形時にお
ける前記シート各層の温度は両表面層表面が172
℃、中間層が172℃であつた。 得られた5層カツプの全体の厚みは0.50mmであ
り、外表面層:接着層:中間層:接着層:内表面
層の構成比は5:0.1:1:0.1:5であつた。こ
のようにして得られた5層カツプを、以下Hと記
す。 次にHカツプの、(i)胴部肉厚部の均一性
(WTV)、(ii)外観特性(App)、(iii)フランジ下の
付け根部分の剥離強度(Sp)、(iv)カツプ底部の酸
素透過度(Qo2)をそれぞれ明細書記載の方法に
従つて測定した。 結果を表−6に併せて示す。
[Table] Example 4 Using the three extruders and multilayer die described in Example 1, the ethylene content was 55 mol%, the vinyl alcohol content was 45 mol%, and the
The melting point according to the DTA method is 144℃, and the oxygen permeability coefficient (37℃, 0%RH) is 3.8×10 -12 cc・cm/cm 2
The middle layer is ethylene/vinyl alcohol copolymer with sec/cmHg, and the adhesive layer is high-density polyethylene modified with maleic anhydride (modification rate: 1.4%, temperature conductivity: 6.14×10 -4 m 2 /Hf). and the density is
0.958g/cc, melting point is 132℃, temperature conductivity is
A multilayer sheet with a five-layer structure having both surface layers of high-density polyethylene of 7.66×10 -4 m 2 /hr was melt-extruded. The extrusion conditions and die temperature of each of these extruders were as follows: 1. Extruder for both surface layers; Feed section temperature: 140°C Metering section temperature: 165°C Screw rotation speed: 47 rpm 2. Extruder for adhesive layer ; Feed section temperature: 135℃ Metering section temperature: 161℃ Screw rotation speed: 8 rpm 3 Extruder for intermediate layer; Feed section temperature: 160℃ Metering section temperature: 201℃ Screw rotation speed: 30rpm 4 Multilayer die indicated temperature: 172℃ 5. Total extrusion rate: 65 Kg/hr The five-layer sheet melt-extruded under the above extrusion conditions was molded into a circular cup with a mouth diameter of 93 mm and a height of 53 mm using a known plug-assisted vacuum-pressure forming method.
The temperature of each layer of the sheet at the time of cup forming, 1 minute and 30 seconds after being discharged from the die lip, was 152°C for both surface layers and 171°C for the middle layer. The total thickness of the resulting five-layer cup was 0.50 mm, and the composition ratio of outer surface layer:adhesive layer:intermediate layer:adhesive layer:inner surface layer was 5:0.1:1:0.1:5. The five-layer cup thus obtained is hereinafter referred to as G. Next, G shows the cup's (i) body wall thickness uniformity (WTV), (ii) appearance characteristics (App), (iii) peel strength of the base under the flange (Sp), and (iv) cup bottom. The oxygen permeability (Qo 2 ) of each sample was measured according to each method described in the specification. The results are shown in Table-6. For comparison, the extruders, multilayer dies, and synthetic resins described above were used under the following extrusion conditions: 1 Extruder for both surface layers; Feed section temperature: 140°C Metering section temperature: 194°C Screw rotation speed : 44rpm 2 Extruder for adhesive layer; Feed section temperature: 135℃ Metering section temperature: 161℃ Screw rotation speed: 8rpm 3 Extruder for intermediate layer; Feed section temperature: 160℃ Metering section temperature: 201℃ Screw rotation speed: 30rpm 4 Multilayer die temperature: 184℃ 5 Total extrusion amount: 66Kg/hr The 5-layer sheet melt-extruded under the above extrusion conditions was molded using a known vacuum forming method to form a sheet with a mouth diameter of 0.50mm and a height.
A 53mm circular cup was molded. The temperature of each layer of the sheet during cup forming 1 minute and 30 seconds after being discharged from the die lip was 172°C on both surface layers.
℃, and the middle layer was 172℃. The total thickness of the resulting five-layer cup was 0.50 mm, and the composition ratio of outer surface layer:adhesive layer:intermediate layer:adhesive layer:inner surface layer was 5:0.1:1:0.1:5. The five-layer cup thus obtained is hereinafter referred to as H. Next, we will look at the H cup's (i) uniformity of the body wall thickness (WTV), (ii) appearance characteristics (App), (iii) peel strength of the root part under the flange (Sp), and (iv) cup bottom. The oxygen permeability (Qo 2 ) of each sample was measured according to the method described in the specification. The results are also shown in Table-6.

【表】 実施例 5 スクリユー直径が65mm、同有効長さが1430mmの
寸法を有するメターリング型スクリユーを備えた
内表面層用押出機、前記と同じ形状及び寸法を有
する外表面層用押出機、スクリユー直径が45mm、
同有効長さが900mmの寸法を有するメターリング
型スクリユーを内蔵した接着層用押出機、接着層
用押出機と同じ形状及び寸法を有する中間層用押
出機及び5層型のT−ダイを用いて、ナイロン
6・6含有量が10モル%のナイロン6−6・6共
重合体(融点181℃、温度伝導率が3.40×10-4
m2/hr)を中間層とし、実施例1に記載の無水マ
レイン酸グラフトポリプロピレンと密度が1.18
g/c.c.、温度伝導率が1.56×10-4m2/hrの熱可塑
性ポリウレタンとの重量比が60:40の混合物を接
着層とし、実施例1に記載のアイソタクテイツク
ポリプロピレン(PP)を一方の表面層および実
施例4に記載の高密度ポリエチレン(HDPE)を
他方の表面層として設定された外層(PP)/接
着層/中間層/接着層/内層(HDPE)からなる
5層構成の多層シートの溶融押出成形をおこなつ
た。これら各押出機の押出条件、ダイ部指示温度
は下記の通りであつた: 1 外表面層用押出機 フイード部温度:180℃ メターリング部温度:220℃ スクリユー回転数:25rpm 2 内表面層用押出機 フイード部温度:140℃ メターリング部温度:165℃ スクリユー回転数:30rpm 3 接着層用押出機 フイード部温度:135℃ メターリング部温度:160℃ スクリユー回転数:7rpm 4 中間層用押出機 フイード部温度:180℃ メターリング部温度:235℃ スクリユー回転数:10rpm 5 多層ダイ指示温度:208℃ 6 全押出量:66Kg/hr 前記の押出条件で溶融押出された5層シートを
公知のプラグアシスト真空圧空成形法で口部の直
径が62mm、高さが36mmの円形カツプを成形した。
ダイリツプから吐出された時点から6分間放置後
のカツプ成形時における前記シート各層の温度は
一方の表面層(PP)表面が175℃、他方の表面層
(HDPE)表面が174℃、中間層が191℃であつた。 得られた5層カツプの全体の厚みは0.25mmであ
り、外表面層:接着層:中間層:接着層:内表面
層の構成比は20:0.1:1:0.1:15であつた。こ
のようにして得られた5層カツプを、以下Iと記
す。 比較のために、中間層用押出機のメターリング
部の設定温度を200℃とし、同じくスクリユー回
転数を12rpmとしたほかは押出条件を前記と同一
にして(但し、ダイ部指示温度は207℃と観測さ
れた。)前記と同じ5層シートの溶融押出しをお
こない、前記と同じ成形法で前記と同じ形状、寸
法、構成比を有する円形の多層カツプを得た。こ
の場合、ダイリツプから吐出された時点から6分
間放置後のカツプ成形時における前記シート各層
の温度は外表面層表面が175℃、内表面層表面が
174℃、中間層が175℃であつた。以下このカツプ
をJと記す。 次にIおよびJの各カツプの、(i)胴部肉厚の均
一性(WTV)、(ii)外観特性(App)、(iii)フランジ
下の付け根部分の剥離強度(Sp)、(iv)カツプ底部
の酸素透過度(Qo2)をそれぞれ明細書記載の方
法に従つて測定した。 結果を表−7にそれぞれ示す。
[Table] Example 5 An extruder for an inner surface layer equipped with a metering type screw having a screw diameter of 65 mm and an effective length of 1430 mm, an extruder for an outer surface layer having the same shape and dimensions as above, and a screw Diameter is 45mm,
Using an adhesive layer extruder with a built-in metering screw with an effective length of 900 mm, an intermediate layer extruder with the same shape and dimensions as the adhesive layer extruder, and a 5-layer T-die. , a nylon 6-6/6 copolymer with a nylon 6/6 content of 10 mol% (melting point 181°C, thermal conductivity 3.40×10 -4
m 2 /hr) was used as the intermediate layer, and the maleic anhydride grafted polypropylene described in Example 1 and the density were 1.18.
g/cc, and a thermoplastic polyurethane with a temperature conductivity of 1.56×10 -4 m 2 /hr in a weight ratio of 60:40 was used as the adhesive layer, and the isotactic polypropylene (PP) described in Example 1 was used as the adhesive layer. A five-layer structure consisting of outer layer (PP)/adhesive layer/intermediate layer/adhesive layer/inner layer (HDPE) with one surface layer and the high-density polyethylene (HDPE) described in Example 4 as the other surface layer. We performed melt extrusion molding of multilayer sheets. The extrusion conditions and die section temperature for each of these extruders were as follows: 1. Extruder for outer surface layer Feed section temperature: 180°C Metering section temperature: 220°C Screw rotation speed: 25 rpm 2. Extrusion for inner surface layer Machine Feed section temperature: 140℃ Metering section temperature: 165℃ Screw rotation speed: 30rpm 3 Adhesive layer extruder Feed section temperature: 135℃ Metering section temperature: 160℃ Screw rotation speed: 7rpm 4 Intermediate layer extrusion machine Feed section temperature : 180℃ Metering part temperature: 235℃ Screw rotation speed: 10rpm 5 Multilayer die indicated temperature: 208℃ 6 Total extrusion amount: 66Kg/hr The 5-layer sheet melt-extruded under the above extrusion conditions was formed by known plug-assisted vacuum pressure forming. A circular cup with a mouth diameter of 62 mm and a height of 36 mm was molded using the method.
The temperature of each layer of the sheet during cup forming after being left for 6 minutes after being discharged from the die lip was 175℃ for one surface layer (PP) surface, 174℃ for the other surface layer (HDPE) surface, and 191℃ for the middle layer. It was warm at ℃. The total thickness of the resulting five-layer cup was 0.25 mm, and the composition ratio of outer surface layer: adhesive layer: intermediate layer: adhesive layer: inner surface layer was 20:0.1:1:0.1:15. The five-layer cup thus obtained is hereinafter referred to as I. For comparison, the extrusion conditions were the same as above except that the temperature of the metering part of the extruder for the intermediate layer was 200°C and the screw rotation speed was 12 rpm (however, the indicated temperature of the die part was 207°C). ) The same five-layer sheet as above was melt-extruded, and a circular multilayer cup having the same shape, dimensions, and composition ratio as above was obtained by the same molding method as above. In this case, the temperature of each layer of the sheet during cup forming after being left for 6 minutes after being discharged from the die lip was 175°C on the surface of the outer surface layer and 175°C on the surface of the inner surface layer.
The temperature was 174°C, and the middle layer was 175°C. Hereinafter, this cup will be referred to as J. Next, for each cup of I and J, (i) uniformity of body wall thickness (WTV), (ii) appearance characteristics (App), (iii) peel strength of the root part under the flange (Sp), (iv ) The oxygen permeability (Qo 2 ) at the bottom of each cup was measured according to the method described in the specification. The results are shown in Table 7.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放置時間と多層シートの両表面層及び
中間層の温度との関係を示す線図である。
FIG. 1 is a diagram showing the relationship between the standing time and the temperature of both surface layers and the intermediate layer of a multilayer sheet.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素透過係数が5.5×10-12c.c.・cm/cm2・sec・
cmHg(37℃)以下の酸素バリヤー性熱可塑性樹脂
の中間層と、オレフイン系樹脂の両表面層とをオ
レフイン系樹脂よりも小さい温度伝導率を有する
樹脂接着剤層を介して同時溶融押出によりシート
の形に押出し、押出された溶融状態にある多層シ
ートを、該シートの両表面層を構成するオレフイ
ン系樹脂の融点以上の温度で且つ中間層の温度が
両表面層の表面温度よりも2乃至80℃高い温度条
件となる迄徐冷し、次いでこの徐冷シートをカツ
プの形に熱成形することを特徴とする多層プラス
チツク容器の製造方法。
1 Oxygen permeability coefficient is 5.5×10 -12 cc・cm/cm 2・sec・
A sheet is formed by simultaneous melt extrusion of an intermediate layer of thermoplastic resin with oxygen barrier properties of cmHg (37℃) or less and both surface layers of olefin resin via a resin adhesive layer that has a lower temperature conductivity than the olefin resin. The extruded multilayer sheet in a molten state is heated to a temperature higher than the melting point of the olefinic resin constituting both surface layers of the sheet, and the temperature of the intermediate layer is 2 to 2 times higher than the surface temperature of both surface layers. A method for producing a multilayer plastic container, which comprises slow cooling until the temperature is 80°C higher, and then thermoforming the slow cooling sheet into a cup shape.
JP2022981A 1981-02-16 1981-02-16 Manufacture of multilayer plastic vessel Granted JPS57135110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022981A JPS57135110A (en) 1981-02-16 1981-02-16 Manufacture of multilayer plastic vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022981A JPS57135110A (en) 1981-02-16 1981-02-16 Manufacture of multilayer plastic vessel

Publications (2)

Publication Number Publication Date
JPS57135110A JPS57135110A (en) 1982-08-20
JPS634498B2 true JPS634498B2 (en) 1988-01-29

Family

ID=12021336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022981A Granted JPS57135110A (en) 1981-02-16 1981-02-16 Manufacture of multilayer plastic vessel

Country Status (1)

Country Link
JP (1) JPS57135110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136597A (en) * 1990-09-27 1992-05-11 Kajima Corp Insulating structure for roof of underground tank

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215864A (en) * 1983-05-25 1984-12-05 株式会社ジェイエスピー Manufacture of multilayer structure material
US4931121A (en) * 1985-05-23 1990-06-05 The Dow Chemical Company Process for forming a plastic article from a plurality of layers of thermoplastic material
ITVR20130176A1 (en) * 2013-07-25 2015-01-26 Sacmi Imola Sc PLANT FOR THE PRODUCTION AND PRINTING OF CONFORMED BODIES

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039609A (en) * 1972-10-25 1977-08-02 Bellaplast Gmbh Method for the manufacture of thin-walled shaped articles of thermoplastic material
JPS52120074A (en) * 1976-03-31 1977-10-08 Toppan Printing Co Ltd Container producing method
JPS5322568A (en) * 1976-08-12 1978-03-02 Sekisui Chemical Co Ltd Method of producing container
JPS5377287A (en) * 1977-11-09 1978-07-08 Toyo Seikan Kaisha Ltd Orientation molding sheet
JPS5440870A (en) * 1977-07-25 1979-03-31 Bellaplast Gmbh Method of manufacturing thin wall product from crystalline thermoplastic material by heat molding
JPS55135620A (en) * 1979-04-11 1980-10-22 Kodama Kagaku Kogyo Kk Forming of thermoplastic sheet continuously from extrusion
JPS5619718A (en) * 1979-07-25 1981-02-24 Tokan Kogyo Co Ltd Preparation of multiple-layered thermoforming vessel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160901U (en) * 1974-11-07 1976-05-13

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039609A (en) * 1972-10-25 1977-08-02 Bellaplast Gmbh Method for the manufacture of thin-walled shaped articles of thermoplastic material
JPS52120074A (en) * 1976-03-31 1977-10-08 Toppan Printing Co Ltd Container producing method
JPS5322568A (en) * 1976-08-12 1978-03-02 Sekisui Chemical Co Ltd Method of producing container
JPS5440870A (en) * 1977-07-25 1979-03-31 Bellaplast Gmbh Method of manufacturing thin wall product from crystalline thermoplastic material by heat molding
JPS5377287A (en) * 1977-11-09 1978-07-08 Toyo Seikan Kaisha Ltd Orientation molding sheet
JPS55135620A (en) * 1979-04-11 1980-10-22 Kodama Kagaku Kogyo Kk Forming of thermoplastic sheet continuously from extrusion
JPS5619718A (en) * 1979-07-25 1981-02-24 Tokan Kogyo Co Ltd Preparation of multiple-layered thermoforming vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136597A (en) * 1990-09-27 1992-05-11 Kajima Corp Insulating structure for roof of underground tank

Also Published As

Publication number Publication date
JPS57135110A (en) 1982-08-20

Similar Documents

Publication Publication Date Title
US4973625A (en) Plastic composite barrier structures
JPH04305447A (en) Non-isothermal crystallizable adhesive composition for multilayer laminated structure
USRE34537E (en) Plastic composite barrier structures
US20070031690A1 (en) Multilayer coextruded films including frangible intralaminar bonding forces
AU740936B2 (en) Biaxially oriented fluoropolymer films
JPS5918223B2 (en) Film laminate made of nylon and olefin polymer
US4401256A (en) Laminar thermoplastic films, bags thereof
JPH0339544B2 (en)
JPS63230757A (en) Resin composition and multi-layer structure prepared by using the same
JPS63168449A (en) Resin composition and multilayer structure prepared therefrom
JPS63295641A (en) Packagine film or sheet
KR100595352B1 (en) Vinylidene chloride polymer compositions, and the structure and rigid container comprising the same
US5039565A (en) Plastic composite barrier structures
JPS634498B2 (en)
AU617714B2 (en) Film extrusion of polyamides
EP1022305B1 (en) Saponified ethylene-vinyl acetate copolymer and laminate
JPH0647644B2 (en) Thermoforming resin composition
US5506297A (en) Resin composition and melt-extruded article formed therefrom
JPS63237924A (en) Manufacture of multi-layer vessel
JPS60180813A (en) Manufacture of plastic molding
JPS6213894B2 (en)
JPH0735108B2 (en) Thermoformed product
JPS6226907B2 (en)
JPS5878727A (en) Preparation of polyamide laminated oriented film
JPH06125751A (en) Porous sheet for food-packaging