JPS634434B2 - - Google Patents

Info

Publication number
JPS634434B2
JPS634434B2 JP56004201A JP420181A JPS634434B2 JP S634434 B2 JPS634434 B2 JP S634434B2 JP 56004201 A JP56004201 A JP 56004201A JP 420181 A JP420181 A JP 420181A JP S634434 B2 JPS634434 B2 JP S634434B2
Authority
JP
Japan
Prior art keywords
voltage
motor
speed
pulse
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56004201A
Other languages
Japanese (ja)
Other versions
JPS57119686A (en
Inventor
Takeji Uchida
Hajime Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP56004201A priority Critical patent/JPS57119686A/en
Publication of JPS57119686A publication Critical patent/JPS57119686A/en
Publication of JPS634434B2 publication Critical patent/JPS634434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • H02P7/2913Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電動機制御装置に関し、更に詳しくは
チヨツパ式電動機速度制御装置の周波数帰還方式
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a motor control device, and more particularly to an improvement in the frequency feedback method of a chopper type motor speed control device.

〔従来の技術〕[Conventional technology]

電動機の回転速度検出器としては従来よりタコ
メータジエネレータが使用されるのが一般的であ
つたが、回転速度検出器のドリフトを解消するた
め、あるいは低コスト化のために、最近ではパル
スジエネレータを用いた周波数帰還方式が採用さ
れる傾向にある。
Traditionally, a tachometer generator has been commonly used as a rotational speed detector for electric motors, but in recent years, pulse generators have been used to eliminate the drift of rotational speed detectors or to reduce costs. There is a tendency for a frequency feedback method using .

従来の周波数帰還方式のチヨツパ式電動機速度
制御装置の一般的構成を第1図に示す。この装置
においては、電動機11の回転速度をパルスジエ
ネレータ12により検出し、回転速度に比例した
周波数のパルスを得、このパルス信号をF/V変
換器13により周波数に比例したアナログ電圧に
変換する。そして、このアナログ電圧と速度指令
電圧とを偏差増幅回路14に入力してその偏差に
比例した出力を得る。この出力と、波形発生回路
15から出力される鋸歯状波又は三角波とを比較
器16により比較して電動機11の回転速度に比
例したパルス幅のパルス、すなわちパルス幅変調
されたパルス信号を得、このパルスによりチヨツ
パトランジスタ17をオンオフ駆動して電動機1
1を定速度制御する。これが従来の一般的なチヨ
ツパ方式である。
FIG. 1 shows the general configuration of a conventional frequency feedback chopper motor speed control device. In this device, the rotational speed of the electric motor 11 is detected by a pulse generator 12 to obtain pulses with a frequency proportional to the rotational speed, and this pulse signal is converted by an F/V converter 13 into an analog voltage proportional to the frequency. . Then, this analog voltage and the speed command voltage are input to the deviation amplification circuit 14 to obtain an output proportional to the deviation. This output is compared with a sawtooth wave or a triangular wave output from the waveform generation circuit 15 by a comparator 16 to obtain a pulse with a pulse width proportional to the rotation speed of the electric motor 11, that is, a pulse width modulated pulse signal, This pulse drives the chopper transistor 17 on and off to drive the motor 1.
1 is controlled at a constant speed. This is the conventional general tipping method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来の方式においては、パルスジエネレー
タ12により出力されるパルス信号の周波数を、
一度アナログ電圧信号に変換するためのF/V変
換器13及びパルス幅変調を行うための鋸歯状波
又は三角波の波形発生回路15を必要とするた
め、回路構成が複雑且つ高価となり、汎用の電動
機速度制御装置には採用し難いという問題があつ
た。
In this conventional method, the frequency of the pulse signal output by the pulse generator 12 is
Since it requires an F/V converter 13 to convert the signal into an analog voltage signal and a sawtooth or triangular waveform generation circuit 15 to perform pulse width modulation, the circuit configuration becomes complicated and expensive, and it is difficult to use a general-purpose electric motor. There was a problem in that it was difficult to apply it to a speed control device.

本発明は、このような従来の問題点に鑑みてな
されたものであり、回路の簡素化及び低コスト化
を図ることを目的とする。
The present invention has been made in view of these conventional problems, and aims to simplify the circuit and reduce costs.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明の電動機制御
装置は、電動機の回転速度を検出するパルスジエ
ネレータからのパルス周波数に応じて交互にオン
オフされるスイツチS1及びS2と該スイツチS1及び
S2の接続点に一端が接続されるコンデンサC1
からなる定電荷スイツチング回路9と、前記スイ
ツチS1のオン時に前記コンデンサC1に定電荷を
充電する定電圧源8と、前記スイツチS2のオン時
に前記コンデンサC1の蓄積電荷を入力する比例
積分増幅器4と、該比例積分増幅器4から出力さ
れた鋸歯状波状の速度帰還電圧Vfと前記定電圧
源に接続された速度指令器からの速度指令電圧
Vsとを比較する比較器5と、該比較器5から出
力されたパルス信号でオンオフする電動機駆動用
チヨツパトランジスタとを備えたことを特徴とす
る。
To achieve this objective, the motor control device of the present invention includes switches S1 and S2 that are turned on and off alternately according to the pulse frequency from a pulse generator that detects the rotational speed of the motor ;
a constant charge switching circuit 9 consisting of a capacitor C 1 whose one end is connected to the connection point of the switch S 2 ; a constant voltage source 8 that charges the capacitor C 1 with a constant charge when the switch S 1 is turned on; a proportional-integral amplifier 4 which inputs the accumulated charge of the capacitor C1 when 2 is turned on; a sawtooth-wave speed feedback voltage V f outputted from the proportional-integral amplifier 4; and a speed command device connected to the constant voltage source. Speed command voltage from
It is characterized by comprising a comparator 5 that compares the voltage with V s and a chopper transistor for driving a motor that is turned on and off by the pulse signal output from the comparator 5.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて具
体的に説明する。第2図は本発明の実施例を示す
回路図である。図中1は電動機であり、その回転
速度をパルスジエネレータ2によつて検出するよ
うにしている。3はパルス分配回路であり、パル
スジエネレータ2のパルス出力を電子スイツチ
S1,S2に与えて、これらの電子スイツチS1,S2
交互にオンオフされるように制御する。4は比例
積分増幅器であり、演算増幅器OP1、抵抗器R1
びコンデンサC2からなる。5は比較器、6はチ
ヨツパトランジスタTr1を駆動するチヨツパトラ
ンジスタドライブ回路、7は整流器を示してい
る。前記電子スイツチS1とS2との接続点には、ホ
ールド用コンデンサC1の一端が接続されており、
また電子スイツチS1の他端には電圧Esの定電圧源
8が接続されている。そして、これらの電子スイ
ツチS1,S2、ホールド用コンデンサC1及び定電
圧源8によつて定電荷スイツチング回路9を形成
している。
Hereinafter, the present invention will be specifically described based on embodiments shown in the drawings. FIG. 2 is a circuit diagram showing an embodiment of the present invention. In the figure, reference numeral 1 denotes an electric motor, the rotational speed of which is detected by a pulse generator 2. 3 is a pulse distribution circuit, which connects the pulse output of pulse generator 2 to an electronic switch.
S 1 and S 2 to control these electronic switches S 1 and S 2 to be turned on and off alternately. 4 is a proportional-integral amplifier, consisting of an operational amplifier OP 1 , a resistor R 1 and a capacitor C 2 . 5 is a comparator, 6 is a chopper transistor drive circuit for driving the chopper transistor Tr1 , and 7 is a rectifier. One end of a hold capacitor C1 is connected to the connection point between the electronic switches S1 and S2 ,
Further, a constant voltage source 8 having a voltage Es is connected to the other end of the electronic switch S1 . These electronic switches S 1 and S 2 , the hold capacitor C 1 and the constant voltage source 8 form a constant charge switching circuit 9 .

第2図において、チヨツパ式の電圧制御回路
は、トランジスタTr1のオン時間をT1、オンオフ
の周期をTとし、入力電圧、出力電圧をそれぞれ
Eip(平均値)とすれば、電動機1に、p
Ei・T1/Tなる電圧を与えるように構成される。
電動機1の回転数に比例した周波数のパルス信号
は、第3図aに示される波形となるが、このパル
スを分配回路3により半サイクル毎にスイツチ
S1,S2を交互にオンオフする信号に変換する。こ
のとき、スイツチS1,S2が同時にオンになる期間
を避けるために、t1の時間だけ、同時にオフにな
る期間が存在するように動作させる。
In Fig. 2, the chopper type voltage control circuit has an on-time of transistor Tr 1 as T 1 , an on-off period as T , and an input voltage and an output voltage, respectively.
If E i , p (average value), then for motor 1, p =
It is configured to apply a voltage of E i ·T 1 /T.
A pulse signal with a frequency proportional to the rotation speed of the electric motor 1 has the waveform shown in FIG. 3a, and this pulse is switched every half cycle by the distribution circuit 3.
Convert S 1 and S 2 into signals that alternately turn on and off. At this time, in order to avoid a period in which the switches S 1 and S 2 are turned on at the same time, the switches are operated so that there is a period in which they are turned off at the same time for the time t 1 .

第3図bはスイツチS1のスイツチパルス、第3
図cはスイツチS2のスイツチパルスを示す。スイ
ツチS1がオンになると(スイツチS2はオフ状態)、
コンデンサC1には、Q1=EsC1なる電荷が蓄積さ
れ(Esは直流電源8の端子電圧)、次にスイツチ
S1がオフ、スイツチS2がオンとなつた期間、その
電荷は演算増幅器OP1の加算点に加えられ、放電
される。したがつて、充放電によるコンデンサ
C1の端子電圧は第3図dに示すようになる。
Figure 3b shows the switch pulse of switch S1 , the third
Figure c shows the switch pulse of switch S2 . When switch S1 is turned on (switch S2 is off),
A charge Q 1 = E s C 1 is accumulated in the capacitor C 1 (E s is the terminal voltage of the DC power supply 8), and then the switch
During the period when S 1 is off and switch S 2 is on, the charge is added to the summing point of operational amplifier OP 1 and discharged. Therefore, the capacitor by charging and discharging
The terminal voltage of C1 is as shown in Figure 3d.

演算増幅器OP1の加算点に流れ込む電流の平均
値は1=EsC1/T=EsC1f(fは繰り返し周波数)
となり、この平均電流が演算増幅器OP1の帰還抵
抗器R1に流れ、したがつて演算増幅器OP1の平均
出力電圧はf=−EsC1R1fとなる。
The average value of the current flowing into the addition point of operational amplifier OP 1 is 1 = E s C 1 /T = E s C 1 f (f is the repetition frequency)
This average current flows through the feedback resistor R 1 of the operational amplifier OP 1 , and therefore the average output voltage of the operational amplifier OP 1 becomes f = −E s C 1 R 1 f.

このときの出力電圧Vfの波形を更に詳細に説
明すると、スイツチS2がオンになつた時にコンデ
ンサC1に蓄積されていた電荷は、電荷不変則に
よりコンデンサC2に移され、したがつて出力電
圧は次式で示される電圧ΔVfだけステツプ的に変
化する。
To explain the waveform of the output voltage V f at this time in more detail, the charge accumulated in the capacitor C 1 when the switch S 2 was turned on is transferred to the capacitor C 2 due to charge invariance; The output voltage changes stepwise by a voltage ΔV f expressed by the following equation.

EsC1+ΔVfC2=0 ∴ΔVf=−EsC1/C2 この電圧変化分ΔVfは次にスイツチS2がオンに
なる時まで、抵抗器R1を通して放電される。し
たがつて、出力電圧Vfは、第3図eに示される
ように平均電圧は−EsC1R1fで、その上に鋸歯状
波が重畳された波形となる。この電圧Vfと指令
電圧Vs(第3図f参照)とは比較器5で比較さ
れ、Vfの波形の鋸歯状波部分の電圧の絶対値が
指令電圧Vsよりも大なるときはトランジスタTr1
をオフに、小なるときはオンにするように、トラ
ンジスタドライブ回路6が構成される。すなわ
ち、指令電圧Vsと出力電圧Vfとが平均値におい
て等しくなるように、トランジスタTr1のデユー
テイが制御される。
E s C 1 +ΔV f C 2 =0 ∴ΔV f =−E s C 1 /C 2 This voltage change ΔV f is discharged through resistor R 1 until the next time switch S 2 is turned on. Therefore, the output voltage V f has a waveform in which the average voltage is −E s C 1 R 1 f and a sawtooth wave is superimposed thereon, as shown in FIG. 3e. This voltage V f and the command voltage V s (see Fig. 3 f) are compared by a comparator 5, and when the absolute value of the voltage of the sawtooth wave portion of the waveform of V f is larger than the command voltage V s , Transistor Tr 1
The transistor drive circuit 6 is configured to turn off the current and turn on when the current is small. That is, the duty of the transistor Tr 1 is controlled so that the command voltage V s and the output voltage V f are equal in average value.

したがつて、Vs=EsC1R1fなる関係が保たれる
ように、制御が行われることになる。ここで、α
=C1R1fと置くと、前式はVs=αEsとなり、指令
電圧Vsは直流電源8の端子電圧Esを分圧した電
圧で与えられる。
Therefore, control is performed so that the relationship V s =E s C 1 R 1 f is maintained. Here, α
= C 1 R 1 f, the previous equation becomes V s = αE s , and the command voltage V s is given by a voltage obtained by dividing the terminal voltage E s of the DC power supply 8.

前記パルス周波数fは電動機1の回転数Nと完
全に比例関係にあるので、その比例定数をKとす
るとf=KNなる関係で表され、したがつて α=R1C1KN となる。速度指令電圧Vsは端子電圧Esの分圧比
αで与えられ、一定であるから、回転数Nと
R1C1Kとは逆比例関係となる。したがつて、ド
リフトの原因はR1C1のみが大きな要素となる。
この対策としては、正の温度係数を持つマイラコ
ンデンサ及び負の温度係数を持つカーボン皮膜抵
抗器を使用することにより、簡単にしかもかなり
の高精度で温度特性を補償することができる。
Since the pulse frequency f is completely proportional to the rotational speed N of the electric motor 1, if the proportionality constant is K, it is expressed by the relationship f=KN, and therefore α=R 1 C 1 KN. The speed command voltage V s is given by the voltage division ratio α of the terminal voltage E s and is constant, so the rotation speed N and
It is inversely proportional to R 1 C 1 K. Therefore, R 1 C 1 is the only major factor causing drift.
As a countermeasure for this, by using a Mylar capacitor with a positive temperature coefficient and a carbon film resistor with a negative temperature coefficient, the temperature characteristics can be compensated simply and with a fairly high degree of accuracy.

第3図g及びhは比較器5の出力及びトランジ
スタTr1のオンオフ動作を示すものであり、トラ
ンジスタTr1の出力はLC回路により平滑され、第
3図iに示すような、平均値p=EiT1/Tの出
力電圧が電動機1に与えられる。
Figures 3g and 3h show the output of the comparator 5 and the on/off operation of the transistor Tr 1. The output of the transistor Tr 1 is smoothed by the LC circuit, and the average value p = p = 1, as shown in Figure 3i. An output voltage of E i T 1 /T is applied to the motor 1.

第4図により電動機の回転数が制御される原理
を更に説明する。初め、指令電圧Vsとフイード
バツク電圧Vfとが平衡した状態では、パルス幅
変調比がT1/Tとなるように制御され、電動機
1はp=Ei・T1/Tなる電圧で駆動されている
ものとする。
The principle of controlling the rotational speed of the electric motor will be further explained with reference to FIG. Initially, when the command voltage V s and the feedback voltage V f are in equilibrium, the pulse width modulation ratio is controlled to be T 1 /T, and the motor 1 is driven at a voltage of p = E i ·T 1 /T. It is assumed that

次に時刻t0で指令電圧をV′sに変化させたとす
ると、比較器5の出力が変化し、過渡的にT1t
Ttのデユーテイー比が大きくなり、電動機1に
与える電圧が高くなつて、回転数が上昇する。最
終的には、フイードバツク電圧Vfの平均値f
指令電圧V′sに等しくなり、出力電圧E0(t)の平
均値も′0=EiT′1/T′なるデユーテイ比T′1
T′を与えるように制御が行われる。第4図aは
比較器5の入力である指令電圧とフイードバツク
電圧の関係を示す波形図、bはトランジスタTr1
のオンオフ動作を示す波形図、cは電動機1への
供給電圧の変化を示す波形図である。
Next, if the command voltage is changed to V′ s at time t 0 , the output of comparator 5 changes and transiently T 1t /
The duty ratio of T t increases, the voltage applied to the electric motor 1 increases, and the rotational speed increases. Eventually, the average value f of the feedback voltage V f becomes equal to the command voltage V' s , and the average value of the output voltage E 0 (t) also becomes a duty ratio T' of ' 0 =E i T' 1 /T'. 1 /
Control is performed to give T′. Figure 4a is a waveform diagram showing the relationship between the command voltage input to the comparator 5 and the feedback voltage, and b is a waveform diagram of the transistor Tr 1 .
c is a waveform diagram showing the on/off operation of the motor 1, and c is a waveform diagram showing changes in the voltage supplied to the motor 1.

なお、前記の説明では、直流電動機の電圧制御
の例を示したが、VSモータの接手制御による速
度制御又は直流電動機の界磁制御による速度制御
装置にも適用できることは言うまでもない。
In the above description, an example of voltage control of a DC motor was shown, but it goes without saying that the present invention can also be applied to a speed control device using joint control of a VS motor or a speed control device using field control of a DC motor.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、定
電荷スイツチング回路を用いることにより、電動
機の回転速度に比例した直流電圧に重畳した鋸歯
状波状の電圧を発生させ、その電圧と基準速度に
対応した基準電圧とを比較器により比較してパル
ス信号を得、このパルス信号でチヨツパトランジ
スタドライブ回路を構成するトランジスタをオン
オフするようにしている。これにより、従来の
F/V変換器の機能と波形発生回路の機能を併有
させることができ、したがつて波形発生回路及び
偏差増幅回路とを省略できる。このため、回路の
簡単化及び低コスト化を図ることができる。ま
た、本発明では、速度指令電圧を、定電荷スイツ
チング回路の基準電圧を分圧したもの、あるいは
共通の電源とするようにしている。これにより、
基準電圧のドリフトが電動機の速度ドリフトとし
て現れないため、従来のような複雑な低ドリフト
電源回路ではなく、簡単なツエナーダイオードを
用いた電源を用いることができ、低コスト化を図
ることができる。
As explained above, in the present invention, by using a constant charge switching circuit, a sawtooth waveform voltage superimposed on a DC voltage proportional to the rotational speed of the motor is generated, and a voltage corresponding to that voltage and a reference speed is generated. A pulse signal is obtained by comparing it with a reference voltage using a comparator, and this pulse signal is used to turn on and off the transistors forming the chopper transistor drive circuit. As a result, the functions of a conventional F/V converter and a waveform generation circuit can be combined, and the waveform generation circuit and deviation amplification circuit can therefore be omitted. Therefore, it is possible to simplify the circuit and reduce costs. Further, in the present invention, the speed command voltage is a voltage obtained by dividing the reference voltage of the constant charge switching circuit, or a common power source. This results in
Since the drift of the reference voltage does not appear as a speed drift of the motor, a power supply using a simple Zener diode can be used instead of the conventional complicated low-drift power supply circuit, and costs can be reduced.

さらに、従来の電動機制御装置においては、電
動機の回転数は回転数に比例した周波数として検
出され、高速回転時は高速でパルス幅変調を行う
ことにより応答速度の良い速度制御が可能である
が、低速時においては速度変化は期間周波数の1
周期の遅れ後検出されるので、応答性は悪くな
る。これに対して、本発明の電動機制御装置で
は、電動機の回転数に比例した周波数の鋸歯状波
を発生させているので応答性が向上し、且つチヨ
ツパトランジスタのスイツチング損失を少なくす
ることができる。これにより、従来のパルス幅変
調方式に比べ、低速時の制御性が良好となる。
Furthermore, in conventional motor control devices, the rotational speed of the motor is detected as a frequency proportional to the rotational speed, and when the motor rotates at high speed, high-speed pulse width modulation is performed to achieve speed control with good response speed. At low speeds, the speed change is 1 of the period frequency.
Since it is detected after a period delay, the responsiveness deteriorates. In contrast, the motor control device of the present invention generates a sawtooth wave with a frequency proportional to the rotational speed of the motor, which improves responsiveness and reduces the switching loss of the chopper transistor. can. This provides better controllability at low speeds than the conventional pulse width modulation method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のチヨツパ式電動機速度制御装置
の構成を示す回路図、第2図は本発明実施例の構
成を示す回路図、第3図は各部の動作波形図、第
4図は制御動作を説明するための波形図である。 1:電動機、2:パルスジエネレータ、3:パ
ルス分配回路、4:比例積分増幅器、5:比較
器、6:チヨツパトランジスタドライブ回路、
7:整流器、8:直流電源、9:定電荷スイツチ
ング回路。
Fig. 1 is a circuit diagram showing the configuration of a conventional chopper type motor speed control device, Fig. 2 is a circuit diagram showing the configuration of an embodiment of the present invention, Fig. 3 is an operation waveform diagram of each part, and Fig. 4 is a control operation. FIG. 2 is a waveform diagram for explaining. 1: electric motor, 2: pulse generator, 3: pulse distribution circuit, 4: proportional-integral amplifier, 5: comparator, 6: chopper transistor drive circuit,
7: Rectifier, 8: DC power supply, 9: Constant charge switching circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 電動機の回転速度を検出するパルスジエネレ
ータからのパルス周波数に応じて交互にオンオフ
されるスイツチS1及びS2と該スイツチS1及びS2
接続点に一端が接続されるコンデンサC1とから
なる定電荷スイツチング回路9と、前記スイツチ
S1のオン時に前記コンデンサC1に定電荷を充電
する定電圧源8と、前記スイツチS2のオン時に前
記コンデンサC1の蓄積電荷を入力する比例積分
増幅器4と、該比例積分増幅器4から出力された
鋸歯状波状の速度帰還電圧Vfと前記定電圧源に
接続された速度指令器からの速度指令電圧Vs
を比較する比較器5と、該比較器5から出力され
たパルス信号でオンオフする電動機駆動用チヨツ
パトランジスタとを備えたことを特徴とする電動
機制御装置。
1 Switches S1 and S2 that are turned on and off alternately according to the pulse frequency from a pulse generator that detects the rotational speed of the motor, and a capacitor C1 that has one end connected to the connection point of the switches S1 and S2 . a constant charge switching circuit 9 consisting of a constant charge switching circuit 9;
A constant voltage source 8 that charges the capacitor C 1 with a constant charge when the switch S 1 is on, a proportional-integral amplifier 4 that inputs the accumulated charge of the capacitor C 1 when the switch S 2 is on, and a proportional-integral amplifier 4. a comparator 5 that compares the output sawtooth waveform speed feedback voltage V f with a speed command voltage V s from a speed command device connected to the constant voltage source; and a pulse signal output from the comparator 5. 1. A motor control device comprising: a chopper transistor for driving a motor that is turned on and off at a certain angle.
JP56004201A 1981-01-14 1981-01-14 Control device for motor Granted JPS57119686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56004201A JPS57119686A (en) 1981-01-14 1981-01-14 Control device for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56004201A JPS57119686A (en) 1981-01-14 1981-01-14 Control device for motor

Publications (2)

Publication Number Publication Date
JPS57119686A JPS57119686A (en) 1982-07-26
JPS634434B2 true JPS634434B2 (en) 1988-01-28

Family

ID=11578037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56004201A Granted JPS57119686A (en) 1981-01-14 1981-01-14 Control device for motor

Country Status (1)

Country Link
JP (1) JPS57119686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121723U (en) * 1988-02-12 1989-08-17

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551748B2 (en) * 1984-02-27 1996-11-06 オリエンタルモーター 株式会社 Motor speed controller
JPS61132092A (en) * 1984-11-30 1986-06-19 Furukawa Electric Co Ltd:The Speed controller for wiper motor for motor car
JP2014036513A (en) * 2012-08-09 2014-02-24 Nidec Servo Corp Motor drive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121723U (en) * 1988-02-12 1989-08-17

Also Published As

Publication number Publication date
JPS57119686A (en) 1982-07-26

Similar Documents

Publication Publication Date Title
JP2716105B2 (en) Alternating constant current circuit
JP4642713B2 (en) Motor control device
JPS634434B2 (en)
JPH05219776A (en) Inductor current sensing circuit
JP2863449B2 (en) Control method of DC motor by pulse width modulation signal
JP2755114B2 (en) Motor drive circuit
US6043619A (en) Method and circuit arrangement for commutation of a multiple winding electric motor
FR2431218A1 (en) DC motor control and rotation sensing circuit - uses dual polarity pulse width modulated fixed frequency supply with pulse width controlled from sawtooth generator via two comparators
JP2958962B2 (en) PWM pulse generator
SU884062A1 (en) Rotational speed regulator for dc micromotor
SU1297192A1 (en) One-channel device for control of rectifier converter
JP2644255B2 (en) Inverter control method
JPS60128882A (en) Drive circuit for dc motor
JP2551429Y2 (en) Stepping motor control device
JPH0112545Y2 (en)
JP2672886B2 (en) DC servo motor pulse drive system
KR19980074228A (en) DC motor current control device and method
JPS5832480Y2 (en) Speed control circuit for visual motor with voltage compensation
SU720660A1 (en) Device for controlling step electric motor
JPS5937892A (en) Servo circuit for dc motor
SU1042151A1 (en) Device for controlling step motor
RU2025879C1 (en) Method of control over independent inverter with pulse duration modulation
SU712816A1 (en) Dc voltage pulsed stabilizer
KR830001119Y1 (en) Motor driving device using pulse width modulated inverter
JPS61247286A (en) Dc servo motor drive control circuit