JPS6344323B2 - - Google Patents

Info

Publication number
JPS6344323B2
JPS6344323B2 JP54058427A JP5842779A JPS6344323B2 JP S6344323 B2 JPS6344323 B2 JP S6344323B2 JP 54058427 A JP54058427 A JP 54058427A JP 5842779 A JP5842779 A JP 5842779A JP S6344323 B2 JPS6344323 B2 JP S6344323B2
Authority
JP
Japan
Prior art keywords
mowing
machine
sensor
grain culm
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54058427A
Other languages
Japanese (ja)
Other versions
JPS55150807A (en
Inventor
Takeshi Kita
Yoshihiro Uchama
Chisato Anraku
Kazuo Kotake
Takashi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP5842779A priority Critical patent/JPS55150807A/en
Publication of JPS55150807A publication Critical patent/JPS55150807A/en
Publication of JPS6344323B2 publication Critical patent/JPS6344323B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 本発明は収穫機に関し、特にマイクロコンピユ
ータを搭載してなり、圃場内で自動的に回行して
この圃場内の全穀稈に対する収穫作業を全自動的
に行い得るようにした収穫機を提案したものであ
る。
[Detailed Description of the Invention] The present invention relates to a harvesting machine, and in particular, it is equipped with a microcomputer, and is capable of automatically rotating in a field and fully automatically harvesting all grain culms in the field. We proposed a harvesting machine that does this.

本発明に係る収穫機は手動操作による収穫作業
の外、マイクロコンピユータによる自動収穫作業
を可能としている。自動収穫のための機能として
は刈取るべき穀稈条に倣う走行を行わせるべき自
動操向機能、一行程の収穫を終えた後、次行程の
収穫を開始させるにあたり未刈穀稈群の隅部で機
体を旋回させる自動回行機能、収穫状況に応じて
車速の遅速を制御する自動車速制御機能、穀稈長
に応じた脱穀を行わせる自動扱き深さ調節機能、
刈高さを一定にする自動刈高さ調節機能並びに穀
稈搬送系の詰り、揺動選別部の異常等を検出して
警報を発する警報機能を備えている。而して本発
明の収穫機は上記自動回行機能に特徴を有してい
る。即ち、本発明に係る収穫機は、機体と未刈穀
稈との相対的位置関係をセンサで検出し、この検
出結果により未刈穀稈に倣う走行を行わせる自動
操向機能と、機体が未刈穀稈群の隅部に到つたこ
とを検出した場合には機体を旋回させて従前の機
体進行方向と直交する方向への進行を行わせる自
動回行機能とを備えた収穫機において、自動回行
機能により、条刈及び横刈を交互的に行わせる回
り刈と、条刈のみを反復させる往復刈とを選択的
に実行させる手段と、前記センサの検出結果によ
つて横刈一行程に要する時間を計測する手段と、
回り刈時において前記時間の計測値と設定値とを
比較する手段と、計測値が設定値よりも小となつ
た場合には爾後往復刈を行わせる手段とを具備す
ることを特徴とする。
The harvesting machine according to the present invention enables not only manual harvesting operations but also automatic harvesting operations using a microcomputer. The functions for automatic harvesting include an automatic steering function that allows the vehicle to follow the grain culm line to be harvested, and an automatic steering function that allows the vehicle to run in a manner that follows the grain culm line to be harvested. An automatic rotation function that turns the machine at the center of the harvest, a vehicle speed control function that slows down the vehicle speed depending on the harvesting situation, an automatic handling depth adjustment function that allows threshing to be performed according to the grain culm length,
It is equipped with an automatic cutting height adjustment function that keeps the cutting height constant, as well as an alarm function that detects clogging of the grain culm conveyance system, abnormalities in the swing sorting unit, etc., and issues an alarm. The harvesting machine of the present invention is characterized by the automatic rotation function described above. That is, the harvesting machine according to the present invention has an automatic steering function that detects the relative positional relationship between the machine body and the uncut grain culm using a sensor, and causes the machine to follow the uncut grain culm based on the detection result. In a harvesting machine equipped with an automatic rotation function that turns the machine body to advance in a direction perpendicular to the previous direction of movement of the machine body when it is detected that it has reached a corner of a group of uncut grain culms, Means for selectively performing circular mowing, in which row mowing and horizontal mowing are performed alternately, and reciprocating mowing, in which only row mowing is repeated, by means of an automatic rotation function; A means of measuring the time required for the journey;
The present invention is characterized by comprising means for comparing the measured value of the time with a set value during circular mowing, and means for performing reciprocating mowing after that when the measured value is smaller than the set value.

以上本発明をその実施例を示す図面に基いて詳
述する。
The present invention will be described in detail with reference to the drawings showing embodiments thereof.

第1図は刈取部1の分草板1l,1r等と、そ
の近傍に取付けられたセンサを略示する収穫機の
略示平面図であり、各センサの検出対象はいずれ
も穀稈である。センサとしては触杆とリミツトス
イツチとの組合せになるもの、又は光電スイツチ
を用いた光学式のものが使用されるが、実施例で
はセンサS1,S51,S52,S6,S60に光学式のもの
を使用し、他は触杆とリミツトスイツチとの組合
せになるものを使用している。
FIG. 1 is a schematic plan view of the harvester, schematically showing the grass dividing plates 1l, 1r, etc. of the reaping section 1 and the sensors installed in the vicinity thereof, and the detection target of each sensor is the grain culm. . The sensor used is a combination of a touch rod and a limit switch, or an optical sensor using a photoelectric switch. I use a type one, and others use a combination of a touch rod and a limit switch.

センサS1は右側分草板1rの取付杆にその検出
面を機体の外側方、すなわち右方(一般には既刈
側の方向)へ向けて取付けられており、その検出
領域内における穀稈、即ち本来存在する筈のない
既刈側の穀稈、つまり刈残し穀稈を検出するもの
であり、刈残し穀稈収穫のための制御に関与す
る。
The sensor S 1 is attached to the mounting rod of the right grass divider plate 1r with its detection surface facing the outside of the machine, that is, to the right (generally towards the already cut side), and detects grain culms within its detection area. That is, it detects grain culms on the cut side that should not exist, that is, uncut grain culms, and is involved in the control for harvesting uncut grain culms.

センサS2及びS4は夫々右側及び左側の分草板1
r,1lの取付杆に夫々の触杆が機体の内側方を
向くようにして取付けてあり、各触杆が穀稈に当
接して回動する際の回動角度によつて夫々分草板
1rとその左方に相隣する穀稈条との離隔寸法及
び分草板1lとその右方に相隣する穀稈条との離
隔寸法、換言すれば機体と刈取対象とする穀稈条
との相対的位置関係を検出するものであり、主と
して自動操向のための制御に関与するものである
が、後述するようにセンサS4は横刈一行程に要す
る時間の計測にも用いられる。
Sensors S 2 and S 4 are installed on the right and left side grass dividers 1, respectively.
R and 1L are attached to the mounting rods with the respective touch rods facing inward of the machine body, and depending on the rotation angle when each touch rod contacts the grain culm and rotates, the grass dividing plate is The distance between 1r and the adjacent grain culm on the left, and the distance between the grass dividing plate 1l and the adjacent grain culm on the right, in other words, the distance between the machine body and the grain culm to be harvested. The sensor S4 detects the relative positional relationship between the two, and is mainly involved in control for automatic steering, but as will be described later, the sensor S4 is also used to measure the time required for one stroke of horizontal mowing.

センサS3は右側の分草板1rの背後においてそ
の触杆が機体の内側方を向くように取付けられて
おり、その触杆の長さはセンサS2の触杆よりも短
い。そしてこのセンサS3はセンサS2を補足する機
能を果し、分草板1rの左方の穀稈がセンサS3
短い触杆に接触する程に分草板1rに至近して後
方へ回動した場合にはセンサS2よりも前方におい
てこの至近を検出して早期に右方へ進行方向を修
正させるようにその検出信号が使用される。
The sensor S 3 is mounted behind the right grass dividing plate 1r with its contact rod facing inward of the aircraft body, and the length of its contact rod is shorter than that of the sensor S 2 . This sensor S 3 performs the function of supplementing the sensor S 2 , and moves so close to the grass dividing plate 1r that the grain culm on the left side of the grass dividing plate 1r touches the short rod of the sensor S 3 and moving backward. When the vehicle rotates, this proximity is detected in front of the sensor S 2 and the detection signal is used to quickly correct the traveling direction to the right.

センサS51,S52はセンサS4と背中合せとなるよ
うに分草板1lの取付杆に各検出面が左方を向く
ようにして取付けられており、往復刈時の制御に
関与する。
Sensors S 51 and S 52 are attached to the mounting rod of the grass divider plate 1l, back to back with sensor S 4 , with their detection surfaces facing left, and are involved in control during reciprocating mowing.

センサS6は左側の補助分草杆1sにおいて刈刃
1cの側方にあたる位置に検出面が左方を向くよ
うにして取付けられており、回行時の制御に関与
する。
The sensor S6 is mounted on the left auxiliary cutting rod 1s at a position to the side of the cutting blade 1c with its detection surface facing left, and is involved in control during rotation.

センサS60は車体の左側下部において、補助分
草杆1sの後端部より稍々後方にあたる位置に検
出面が左方を向くようにして取付けられており、
往復刈時の制御に関与する。
The sensor S 60 is installed at the lower left side of the vehicle body at a position slightly behind the rear end of the auxiliary splitting rod 1s with the detection surface facing left.
Involved in control during reciprocating mowing.

第2図は本発明の収穫機の制御系を略示するブ
ロツク図である。制御系の中枢となるマイクロコ
ンピユータ(以下マイコンという)MCNは中央
処理装置CPU、リードオンリーメモリROM、ラ
ンダムアクセスメモリRAM、入出力ポートI/
OP及びインターフエースPPIよりなり、CPUと
しては日本電気(株)製のμCOM―80を用いている。
FIG. 2 is a block diagram schematically showing the control system of the harvester of the present invention. The microcomputer (hereinafter referred to as microcomputer) MCN, which is the core of the control system, has a central processing unit CPU, read-only memory ROM, random access memory RAM, and input/output ports I/O.
It consists of an OP and an interface PPI, and the CPU uses μCOM-80 manufactured by NEC Corporation.

前記各センサS1,S2…S60が発する信号はI/
OポートI/OP、インターフエースPPIを経て
CPUへ取込まれ、CPUはROMに予め用意された
プログラム及びセンサ等から入力される信号に基
き所要の演算を行い、機体の前後進及び左右への
操向を行わせるアクチユエータ駆動回路ACCに
対して所要の制御信号をインターフエースPPI及
びI/OポートI/OP経由で発し、自動収穫を
行わせる。なおRAMはROM中のプログラム、
演算中のデータの一時的格納等に使用される。
The signals emitted by each of the sensors S 1 , S 2 ...S 60 are I/
O port I/OP, via interface PPI
The CPU performs necessary calculations based on the programs prepared in advance in the ROM and signals input from sensors, etc., and sends the actuator drive circuit ACC to the actuator drive circuit ACC, which makes the aircraft move forward and backward and steer left and right. The necessary control signals are issued via the interface PPI and I/O port I/OP to perform automatic harvesting. Note that RAM is the program in ROM,
It is used for temporary storage of data during calculation.

アクチユエータ駆動回路ACCによつて駆動制
御される各種のアクチユエータACTは所定の作
動をなし、走行部、刈取部、脱穀部にCPUから
発せられた信号に対応する動作を行わしめる。自
動回行機能に係るアクチユエータ及びこれによつ
て制御される走行部等の構成については概略次の
ようになつている。
Various actuators ACT, which are drive-controlled by the actuator drive circuit ACC, perform predetermined operations, causing the traveling section, reaping section, and threshing section to perform operations corresponding to signals issued from the CPU. The structure of the actuator related to the automatic rotation function and the traveling section controlled by the actuator is roughly as follows.

まず走行部についてみると、変速はパワーシフ
ト変速装置等の油圧制御式の変速装置によつて行
われるようにしており、その油圧回路中に変速段
切換のために設けられた電磁方向制御弁を前記ア
クチユエータとして備えている。従つてマイコン
MCNから所定信号を発することにより前記電磁
方向制御弁を駆動して後進段、中立段、前進一速
〜三速段の選択を行えるようにしてある。また操
向は左、右夫々のクローラに対する伝動を入断す
るサイドクラツチ及び制動のためのブレーキを油
圧回路にて左右各別に動作させることによつて行
えるようにしてあり、左又は右のサイドクラツチ
を断ち、またブレーキの作動を行わしめるべく油
路切換を行うための電磁方向制御弁を前記アクチ
ユエータとして備えている。
First, looking at the traveling section, gear changes are performed by a hydraulically controlled transmission such as a power shift transmission, and an electromagnetic directional control valve is installed in the hydraulic circuit for shifting gears. It is provided as the actuator. Therefore, the microcomputer
By issuing a predetermined signal from the MCN, the electromagnetic directional control valve is driven to select among reverse gear, neutral gear, and first to third forward gears. In addition, steering can be performed by operating the side clutches that connect and disconnect transmission to the left and right crawlers and the brakes for braking separately on the left and right sides using hydraulic circuits. The actuator is equipped with an electromagnetic directional control valve for switching the oil passage to cut off the brake and to operate the brake.

次に刈取部1についてみると刈取部全体の昇降
は油圧回路によつて行われるようにしてあり、昇
降のために油路を切換えるべき電磁方向制御弁を
前記アクチユエータとして備えている。また刈刃
1c等への伝動系に設けた刈取クラツチはエンジ
ン側の駆動プーリと刈取部側の被動プーリとの間
に張設したベルトと、該ベルトの緊張、弛緩を行
わせるテンシヨンプーリとよりなるが、このテン
シヨンプーリを移動せしめてベルトの緊張、弛緩
を行わせるソレノイドを前記アクチユエータとし
て備えている。
Next, regarding the reaping section 1, the entire reaping section is raised and lowered by a hydraulic circuit, and is provided with an electromagnetic directional control valve as the actuator to switch the oil passage for raising and lowering. In addition, the reaping clutch installed in the transmission system for the cutting blade 1c etc. consists of a belt stretched between a driving pulley on the engine side and a driven pulley on the reaping section side, and a tension pulley that tensions and loosens the belt. The actuator is a solenoid that moves the tension pulley to tension or loosen the belt.

さてこの収穫機は自動回行に関し回り刈モード
及び往復刈モードを選択し得るようになつてい
る。往復刈モードでは終始往復刈を行うのに対
し、回り刈モードでは横刈時間が設定値よりも短
くなつた場合にはそれ以後往復刈に切換えられ
る。運転席2の周囲に設けた操作コラム3に設け
たデイジタルスイツチDSWは設定値を例えば秒
数としてセツトするためのものであり、実施例で
は3桁のサムホイルスイツチにより構成してい
る。
Now, this harvester is designed so that it is possible to select a circular mowing mode or a reciprocating mowing mode regarding automatic rotation. In the reciprocating mowing mode, reciprocating mowing is performed from beginning to end, whereas in the circular mowing mode, when the horizontal mowing time becomes shorter than a set value, the mode is switched to reciprocating mowing after that. A digital switch DSW provided on an operation column 3 provided around the driver's seat 2 is used to set a set value, for example, in seconds, and in the embodiment is constituted by a three-digit thumbwheel switch.

本機では回り刈は条刈から作業開始するとの前
提が設けられている。第3図は未刈穀稈群Cの一
隅に機体を臨ませ、条刈から回り刈を開始させた
場合における機体の移動軌跡を略示する図面、第
4図はこの場合における回行動作の制御シーケン
スを示すフローチヤートである。
This machine is based on the premise that circular mowing begins with row mowing. Figure 3 is a drawing schematically showing the movement trajectory of the machine when facing one corner of uncut grain culm group C and starting circular mowing from row cutting, and Figure 4 shows the rotation operation in this case. 3 is a flowchart showing a control sequence.

デイジタルスイツチDSWにてNをセツトし、
収穫作業の開始を指示すると機体は自動操向を行
いつつ最初の条刈行程での刈取作業を行つてい
く。なおNは次のようにして選定される。すなわ
ち未刈穀稈群が残り少くなり横刈を行う時間が短
くなると、横刈のために複雑な旋回をさせるに要
する時間の比重が相対的に高められ、横刈を行わ
せることがかえつて非能率的となり、横刈を行わ
せない往復刈の方が能率的となる。このような観
点に基きNは回り刈と往復刈との作業能率の優劣
が逆転する未刈穀稈群の横刈方向長さ、機体走行
速度等によつて適宜に定められる。
Set N on the digital switch DSW,
When instructed to start harvesting, the machine automatically steers itself and performs the first row mowing process. Note that N is selected as follows. In other words, as the number of uncut grain culms remaining decreases and the time for horizontal cutting becomes shorter, the time required to make complicated turns for horizontal cutting becomes relatively more important, and it becomes more difficult to perform horizontal cutting. This results in inefficiency, and reciprocating mowing, which does not involve horizontal mowing, is more efficient. Based on this viewpoint, N is appropriately determined based on the length of the uncut grain culm group in the horizontal cutting direction, the machine running speed, etc., which reverses the efficiency of circular cutting and reciprocating cutting.

この間センサS2,S4の触杆は穀稈に当接して後
方へ押圧回動されていることになるが、この条刈
行程を終了すると当接する穀稈が不在となるため
に両触杆はフリーの状態になる。マイコンMCN
はこれにより一行程の条刈の終了を検知し、これ
により回行のためのシーケンスに入る。すなわち
まず変速装置を前進一速段とし、刈取部を上昇さ
せて所定時間低速で直前進(第3,4図の対応
する部分に同符号を付してある。以下同じ)さ
せ、次いで所定時間左旋回させ、更に刈取クラツ
チを遮断し、次いで変速装置を後進段とし短時間
直後進させた後、右側のブレーキを作動させて
後進させつつの左旋回を行わせる。そうすると
やがてセンサS6が未刈穀稈群Cの角部の穀稈を検
出して作動するので、その後の所定時間機体を直
後進させる。そうすると機体は未刈穀稈群Cか
ら稍々遠ざかり、センサS6の検出領域から外れる
ので、センサS6が非作動となつた時点から一定の
遅延時間経過するのを待つて再度右ブレーキを作
動させて所定時間後進させつつの左旋回を行わ
せ機首を先の条刈行程時と略直交する方向に向か
せ、次いで直前進、刈取部降下、刈取クラツチ
係合を行い、一連の回行シーケンスを終えて次の
横刈行程での刈取作業に入る。この回行シーケン
ス中のいずれかのステツプにてマイコンMCN内
によるカウンタを歩進させる。このカウンタは回
行数をカウントするものであり、条刈時には偶数
に、横刈時には奇数になつている。即ちその内容
の奇、偶の別により条刈、横刈の別を判断し得る
ようにしてある。
During this time, the contact rods of sensors S 2 and S 4 are in contact with the grain culm and are pressed and rotated backwards, but when this row cutting process is finished, the contact rods are no longer in contact with each other, so both contact rods are becomes free. Microcomputer MCN
This detects the end of one row of row cutting, and starts the sequence for rounding. That is, first, the transmission is set to the first forward gear, the reaping section is raised and moved straight forward at low speed for a predetermined period of time (corresponding parts in Figs. 3 and 4 are given the same reference numerals; the same applies hereinafter), and then the reaping section is moved forward for a predetermined period of time. The vehicle is turned to the left, the reaping clutch is disengaged, the transmission is set to reverse gear, and the vehicle is driven forward for a short period of time, and then the right brake is activated to perform a left turn while traveling backward. Then, the sensor S6 eventually detects the grain culm at the corner of the uncut grain culm group C and is activated, so that the machine moves forward for a predetermined period of time thereafter. If this happens, the aircraft will gradually move away from the uncut grain culm group C and will be out of the detection area of sensor S 6 , so wait for a certain delay time to elapse from the point at which sensor S 6 becomes inactive, and then apply the right brake again. Then, while moving backward for a predetermined period of time, make a left turn to point the nose in a direction approximately perpendicular to the previous row mowing stroke, then proceed straight ahead, lower the reaping section, engage the reaping clutch, and complete a series of rotations. After completing the sequence, the next horizontal cutting process begins. A counter within the microcomputer MCN is incremented at any step in this circular sequence. This counter counts the number of times, and is an even number when mowing in rows, and an odd number when mowing horizontally. In other words, it is possible to judge whether it is row cutting or horizontal cutting depending on whether the content is odd or even.

さて次の横刈行程が開始されるとセンサS4は穀
稈群内に入り穀稈の存在を検出する状態になり、
この時点からセンサS4がフリーになる迄、即ち横
刈行程を終えるまでの間マイコンMCNによるタ
イマの計時を行わせる。従つてこのタイマは横刈
行程の時間を計測することになる。今タイマの計
時値が秒であらわされるものとし、計時停止時の
値をtとすると、tと前記設定値Nとが比較され
tNである場合はまだ横刈行程を含む回り刈を
行わせるのが能率的であるとしてタイマをリセツ
トして横刈から条刈への移行のための回行に移
る。この場合の回行シーケンスは前述の条刈から
横刈への回行シーケンスと全く同様である。そし
て回行後にカウンタが歩進されるが、この場合は
偶数になるので、次が条刈行程であることを認識
してタイマ計時を行うことなく条刈行程の刈取作
業に入る。
Now, when the next horizontal cutting process starts, sensor S4 enters the grain culm group and becomes in a state to detect the presence of grain culms.
The timer is kept by the microcomputer MCN from this point until the sensor S4 becomes free, that is, until the horizontal cutting process is completed. Therefore, this timer measures the time of the horizontal cutting process. Assume that the time value of the timer is expressed in seconds, and the value when the timer stops is t, then t is compared with the set value N, and if it is tN, circular mowing including the horizontal mowing process is still performed. As this is efficient, the timer is reset and the process moves on to transition from horizontal mowing to row mowing. The rotation sequence in this case is exactly the same as the rotation sequence from row mowing to horizontal mowing described above. After the rotation, the counter is incremented, but in this case it becomes an even number, so the machine recognizes that the next row cutting process is to be performed and starts the cutting work in the row cutting process without timing the timer.

このようにして回り刈を続行していき未刈穀稈
群が残り少なくなりt<Nとなつた場合には以下
に説明する往復刈シーケンスに入る。第5図は往
復刈時の機体の移動軌跡を略示する図面、第6図
はこのときの回行動作の制御シーケンスを示すフ
ローチヤートである。
As circular mowing is continued in this manner, when the number of uncut grain culms becomes small and t<N, a reciprocating mowing sequence described below is entered. FIG. 5 is a drawing schematically showing the locus of movement of the machine body during reciprocating mowing, and FIG. 6 is a flowchart showing the control sequence of the rotation operation at this time.

上述のようにt<Nとなつて、タイマリセツト
されると、まず変速装置を前進一速段とし、刈取
部を上昇させて所定時間低速で直前進させ、ま
た刈取クラツチを遮断し、次いで左旋回させ
る。そうするとやがて機体左側のセンサS51が未
刈穀稈群Cの端部の穀稈を検出して作動する。こ
れにより左旋回を停止させ、センサS51,S52によ
る自動操向にて未刈穀稈群Cの端縁に沿つての走
行を行わせる。これに対して左旋回が一定時間
以上継続した場合には機体左側方に穀稈がない、
即ち全ての収穫作業を終えて未刈穀稈群が既に存
在しなくなつたものとしてエンジン停止に迄到ら
しめる作業終了シーケンスに入る。
As mentioned above, when t<N and the timer is reset, the transmission is first set to forward gear, the reaping section is raised and moved forward at low speed for a predetermined period of time, the reaping clutch is disengaged, and then the reaping section is turned to the left. Let it turn. Then, the sensor S51 on the left side of the machine detects the grain culm at the end of the uncut grain culm group C and is activated. As a result, the left turning is stopped, and the vehicle is automatically steered by the sensors S 51 and S 52 to travel along the edge of the uncut grain culm group C. On the other hand, if the left turn continues for a certain period of time, there will be no grain culm on the left side of the aircraft.
That is, after all the harvesting work has been completed, it is assumed that the unharvested grain group no longer exists, and a work completion sequence is entered in which the engine is stopped.

センサS51,S52による自動操向は次のようにし
て行なわれる。即ちセンサS51はセンサS52に比し
て穀稈検出範囲を短距離としており、センサS51
が未刈穀稈群Cの端縁の穀稈を検出している場合
は機体が未刈穀稈群Cに接近し過ぎているものと
して右旋回させ、センサS52のみが前記穀稈を検
出している場合は適正であるとして直進させ、両
センサS51,S52ともに前記穀稈の存在を検出しな
い場合は離隔し過ぎているものとして左旋回させ
る。
Automatic steering using sensors S 51 and S 52 is performed as follows. That is, sensor S 51 has a shorter grain culm detection range than sensor S 52 , and sensor S 51
If it detects the grain culm at the edge of the uncut grain culm group C, it is assumed that the aircraft is too close to the uncut grain culm group C, and it turns to the right, and only sensor S 52 detects the grain culm. If the presence of the grain culm is detected, it is determined that the grain culm is present, and the grain culm is detected, and the grain culm is detected, and the grain culm is detected.

このようにして未刈穀稈群Cの端縁に沿う走行
を行つていくと機体はやがて未刈穀稈群Cの隅
部に迄達し、刈刃1cよりも更に後方に位置する
センサS60が穀稈を検出しない非作動状態になる。
その直前に両センサS51,S52が共に穀稈の存在を
検出しない状態になつたことにより機体は左旋回
を既に開始しているが、センサS60が非作動状態
となつた時点以後はセンサS51,S52による操向を
停止して、改めて左旋回を所定時間行わせ、次
いで高速装置を後進段として所定時間直後進さ
せ、次いで後進させつつの左旋回をセンサS6
角部の穀稈を検出して作動する迄行わせる。その
後センサS6が未刈穀稈群Cから遠ざかり非作動状
態となる迄直後進させ、一定の遅延時間経過後
に後進させつつの左旋回を行わせ、これによつ
て機首を条刈方向に向け、次いで直前進、刈取
部降下、刈取クラツチ係合を行い一連の回行シー
ケンスを終えて次順の条刈行程での刈取作業に入
る。
As the machine travels along the edge of the uncut grain culm group C in this way, it eventually reaches the corner of the uncut grain culm group C, and the sensor S 60 located further behind the cutting blade 1c. becomes inactive and does not detect grain culms.
Immediately before that, both sensors S 51 and S 52 went into a state where they did not detect the presence of grain culms, so the aircraft had already started a left turn, but after sensor S 60 became inactive, The steering by sensors S 51 and S 52 is stopped, the left turn is made again for a predetermined period of time, the high-speed gear is then set to reverse gear, and the steering is made to proceed immediately for a predetermined period of time, and then the left turn is made while the sensor S 6 is moving backward, and the sensor S 6 makes a left turn again. The process is continued until the grain culm is detected and activated. After that, the sensor S 6 moves away from the uncut grain culm group C and becomes inactive, then the sensor S 6 is moved forward until it becomes inactive, and after a certain delay time, the aircraft is made to turn backward while turning to the left, thereby turning the nose in the row cutting direction. The machine then moves straight forward, lowers the cutting section, and engages the cutting clutch, completing a series of rotation sequences and starting the cutting operation in the next row cutting process.

次順の条刈から更に次の条刈への回行も上記し
たところと全く同様にして行われ、このような回
行動作を反復しつつ往復刈が行われ、最後の条刈
を完了したときは前述の如くして作業終了シーケ
ンスに入ることになる。なお当初から条刈のみを
行わせる往復刈モードも上述したところと同様に
して行われる。
The rotation from the next row mowing to the next row mowing is carried out in exactly the same manner as described above, and reciprocating mowing is performed while repeating this rotation operation until the last row mowing is completed. At this time, the work termination sequence is entered as described above. Note that the reciprocating mowing mode in which only row mowing is performed from the beginning is performed in the same manner as described above.

本発明に係る収穫機は上述の如く構成したもの
であるから全自動での収穫作業を極めて合理的且
つ能率的に行わせることが可能である。すなわち
回り刈のみで全収穫作業を行う構成とする場合
は、未刈穀稈群が少量となつて横刈行程が短くな
つた状態に迄到ると、前述した如き条刈から横刈
に移る際の直進・旋回を繰返しての回行動作に要
する時間が大きな割合を占めることになり、その
能率低減の影響が横刈を行うこと自体による能率
向上効果を上回ることになり、極めて不経済とな
る。ところが本発明による場合はデイジタルスイ
ツチによつて適当な時間を設定し、横刈時間が設
定時間よりも短くなつた場合には往復刈に自動的
に変更させるようにしたものであり、横刈を行う
ことによる能率向上が見込める間は回り刈を行わ
せ、その後は往復刈とするので圃場全体としての
作業能率が向上し、収穫時間の短縮及び燃料節減
が図れる。更に自動操向のためのセンサS4を利用
して横刈時間を計測するので構成が簡便である等
本発明は優れた効果を奏する。
Since the harvesting machine according to the present invention is configured as described above, it is possible to perform fully automatic harvesting work extremely rationally and efficiently. In other words, if the entire harvest is carried out only by circular mowing, when the number of uncut grain culms becomes small and the horizontal mowing process becomes short, the process shifts from row mowing to horizontal mowing as described above. The time required for the turning operation, which involves repeatedly going straight and turning, will occupy a large proportion of the time, and the effect of reducing efficiency will exceed the efficiency improvement effect of horizontal mowing itself, making it extremely uneconomical. Become. However, in the case of the present invention, an appropriate time is set using a digital switch, and when the horizontal mowing time becomes shorter than the set time, the mowing is automatically changed to reciprocating mowing. Circular mowing is performed while efficiency can be expected to improve, and thereafter, reciprocating mowing is performed, which improves the working efficiency of the field as a whole, shortens harvest time, and saves fuel. Furthermore, since the horizontal mowing time is measured using the sensor S4 for automatic steering, the present invention has excellent effects such as a simple configuration.

なお上述の実施例の如くデイジタルスイツチを
設けて、横刈一行程に要した時間と比較すべき設
定値を可変とする場合は圃場条件に応じた時間設
定が可能であるが、誤設定を防止するためにこの
設定値を標準的な値に固定しておくこととしても
よいことは勿論である。
In addition, if a digital switch is provided as in the above embodiment and the set value to be compared with the time required for one stroke of horizontal mowing is made variable, the time can be set according to field conditions, but incorrect settings can be prevented. Of course, this setting value may be fixed to a standard value in order to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであつて、第
1図はセンサの配置を示す収穫機の略示平面図、
第2図は制御系要部の略示ブロツク図、第3図は
回り刈時の機体の移動軌跡の略示図、第4図はそ
の際の制御シーケンスを略示するフローチヤー
ト、第5図は往復刈時の機体の移動軌跡の略示
図、第6図はその際の制御シーケンスを略示する
フローチヤートである。 S1,S2,…S60…センサ、MCN…マイコン、
ACT…アクチユエータ、1l,1r…分草板。
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic plan view of a harvester showing the arrangement of sensors;
Fig. 2 is a schematic block diagram of the main parts of the control system, Fig. 3 is a schematic diagram of the movement trajectory of the machine during mowing, Fig. 4 is a flowchart schematically showing the control sequence at that time, and Fig. 5 6 is a schematic diagram of the locus of movement of the machine during reciprocating mowing, and FIG. 6 is a flowchart schematically illustrating the control sequence at that time. S 1 , S 2 ,…S 60 …Sensor, MCN…Microcomputer,
ACT...actuator, 1l, 1r...grazing board.

Claims (1)

【特許請求の範囲】[Claims] 1 機体と未刈穀稈との相対的位置関係をセンサ
で検出し、この検出結果により未刈穀稈に倣う走
行を行わせる自動操向機能と、機体が未刈穀稈群
の隅部に到つたことを検出した場合には機体を旋
回させて従前の機体進行方向と直交する方向への
進行を行わせる自動回行機能とを備えた収穫機に
おいて、自動回行機能により、条刈及び横刈を交
互的に行わせる回り刈と、条刈のみを反復させる
往復刈とを選択的に実行させる手段と、前記セン
サの検出結果によつて横刈一行程に要する時間を
計測する手段と、回り刈時において前記時間の計
測値と設定値とを比較する手段と、計測値が設定
値よりも小となつた場合には爾後往復刈を行わせ
る手段とを具備することを特徴とする収穫機。
1. An automatic steering function that uses sensors to detect the relative positional relationship between the aircraft and the uncut grain culms, and uses this detection result to drive the aircraft in a manner that follows the uncut grain culms. In a harvester equipped with an automatic rotation function that turns the machine when it detects that the machine has reached the target and moves in a direction perpendicular to the previous direction of movement of the machine, the automatic rotation function enables row mowing and means for selectively performing round mowing in which horizontal mowing is performed alternately and reciprocating mowing in which only row mowing is repeated; and means for measuring the time required for one horizontal mowing process based on the detection result of the sensor. , comprising means for comparing the measured value of the time with a set value during circular mowing, and means for causing reciprocating mowing to be performed thereafter when the measured value is smaller than the set value. harvesting machine.
JP5842779A 1979-05-11 1979-05-11 Harvester Granted JPS55150807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5842779A JPS55150807A (en) 1979-05-11 1979-05-11 Harvester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5842779A JPS55150807A (en) 1979-05-11 1979-05-11 Harvester

Publications (2)

Publication Number Publication Date
JPS55150807A JPS55150807A (en) 1980-11-25
JPS6344323B2 true JPS6344323B2 (en) 1988-09-05

Family

ID=13084075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5842779A Granted JPS55150807A (en) 1979-05-11 1979-05-11 Harvester

Country Status (1)

Country Link
JP (1) JPS55150807A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163617A (en) * 1986-01-13 1987-07-20 株式会社クボタ Turn controller of reaping harvester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114211A (en) * 1979-02-26 1980-09-03 Kubota Ltd Reaper and harvester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114211A (en) * 1979-02-26 1980-09-03 Kubota Ltd Reaper and harvester

Also Published As

Publication number Publication date
JPS55150807A (en) 1980-11-25

Similar Documents

Publication Publication Date Title
JPS6334488Y2 (en)
JPS6344323B2 (en)
JPS6255804B2 (en)
JPS643288Y2 (en)
JPS6351642B2 (en)
JPH0229281B2 (en)
JPS5934804A (en) Harvestor
JP3097087B2 (en) Mobile farm machine direction control device
JPS5822416A (en) Harvesting machine
KR0137521B1 (en) An elevator in mower
JPS6322768B2 (en)
JP2000166312A (en) Working car
JPS6233525Y2 (en)
JP2547504Y2 (en) Combine direction control device
JP2855657B2 (en) Combine steering control
JPH0446530B2 (en)
JPH0117131Y2 (en)
JPS6339504A (en) Direction control unit of moving agricultural machine
JPH01240103A (en) Traveling direction control method of movable agricultural working machine
JPS641082B2 (en)
JPS63148922A (en) Running control apparatus in working vehicle
JPH02312502A (en) Reaping and orientation controller in combine
JPS61128808A (en) Running controller of reaping harvester
JPH07104721B2 (en) Steering control device for work vehicle
JPH07112364B2 (en) Boundary detection device for self-driving work vehicles