JPS6344190B2 - - Google Patents

Info

Publication number
JPS6344190B2
JPS6344190B2 JP13222482A JP13222482A JPS6344190B2 JP S6344190 B2 JPS6344190 B2 JP S6344190B2 JP 13222482 A JP13222482 A JP 13222482A JP 13222482 A JP13222482 A JP 13222482A JP S6344190 B2 JPS6344190 B2 JP S6344190B2
Authority
JP
Japan
Prior art keywords
signal
heating element
current value
value setting
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13222482A
Other languages
Japanese (ja)
Other versions
JPS5923234A (en
Inventor
Katsuhito Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13222482A priority Critical patent/JPS5923234A/en
Publication of JPS5923234A publication Critical patent/JPS5923234A/en
Publication of JPS6344190B2 publication Critical patent/JPS6344190B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は原子吸光分析用無炎アトマイザに係
り、特に発熱体の劣化監視に関する。 従来の原子吸光分析用無炎アトマイザでは、分
析精度に影響を与える発熱体は分析者の目視によ
り交換されていたか、或いは一定回数の分析を終
えた後、発熱体の寿命に係わらず交換されてい
た。 このため発熱体の浪費を招いていたばかりでな
く、発熱体の交換時期を逸したため一連の分析結
果の条件が一定でなくなり、分析精度を確保する
ための再分析を行うなどして貴重な試料や分析時
間を浪費していた。 これとは別に自動分析に係わる無炎アトマイザ
の連続運転時には、発熱体の劣化に帰因する変形
や破損のため、試料の自動注入器の先端を損傷す
るなど周辺機器を損傷する可能性があつた。 本発明の目的は上述の欠点を解消するために成
されたものであり、発熱体の劣化を監視し表示す
ることにより分析者への便宜を計ると共に、発熱
体の寿命を検出し分析を中断するための信号を発
する機構を持たせた原子吸光分析用無炎アトマイ
ザを提供することにある。 無炎アトマイザは第1図に示すように細孔を有
する発熱体2に試料4を注入しておき、発熱体2
に電源部3からの電流を通じて発熱させることに
より試料4を乾燥、灰化、原子化の順に処理する
ものである。 試料中の酸など共存する物質による影響を除い
て、試料中のどの物質を有効に原子化するかによ
つて、乾燥、灰化、原子化の手順は電流の大きさ
と通電時間で定められたプログラムに従つて実行
される。 このプログラムは発熱体2の状態が分析ごとに
一定であることを前提条件として、発熱体2に通
電する電流値と発熱体2の温度とを対応させてい
るが、実際には不活性雰囲気1が若干の水分、酸
素等の不純物を含むため、発熱体2はその中で通
電され発熱するにもかかわらず徐々に劣化する。 即ち試料に含まれる酸の種類や濃度により、ま
た何を原子化するかにより劣化の度合いが異な
る。例えば原子化温度2000℃のカドミウムの分析
と原子化温度2800℃のクロムの分析では、約5倍
も後者に係る発熱体の劣化が激しい。また試料に
酸がほとんど含まれていない場合と、硫酸が数%
含まれている場合とでは約3倍、後者が劣化す
る。 発熱体としてグラフアイトセルを用い、表1に
従つて同一試料中のクロムを原子化する実験を、
200回くり返した結果を第2図に示す。
The present invention relates to a flameless atomizer for atomic absorption spectrometry, and particularly to monitoring deterioration of a heating element. In conventional flameless atomizers for atomic absorption spectrometry, the heating element, which affects analysis accuracy, was replaced by the analyst's visual inspection, or after a certain number of analyzes was completed, regardless of the lifespan of the heating element. Ta. As a result, not only was the heating element was wasted, but the timing for replacing the heating element was missed, and the conditions for a series of analysis results became inconsistent. Analysis time was wasted. Separately, during continuous operation of flameless atomizers involved in automatic analysis, deformation and breakage due to deterioration of the heating element may cause damage to peripheral equipment, such as damaging the tip of the automatic sample injector. Ta. The purpose of the present invention has been made to eliminate the above-mentioned drawbacks, and it provides convenience to the analyst by monitoring and displaying the deterioration of the heating element, and also detects the end of the life of the heating element and interrupts the analysis. An object of the present invention is to provide a flameless atomizer for atomic absorption spectrometry, which is equipped with a mechanism for emitting a signal for atomic absorption analysis. As shown in Fig. 1, the flameless atomizer is made by injecting a sample 4 into a heating element 2 having pores.
The sample 4 is processed in the order of drying, ashing, and atomization by generating heat through electric current from the power supply section 3. Excluding the effects of coexisting substances such as acids in the sample, the drying, ashing, and atomization procedures are determined by the magnitude of the current and the duration of the current, depending on which substance in the sample is to be effectively atomized. Executed according to the program. This program assumes that the state of the heating element 2 is constant for each analysis, and matches the current value applied to the heating element 2 with the temperature of the heating element 2. However, in reality, the inert atmosphere 1 Since the heating element 2 contains some impurities such as moisture and oxygen, the heating element 2 gradually deteriorates even though it generates heat by being energized therein. That is, the degree of deterioration differs depending on the type and concentration of acid contained in the sample and what is atomized. For example, in the analysis of cadmium at an atomization temperature of 2000°C and the analysis of chromium at an atomization temperature of 2800°C, the deterioration of the heating element for the latter is approximately five times greater. In addition, there are cases where the sample contains almost no acid, and cases where the sample contains only a few percent of sulfuric acid.
The latter deteriorates about three times as much as the case where it is included. Using a graphite cell as a heating element, an experiment was conducted to atomize chromium in the same sample according to Table 1.
Figure 2 shows the results of 200 repetitions.

【表】 第2図においてEcは、最初にグラフアイトセ
ルに通電した際に原子化温度2800℃に対応するで
あろう電流を、200回の分析を通して定電流制御
して通電した時の、グラフアイトセルの端子電圧
変化を1回ごとにプロツトしたグラフである。 ΔWは50回ごとに測定したグラフアイトセルの
重量変化を示したグラフである。 Sは最初の吸収感度に対する50回ごとの吸収感
度の変化率を示したグラフである。 σ/mは、20回ごとの原子吸光分析値のバラツ
キ(分散σ)を、その平均値mで除して得られた
変動係数(σ/m)の変化を示したグラフであ
る。 これらの実験からグラフアイトセルの劣化に伴
いその端子電圧が増加する様子と、原子吸光分析
値の変動係数σ/mが増加する様子に因果関係が
あることがわかつた。 本発明は上述の点に着目して成されたもので、
発熱体の劣化の監視を、その端子電圧を監視する
ことで行おうとする発明で、端子電圧の変化に応
じて発熱体の状態を表示し、発熱体の寿命を検出
して無炎アトマイザの動作を制御することに特徴
を有する。 より具体的には、第2図に示されるように、あ
る分析回数(例えば100回前後)を越えるとグラ
フアイトセルの劣化が急速に進むという現象を捉
えて、グラフアイトセルの劣化及び寿命を検出し
ようとするものである。 次に本発明の一実施例を第3図に示す。 トランス309の1次側はサイリスタ303を
介して電源301に接続されている。該トランス
の2次側は電流検出素子311、電圧検知回路3
21及びグラフアイトセル2に接続されている。 電流制御部329は電流検出素子311、電流
検出回路307、サイリスタ制御部305と共に
制御ループを構成し、電流値設定部325からの
電流値設定信号を参照してトランス309の出力
を定電流制御する。 電流値設定部325は所定のプログラムに従つ
た電流値設定信号を電流制御部329、表示部3
27、状態監視部323に与える。 状態監視部323ではグラフアイトセルの両端
電圧を電圧検出回路321によつて検出した信号
と電流値設定信号とを比較して、その差信号に応
じて表示信号を表示部327に送る。これにより
差信号の大きさに基づいて発熱体の劣化状態を表
示することが可能になる。その差信号がある閾値
以上になつたら電流値設定部325へ寿命検出信
号を送つてトランス309の出力を断つか又は警
報を発するよう構成されている。 さらに詳しくは状態監視部323では電流値設
定部325で、例えばトランス309の出力電流
を100Aとした時に、電圧検出回路321によつ
て検出した信号と電流値設定信号とを比較し両者
の差に応じて表示信号を送出する。この比較は分
析ごとに、或いは一定回数の分析ごとに行う。 電流値設定信号は原子化温度に比べて低い温度
に対応した電流値が好ましい。というのは分析ご
とにグラフアイトセルは該電流値に対応した温度
を通過して昇温されるので、分析ごとにグラフア
イトセルの監視が可能となるからである。 電流値設定信号は予めグラフアイトセルに通電
する電流とその時の端子電圧との関係から別途、
画一的に決める場合と、新しいグラフアイトセル
に交換した後、最初の分析時に電圧検出回路32
1から検出した信号を記憶しておく場合とがあ
る。前者は状態監視部323の構造が簡単で済
み、後者はグラフアイトセルの個々のバラツキに
よる影響を被らない。 状態監視部323では比較した結果が、ある閾
値以上になつた場合に表示部327へ信号を送る
ようにしても良い。 表示部327には状態監視部323で比較した
結果を電流値設定信号との差が5%、10%という
ように段階別に表示しても良い。また、この表示
はオーデイオ用レベルメータ、LED、液晶等で
行つてもよい。この理由は再度、検量線を作るな
どして標準液で濃度校正をすれば、再現性(σ/
m)は悪化するものの、吸収感度は分析によつて
は実用に耐え得る範囲内となる場合があるためで
ある。 状態監視部323では、寿命を検出して信号を
電流値設定部325に送つた後、分析を中断する
ための信号を送出しても良い。 以上述べたように本発明によれば、発熱体の劣
化を監視することが可能で発熱体の劣化に早期に
対処することができ、その交換時期を逸すること
が無く分析精度の低下を未然に防いで、試料や発
熱体、分析時間の浪費を防ぐ原子吸光分析用無炎
アトマイザを提供できる。
[Table] In Figure 2, Ec is the graph when the current that would correspond to the atomization temperature of 2800°C when electricity was first applied to the graphite cell was applied with constant current control throughout 200 analyses. This is a graph in which the terminal voltage change of the eye cell is plotted every time. ΔW is a graph showing weight changes of Graphite cells measured every 50 times. S is a graph showing the rate of change in absorption sensitivity every 50 times with respect to the initial absorption sensitivity. σ/m is a graph showing the change in the coefficient of variation (σ/m) obtained by dividing the dispersion (dispersion σ) of the atomic absorption analysis values every 20 times by the average value m. These experiments revealed that there is a causal relationship between the manner in which the terminal voltage of the graphite cell increases as it deteriorates and the manner in which the coefficient of variation σ/m of the atomic absorption analysis value increases. The present invention has been made focusing on the above-mentioned points,
This invention attempts to monitor the deterioration of the heating element by monitoring its terminal voltage.The state of the heating element is displayed according to changes in the terminal voltage, the lifespan of the heating element is detected, and the flameless atomizer is operated. It is characterized by controlling the More specifically, as shown in Figure 2, we captured the phenomenon that the deterioration of Graphite cells rapidly progresses after a certain number of analyzes (for example, around 100 times), and analyzed the deterioration and lifespan of Graphite cells. This is what we are trying to detect. Next, an embodiment of the present invention is shown in FIG. The primary side of the transformer 309 is connected to the power supply 301 via the thyristor 303. The secondary side of the transformer includes a current detection element 311 and a voltage detection circuit 3.
21 and the graphite cell 2. The current control section 329 constitutes a control loop together with the current detection element 311, the current detection circuit 307, and the thyristor control section 305, and controls the output of the transformer 309 at a constant current by referring to the current value setting signal from the current value setting section 325. . The current value setting section 325 sends a current value setting signal according to a predetermined program to the current control section 329 and the display section 3.
27, to be given to the status monitoring unit 323. The state monitoring section 323 compares the signal obtained by detecting the voltage across the graphite cell by the voltage detection circuit 321 with the current value setting signal, and sends a display signal to the display section 327 in accordance with the difference signal. This makes it possible to display the deterioration state of the heating element based on the magnitude of the difference signal. When the difference signal exceeds a certain threshold value, a life detection signal is sent to the current value setting section 325 to cut off the output of the transformer 309 or issue an alarm. More specifically, in the status monitoring unit 323, the current value setting unit 325 compares the signal detected by the voltage detection circuit 321 with the current value setting signal when the output current of the transformer 309 is 100A, for example, and calculates the difference between the two. A display signal is sent out accordingly. This comparison is performed every analysis or after a certain number of analyses. The current value setting signal is preferably a current value corresponding to a temperature lower than the atomization temperature. This is because, for each analysis, the graphite cell is heated through a temperature corresponding to the current value, so that the graphite cell can be monitored for each analysis. The current value setting signal is determined separately in advance based on the relationship between the current flowing through the graphite cell and the terminal voltage at that time.
The voltage detection circuit 32 may be determined uniformly or during the first analysis after replacing with a new graphite cell.
In some cases, the signals detected from 1 are stored. In the former case, the structure of the state monitoring unit 323 is simple, and in the latter case, it is not affected by individual variations in graphite cells. The state monitoring section 323 may send a signal to the display section 327 when the comparison result exceeds a certain threshold value. The display unit 327 may display the results of the comparison by the status monitoring unit 323 in stages, such as when the difference from the current value setting signal is 5% or 10%. Further, this display may be performed using an audio level meter, LED, liquid crystal, or the like. The reason for this is that if you create a calibration curve and calibrate the concentration using a standard solution, the reproducibility (σ/
This is because although m) is deteriorated, the absorption sensitivity may be within a practically acceptable range depending on the analysis. The condition monitoring unit 323 may detect the end of life and send a signal to the current value setting unit 325, and then send a signal to interrupt the analysis. As described above, according to the present invention, it is possible to monitor the deterioration of the heating element, and to deal with the deterioration of the heating element at an early stage, without missing the time to replace it, and to prevent a decline in analysis accuracy. It is possible to provide a flameless atomizer for atomic absorption spectrometry that prevents waste of samples, heating elements, and analysis time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は無炎アトマイザの原理図、第2図は発
熱体の劣化状態を把握するための繰返し実験の結
果を示す図、第3図は本発明に係る無炎アトマイ
ザの全体構成の一実施例を示す図である。 321……電圧検出回路、323……状態監視
部、325……電流値設定部、327……表示
部、329……電流制御部。
Figure 1 is a diagram of the principle of a flameless atomizer, Figure 2 is a diagram showing the results of repeated experiments to understand the deterioration state of the heating element, and Figure 3 is an implementation of the overall configuration of the flameless atomizer according to the present invention. It is a figure which shows an example. 321...Voltage detection circuit, 323...State monitoring section, 325...Current value setting section, 327...Display section, 329...Current control section.

Claims (1)

【特許請求の範囲】 1 試料をのせた発熱体に電流値設定信号に従つ
て電流を供給する電源部を有する原子吸光分析装
置の無炎アトマイザにおいて、 前記発熱体の端子電圧を検出するための電圧検
出回路と、 該電圧検出回路からの信号と前記電流値設定信
号とを比較し両者の差信号の大きさに応じて前記
発熱体の状態を表示するための信号を送出すると
共に、該差信号の大きさが或る閾値以上になつた
時に前記原子吸光分析装置の作動を中断するため
の信号を発する状態監視部と、 該状態監視部からの信号を受けて前記発熱体の
状態を表示する表示部 とから成ることを特徴とする原子吸光分析装置の
無炎アトマイザ。
[Scope of Claims] 1. In a flameless atomizer for an atomic absorption spectrometer having a power supply section that supplies current to a heating element on which a sample is placed in accordance with a current value setting signal, the flameless atomizer is configured to detect the terminal voltage of the heating element. a voltage detection circuit, which compares the signal from the voltage detection circuit with the current value setting signal and sends a signal for displaying the state of the heating element according to the magnitude of the difference signal between the two; a status monitoring unit that issues a signal to interrupt the operation of the atomic absorption spectrometer when the magnitude of the signal exceeds a certain threshold; and a status monitoring unit that receives the signal from the status monitoring unit and displays the status of the heating element. 1. A flameless atomizer for an atomic absorption spectrometer, characterized in that the flameless atomizer comprises a display section that displays
JP13222482A 1982-07-30 1982-07-30 Flameless atomizer of atomic absorption analytical device Granted JPS5923234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13222482A JPS5923234A (en) 1982-07-30 1982-07-30 Flameless atomizer of atomic absorption analytical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13222482A JPS5923234A (en) 1982-07-30 1982-07-30 Flameless atomizer of atomic absorption analytical device

Publications (2)

Publication Number Publication Date
JPS5923234A JPS5923234A (en) 1984-02-06
JPS6344190B2 true JPS6344190B2 (en) 1988-09-02

Family

ID=15076283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13222482A Granted JPS5923234A (en) 1982-07-30 1982-07-30 Flameless atomizer of atomic absorption analytical device

Country Status (1)

Country Link
JP (1) JPS5923234A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092499B (en) * 2015-09-17 2017-10-27 湖北省兴发磷化工研究院有限公司 A kind of assay method of iron content in the oxide of 9,10 dihydro, 9 oxa-, 10 phospho hetero phenanthrene 10

Also Published As

Publication number Publication date
JPS5923234A (en) 1984-02-06

Similar Documents

Publication Publication Date Title
Mirza et al. Heat-induced conformational changes in proteins studied by electrospray ionization mass spectrometry
JP2006038859A (en) Method and system for monitoring battery power by comparison of battery internal resistance and setting warning resistance
EP0840112B1 (en) Condition monitoring of a gas detector
US4193070A (en) Method and arrangement for controlling the electrical relationships of a current-intensive glow discharge
JPS6344190B2 (en)
US7794575B2 (en) Monitoring of gas sensors
US4111556A (en) Control system for alloy tester
US7400406B2 (en) Microchip measurement device
US5627452A (en) Charging method of secondary battery
JP4919104B2 (en) Luminescence analyzer
US3262051A (en) Method and apparatus for determining and controlling the concentration of nitric acidin a solution containing the same
JPH01149364A (en) Dryer of electrode for storage battery
SE425937B (en) SET AND DEVICE TO ANALYZE A JONSTRALE FROM A JONKELLA
JPH04181654A (en) Drying device for electrode plate of storage battery
US8729831B2 (en) Light source apparatus
CN212255521U (en) Electrode life detection device
JPH08317574A (en) Quick charger circuit
DE19922590A1 (en) Gas sensor and method for operating a gas sensor
JPH0574300A (en) Coil exciting method
JPS64614Y2 (en)
DE3905993A1 (en) Appliance and method for the purpose of detecting oxidisable and/or reducible gases
JPS63286757A (en) Method for measuring gas concentration
JPS60253850A (en) Atomic absorption analyzer
JPS59105567A (en) Testing apparatus for tracking resistance
SU1111036A1 (en) Device for stabilizing spectral lamp radiation intensity