JPS6344151B2 - - Google Patents

Info

Publication number
JPS6344151B2
JPS6344151B2 JP10122779A JP10122779A JPS6344151B2 JP S6344151 B2 JPS6344151 B2 JP S6344151B2 JP 10122779 A JP10122779 A JP 10122779A JP 10122779 A JP10122779 A JP 10122779A JP S6344151 B2 JPS6344151 B2 JP S6344151B2
Authority
JP
Japan
Prior art keywords
reaction
alkali
manufacturing
solvent
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10122779A
Other languages
Japanese (ja)
Other versions
JPS5626886A (en
Inventor
Gen Kojima
Masayuki Tamura
Takao Hayashi
Michio Hisasue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10122779A priority Critical patent/JPS5626886A/en
Publication of JPS5626886A publication Critical patent/JPS5626886A/en
Publication of JPS6344151B2 publication Critical patent/JPS6344151B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、グリシジルビニルエーテルの製造方
法に関し、更に詳しく言えば、エチレンクロルヒ
ドリンとエピクロルヒドリンを原料として、三段
階の反応により良好な収率でグリシジルビニルエ
ーテルを製造する方法に関する。 グリシジルビニルエーテル(以下、GVEと呼
ぶ)は、オレフイン性二重結合とエポキシ基とを
分子内に共有する為に、種々の反応に利用可能な
有用な物質である。又、GVE中のオレフイン性
二重結合は、非アリル型である為にアリルグリシ
ジルエーテルとも異なる挙動を示す。例えば、二
重結合を利用してのラジカル共重合、特にフルオ
レフインとの共重合が可能であり、この場合エポ
キシ基を活性点として保有する反応性ポリマーが
得られる。又逆に、エポキシ基を利用してイオン
重合を行なえば、活性基として二重結合を保有し
たポリマーを得ることができる。その他、例えば
ゴム・プラスチツクの充填剤の処理剤や硬化剤等
としての用途も考えられる。 而して、従来よりGVEの製法としては次のご
ときが知られている。 しかしながら、方法(A)は高価なグリシドール
The present invention relates to a method for producing glycidyl vinyl ether, and more specifically, to a method for producing glycidyl vinyl ether in good yield through a three-step reaction using ethylene chlorohydrin and epichlorohydrin as raw materials. Glycidyl vinyl ether (hereinafter referred to as GVE) is a useful substance that can be used in various reactions because it shares an olefinic double bond and an epoxy group in its molecule. Furthermore, since the olefinic double bond in GVE is non-allylic, it behaves differently from allyl glycidyl ether. For example, radical copolymerization using double bonds, particularly copolymerization with fluorefin, is possible, and in this case a reactive polymer having epoxy groups as active sites can be obtained. Conversely, if ionic polymerization is performed using epoxy groups, a polymer having double bonds as active groups can be obtained. Other uses include processing agents and hardening agents for fillers in rubber and plastics. The following methods of producing GVE have been conventionally known. However, method (A) uses expensive glycidol.

【式】を原料として用いる事、 有毒な有機水銀の触媒としての使用が必須である
事などの欠点を有し、工業的製法としては不利な
点が多い。方法(B)は、(A)と比較して安価な出発原
料を用いる利点を有しているものの、各段の反応
収率が低く、特に3段目の反応は極く少量の実験
室的な合成法としては用い得るが、収率が高々5
%程度と極めて低いとともに、反応の安定性が低
く、さらに非常に大きな発熱を伴うので反応の制
御が困難である。 本発明者は、安価な原料から良好な収率で
GVEを工業的に製造しうる手段を提供すべく、
種々の研究を重ねた。その結果、次のごとき興味
深い知見を得るに至つた。すなわち、前記(B)の方
法を適当に工夫することによつて、反応を円滑に
行なわせることができ、さらに反応収率を25%程
度あるいはそれ以上に向上せしめるという新規知
見を得たものである。特に、3段目の反応におい
て、アルカリ(NaOH等)を特定溶媒で希釈し、
原料及び目的生成物の反応系内における滞留時間
を短かくするという工夫を施すのが有利である。
そして、アルカリの希釈溶液中に原料を少量ずつ
添加するとともに、目的生成物を反応系から留去
することによつて、反応性に富むエポキシ基の消
費を抑制し得る。 かくして、本発明は、前記知見に基づいて完成
されたものであり、エチレンクロルヒドリンとエ
ピクロルヒドリンを出発原料として、下記(1)〜(3)
の3段階の反応によつてGVEを製造するに当り、
(3)の反応を、脱HCl剤としてのアルカリを反応温
度下に少なくとも部分的に溶解可能であり且つ沸
点が160〜200℃である溶媒中で、150〜200℃の反
応温度で、
It has many disadvantages as an industrial production method, such as the use of [Formula] as a raw material and the necessity of using toxic organic mercury as a catalyst. Although method (B) has the advantage of using cheaper starting materials compared to method (A), the reaction yield in each step is low, and the third step in particular requires only a small amount of laboratory material. Although it can be used as a synthetic method, the yield is at most 5.
%, the stability of the reaction is low, and furthermore, it is difficult to control the reaction because it generates a very large amount of heat. The present inventor has achieved a method with good yield from inexpensive raw materials.
In order to provide a means to industrially manufacture GVE,
Various researches were conducted. As a result, we obtained the following interesting findings. In other words, we have obtained new knowledge that by appropriately modifying the method (B) above, the reaction can be carried out smoothly and the reaction yield can be improved to about 25% or more. be. In particular, in the third reaction, diluting the alkali (NaOH etc.) with a specific solvent,
It is advantageous to take measures to shorten the residence time of the raw materials and the desired product in the reaction system.
By adding the raw materials little by little into the dilute alkali solution and distilling off the target product from the reaction system, consumption of highly reactive epoxy groups can be suppressed. Thus, the present invention has been completed based on the above knowledge, and uses ethylene chlorohydrin and epichlorohydrin as starting materials to produce the following (1) to (3).
In producing GVE through the three-step reaction,
The reaction of (3) is carried out at a reaction temperature of 150 to 200°C in a solvent that can at least partially dissolve the alkali as a HCl removing agent at the reaction temperature and has a boiling point of 160 to 200°C.

【式】を少 量ずつ反応系に添加供給し且つ生成物を反応系か
ら留去させながら行なわしめることを特徴とする
GVEの製造方法を提供するものである。 本発明の方法は、次の(1)〜(3)に示す三段階の反
応からなつている。 本発明において、(1)の反応は種々の操作、条件
にて実施され得る。通常は、酸触媒の存在下に実
施されるのが望ましく、酸触媒としては濃硫酸、
シリカ・アルミナの如き固体酸、スルホン酸基の
如き強い酸基を有する高分子、P−トルエンスル
ホン酸などが例示され得る。反応温度は50〜150
℃、特に60〜140℃程度の範囲から選定され、使
用する酸触媒の種類などによつて好適範囲は若干
異なる。例えば、濃硫酸触媒の場合、80〜140℃、
好ましくは100〜130℃程度であり、シリカ・アル
ミナ触媒の場合、50〜100℃、好ましくは60〜90
℃程度の比較的低温度が採用され得る。反応温度
が余りに高すぎると、炭化、重合、二量化などの
副反応が進み、また余りに低すぎると、反応速度
が遅くなつてしまう。そして、(1)の反応は発熱反
応であるので、反応温度が前記好適範囲を超えな
い様に、反応系を適宜冷却するなどが望ましい。 また、(1)の反応はエチレンクロルヒドリン過剰
で実施されるのが望ましく、通常はエピクロルヒ
ドリン1モル当りエチレンクロルヒドリン1.5モ
ル以上、好ましくは2〜4モル程度のモル比が採
用される。エチレンクロルヒドリンの割合が少な
すぎると、エピクロルヒドリンの二量化、重合が
増加し、また余りに多すぎると未反応エチレンク
ロルヒドリンの回収などに手間がかかる。反応時
間は比較的短時間で良く、反応温度を高くすれば
より短縮できる。余りに長時間の反応は、副反応
の生起傾向が著しくなるので、通常は2時間程度
以下が採用され、特に30分〜1.5時間程度の範囲
から選定されるのが望ましい。 本発明においては、(1)の反応は前記の如く可及
的短時間で終了せしめられるのが望ましい。従つ
て、好適な実施態様においては、(1)の反応の終了
時点で、速やかに反応停止手段を施すのが望まし
い。かゝる反応停止手段には、反応系を反応温度
よりも低い温度まで冷却するなど種々の方法があ
るが、酸触媒を反応系から除去する方法が好適に
採用され得る。例えば、濃硫酸触媒の場合、水酸
化ナトリウム、水酸化カリウムの如き粉末状アル
カリあるいはアルカリ水溶液を用いて、反応系を
中和することによつて、円滑有利に反応を停止せ
しめることができる。この場合、アルカリ水溶液
を用いると、水と未反応エチレンクロルヒドリン
との分離が困難となるので、粉末状アルカリを用
いる方が望ましい。また、シリカ・アルミナの如
き固体酸触媒の場合には、反応系の撹拌停止、冷
却、固体酸の除去などによつて、反応停止が可能
である。 そして、(1)の反応は、通常は反応媒体としての
不活性溶剤などを使用しないで実施可能である
が、勿論適当な反応媒体を使用しても差支えな
い。その他、反応系の撹拌、反応原料の反応系へ
の導入順序などを適宜工夫することなども可能で
ある。例えば、反応容器中に予じめエチレンクロ
ルヒドリンとエピクロルヒドリンとを仕込み撹拌
均一化した後、室温で濃硫酸を滴下する等の方式
が好適である。この場合、反応は著しい発熱を伴
うので、反応温度が上昇しすぎないよう添加速度
をコントロールする事が重要である。 本発明における(2)の反応では、前記第1段目の
生成物(
[Formula] is added and supplied to the reaction system little by little, and the reaction is carried out while distilling the product from the reaction system.
This provides a method for manufacturing GVE. The method of the present invention consists of the following three steps of reactions (1) to (3). In the present invention, the reaction (1) can be carried out under various operations and conditions. Usually, it is desirable to carry out the process in the presence of an acid catalyst, such as concentrated sulfuric acid,
Examples include solid acids such as silica and alumina, polymers having strong acid groups such as sulfonic acid groups, and P-toluenesulfonic acid. Reaction temperature is 50-150
The temperature is selected from the range of 60 to 140°C, and the preferred range varies slightly depending on the type of acid catalyst used. For example, in the case of concentrated sulfuric acid catalyst, 80 to 140℃,
Preferably it is about 100 to 130°C, and in the case of silica/alumina catalyst, it is 50 to 100°C, preferably 60 to 90°C.
Relatively low temperatures on the order of degrees Celsius may be employed. If the reaction temperature is too high, side reactions such as carbonization, polymerization, and dimerization will proceed; if the reaction temperature is too low, the reaction rate will be slowed down. Since the reaction (1) is an exothermic reaction, it is desirable to appropriately cool the reaction system so that the reaction temperature does not exceed the above-mentioned preferred range. The reaction (1) is preferably carried out in excess of ethylene chlorohydrin, and a molar ratio of 1.5 moles or more, preferably about 2 to 4 moles of ethylene chlorohydrin per mole of epichlorohydrin is usually employed. If the proportion of ethylene chlorohydrin is too small, dimerization and polymerization of epichlorohydrin will increase, and if it is too large, it will take time and effort to recover unreacted ethylene chlorohydrin. The reaction time may be relatively short, and can be further shortened by increasing the reaction temperature. If the reaction is carried out for an excessively long time, there is a marked tendency for side reactions to occur. Therefore, the reaction time is usually about 2 hours or less, and preferably from the range of about 30 minutes to 1.5 hours. In the present invention, it is desirable that the reaction (1) be completed in as short a time as possible, as described above. Therefore, in a preferred embodiment, it is desirable to immediately apply reaction termination means upon completion of the reaction (1). There are various methods for stopping the reaction, such as cooling the reaction system to a temperature lower than the reaction temperature, but a method of removing the acid catalyst from the reaction system can be preferably employed. For example, in the case of a concentrated sulfuric acid catalyst, the reaction can be stopped smoothly and advantageously by neutralizing the reaction system using a powdered alkali or aqueous alkali solution such as sodium hydroxide or potassium hydroxide. In this case, if an aqueous alkali solution is used, it becomes difficult to separate water and unreacted ethylene chlorohydrin, so it is preferable to use a powdered alkali. Furthermore, in the case of a solid acid catalyst such as silica/alumina, the reaction can be stopped by stopping stirring of the reaction system, cooling it, removing the solid acid, etc. The reaction (1) can normally be carried out without using an inert solvent as a reaction medium, but of course any suitable reaction medium may be used. In addition, it is also possible to appropriately devise the stirring of the reaction system, the order of introduction of reaction raw materials into the reaction system, and the like. For example, a suitable method is to charge ethylene chlorohydrin and epichlorohydrin in advance into a reaction vessel, stir them to make them homogeneous, and then dropwise add concentrated sulfuric acid at room temperature. In this case, since the reaction is accompanied by significant heat generation, it is important to control the addition rate so that the reaction temperature does not rise too much. In the reaction (2) of the present invention, the first stage product (

【式】以下、 中間体と呼ぶ)を分離して、精製後あるいは粗
生成物そのままで原料として使用する。そして、
(2)の反応では、中間体と脱HCl剤としてのアル
カリとを反応させる。(2)の反応におけるアルカリ
としては、水酸化ナトリウム、水酸化カリウムの
如きアルカリ金属水酸化物が通常は好適に用いら
れるが、炭酸アルカリ、石灰乳の如きも採用され
得る。(2)の反応は、通常は脱HCl剤としてのアル
カリを溶解し、生成する
[Formula] (hereinafter referred to as intermediate) is separated and used as a raw material after purification or as a crude product. and,
In reaction (2), the intermediate is reacted with an alkali as an HCl removing agent. As the alkali in the reaction (2), alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are usually suitably used, but alkali carbonates and milk of lime may also be used. The reaction (2) usually involves dissolving an alkali as a HCl removal agent and producing

【式】(以下、中間体 と呼ぶ)を溶解しない媒体を使用して実施され
るのが望ましい。例えば、水は(2)の反応の媒体と
して好適である。反応温度は、使用するアルカ
リ、媒体などによつて異なるが、通常50℃以上で
150℃未満の範囲から選定され、反応速度ならび
に中間体の安定性などを考慮すると、80〜110
℃程度が好ましい。水を媒体とした場合には、90
〜105℃程度の反応温度が特に好ましい。(2)の反
応におけるアルカリは、中間体の1モル当り1
当量が化学理論量であり、通常はアルカリ過剰で
使用するのが望ましいが、大過剰のアルカリは生
成したグリシジル基の開環を引き起こすので、通
常PH7.5〜10.5の範囲に保つようアルカリを遂次
添加する方法が有利である。反応時間は特に限定
されないが、通常は30分〜3時間程度で充分であ
る。 本発明においては、前記(2)の反応で得られる中
間体とアルカリとを、(3)の反応式に従つて、特
定溶媒中で特定反応温度のもとに特定反応操作に
よつて反応せしめることが重要である。そして、
(2)の反応で水を媒体として使用した場合には、中
間体を水相と分離し、必要に応じて蒸留などに
より精製して、(3)の反応の原料とする。(3)の反応
における脱HCl剤としてのアルカリは、アルカリ
金属水酸化物が使用され、水酸化ナトリウムまた
は水酸化カリウムが好適である。(3)の反応は、脱
HCl剤としてのアルカリを反応温度下に少なくと
も部分的に溶解可能であり且つ沸点が160〜200℃
である溶媒中で実施される。該溶媒としては、非
プロトン性の極性有機溶剤が例示され、グリコー
ルエーテル類、ジメチルスルホキシドなどがあげ
られる。特に、ジエチレングリコールジメチルエ
ーテルは好適な溶媒である。反応温度は150〜200
℃の範囲から選定され、特に160〜180℃程度が望
ましい。 而して、(3)の反応は、中間体を少量ずつ反応
系に添加供給してアルカリと反応せしめ且つ目的
生成物であるGVEを反応系から留去させながら
実施される。アルカリも反応系に少量ずつ添加供
給されても良いが、通常はアルカリの所定量を特
定溶媒に溶解乃至分散せしめ、こゝに中間体を
少量ずつ添加供給するのが望ましい。特定溶媒へ
のアルカリの溶解乃至分散は、通常はアルカリを
特定溶媒と共に加熱する、好適には溶媒還流下に
加熱することにより容易に達成され得る。かゝる
アルカリの溶解乃至分散液を前記反応温度に保持
して、こゝに中間体を滴下することにより、(3)
の反応を円滑有利に進行せしめ得る。勿論、アル
カリの特定溶媒への溶解乃至分散を促進せしめた
り、あるいは(3)の反応を促進せしめるために、撹
拌手段を併用しても良い。(3)の反応は通常はアル
カリ過剰で実施される。(3)の反応は、通常は特定
溶媒の還流下に実施されるのが望ましい。 (3)の反応において、中間体の反応系への添加
供給速度は、少量ずつであれば特に制限されない
が、10反応容器の場合は通常0.1〜50モル/分
程度、好ましくは3〜20モル/分程度が採用され
る。かゝる添加供給速度は、アルカリ濃度、反応
温度、反応系の撹拌の程度などにより適宜変更す
ることができ、フラツデイング、留去不足等が生
じない安定した反応が行なえるよう調整する事が
重要である。この際、後述の如き目的GVEと共
に随伴留去される溶媒を補なうために、特定溶媒
を中間体と共に反応系に少量ずつ添加供給して
も良い。また、アルカリを特定溶媒液の形態で補
給しても良いことは勿論であり、(3)の反応の連続
的実施などの際に好適である。 (3)の反応で生成する目的GVEは、反応の進行
と共に反応系から留去せしめられる。目的GVE
の反応系からの留去は、前記の如き反応温度の採
用により、好適には特定溶媒の還流下に反応を行
なうことにより円滑有利に実施され得るものであ
り、通常は特定溶媒の一部もGVEに随伴させて
留去される。かゝる特定溶媒の随伴留去によつ
て、目的GVEの反応系からの円滑有利な留去が
促進され得る。そして、特定溶媒の大部分は還流
されて反応系に戻る。GVEの留去に関しては、
最も望ましい形態としては、還流塔下部は特定溶
媒の沸点に近い温度に保ち、GVEの反応系内か
らの留去が充分に行なわれるような状態に保ち、
還流塔中部から上部にかけてはGVEの沸点付近
の温度に保ち、特定溶媒の還流とGVEの留去が
行なわれ、GVEと特定溶媒の分離が効率良く行
なわれるような状態に保つ。そして、塔頂部から
のGVEの留去速度と反応容器内の反応速度と中
間体の反応系内への添加速度とのバランスを保
つ事が本質的に重要である。すなわち、もしも反
応系内からのGVEと特定溶媒の蒸発速度に比し
て、塔頂からのGVEの留去速度が余りに遅い場
合には、塔内でのフラツデイングを生じ、系内の
圧力上昇、温度上昇、さらには突沸や、反応の暴
走の危険を生じる。逆に速すぎる場合には、
GVEと特定溶媒の分離が効率良く行なわれず、
特定溶媒の損失が大きくなると共に、反応系内の
反応物質の濃度の上昇、系の粘度の上昇による温
度上昇が生じ、副反応が増え反応が暴走する危険
を生じる。 以上の如く(3)の反応系からの留出したGVEは、
随伴する特定溶媒と分離され、必要に応じて脱水
処理にかけた後、減圧蒸留などにより精製され
る。特定溶媒との分離は、水による抽出の如き操
作で実施され得るものであり、脱水処理は、硫酸
ナトリウム、モノキユラーシーブなどの使用によ
り実施され得る。 次に、本発明の実施例について更に具体的に説
明するが、かゝる説明によつて本発明が何ら限定
されるものではないことは勿論である。 実施例 1 還流管、滴下ロート、温度計、撹拌機を備えた
内容積500mlの四ツ口フラスコに、エチレンクロ
ルヒドリン322g(4モル)及びエピクロルヒド
リン185g(2モル)を仕込む。内容物を撹拌し
ながら、滴下ロートから濃硫酸5mlを注意して滴
下すると激しく発熱して(1)の反応が進行する。フ
ラスコ内の温度を130℃に保持して約1時間反応
を続け、エピクロルヒドリンが消費され尽した時
点で迅速にフラスコを冷却する。フラスコ内の温
度が50℃まで低下したら、粉末状水酸化ナトリウ
ムを少量ずつ中和点を確認するまで加える。ガス
クロマトグラフイーで分析した結果、304g(収
率60%)に相当する中間体
Preferably, the process is carried out using a medium that does not dissolve the formula (hereinafter referred to as intermediate). For example, water is suitable as a medium for reaction (2). The reaction temperature varies depending on the alkali and medium used, but it is usually 50℃ or higher.
It is selected from the range of less than 150℃, and considering the reaction rate and stability of the intermediate, 80 to 110
The temperature is preferably about ℃. When using water as a medium, 90
Reaction temperatures of the order of ~105°C are particularly preferred. The alkali in the reaction (2) is 1 mole of intermediate.
Equivalent is the stoichiometric amount, and it is usually desirable to use an excess of alkali, but since a large excess of alkali causes ring opening of the glycidyl group formed, it is usually necessary to use an alkali to maintain the pH within the range of 7.5 to 10.5. A subsequent addition method is advantageous. The reaction time is not particularly limited, but usually about 30 minutes to 3 hours is sufficient. In the present invention, the intermediate obtained in the reaction (2) and an alkali are reacted in a specific solvent at a specific reaction temperature and by a specific reaction operation according to the reaction formula (3). This is very important. and,
When water is used as a medium in the reaction (2), the intermediate is separated from the aqueous phase, purified by distillation or the like if necessary, and used as a raw material for the reaction (3). As the alkali as the HCl removing agent in the reaction (3), an alkali metal hydroxide is used, and sodium hydroxide or potassium hydroxide is preferably used. The reaction (3) is
The alkali as HCl agent can be at least partially dissolved under the reaction temperature and the boiling point is 160~200℃
is carried out in a solvent. Examples of the solvent include aprotic polar organic solvents, such as glycol ethers and dimethyl sulfoxide. In particular, diethylene glycol dimethyl ether is a suitable solvent. Reaction temperature is 150-200
It is selected from the range of 160 to 180 degrees Celsius. Thus, the reaction (3) is carried out while adding the intermediate to the reaction system little by little to react with the alkali and distilling off the desired product, GVE, from the reaction system. Although the alkali may also be added and supplied to the reaction system little by little, it is usually preferable to dissolve or disperse a predetermined amount of the alkali in a specific solvent, and then add and feed the intermediate little by little. Dissolution or dispersion of the alkali in the specific solvent can be easily achieved by generally heating the alkali together with the specific solvent, preferably by heating under solvent reflux. By maintaining the alkali solution or dispersion at the above reaction temperature and dropping the intermediate thereto, (3)
The reaction can proceed smoothly and advantageously. Of course, a stirring means may be used in combination to promote dissolution or dispersion of the alkali in the specific solvent or to promote the reaction (3). Reaction (3) is usually carried out in an excess of alkali. The reaction (3) is usually preferably carried out under reflux of a specific solvent. In the reaction (3), the rate at which the intermediate is added to the reaction system is not particularly limited as long as it is added in small amounts, but in the case of 10 reaction vessels, it is usually about 0.1 to 50 mol/min, preferably 3 to 20 mol. /minute is adopted. The rate of addition and supply can be changed as appropriate depending on the alkali concentration, reaction temperature, degree of stirring of the reaction system, etc., and it is important to adjust it so that a stable reaction can be performed without causing flattening, insufficient distillation, etc. It is. At this time, in order to supplement the solvent that is entrained and distilled off together with the target GVE as described later, the specific solvent may be added and supplied to the reaction system together with the intermediate in small amounts. Furthermore, it goes without saying that the alkali may be supplied in the form of a specific solvent solution, which is suitable when the reaction (3) is carried out continuously. The target GVE produced in the reaction (3) is distilled off from the reaction system as the reaction progresses. PurposeGVE
Distillation from the reaction system can be carried out smoothly and advantageously by employing the reaction temperature as described above, preferably by carrying out the reaction under reflux of the specific solvent, and usually some of the specific solvent is also removed. It is distilled off along with GVE. Such concomitant distillation of the specific solvent can facilitate smooth and advantageous distillation of the target GVE from the reaction system. Most of the specific solvent is then refluxed and returned to the reaction system. Regarding the removal of GVE,
The most desirable form is to maintain the lower part of the reflux column at a temperature close to the boiling point of the specific solvent, so that GVE is sufficiently distilled from the reaction system.
The temperature from the middle to the upper part of the reflux column is maintained at a temperature near the boiling point of GVE, and the specific solvent is refluxed and GVE is distilled off, so that conditions are maintained such that GVE and specific solvent can be efficiently separated. It is essentially important to maintain a balance between the rate of GVE distillation from the top of the column, the reaction rate within the reaction vessel, and the rate of addition of intermediates into the reaction system. That is, if the rate of distillation of GVE from the top of the column is too slow compared to the rate of evaporation of GVE from within the reaction system and the specific solvent, flooding will occur within the column, resulting in an increase in pressure within the system. There is a risk of temperature rise and even bumping or runaway reaction. On the other hand, if it is too fast,
GVE and specific solvents are not separated efficiently,
As the loss of the specific solvent increases, the concentration of the reactant in the reaction system increases and the temperature increases due to the viscosity of the system, increasing side reactions and creating a risk that the reaction will run out of control. As mentioned above, the GVE distilled from the reaction system (3) is
It is separated from the accompanying specific solvent, subjected to dehydration treatment if necessary, and then purified by vacuum distillation or the like. Separation from the specific solvent can be performed by operations such as extraction with water, and dehydration treatment can be performed by using sodium sulfate, monocular sieves, and the like. Next, embodiments of the present invention will be described in more detail, but it goes without saying that the present invention is not limited by such explanations. Example 1 322 g (4 mol) of ethylene chlorohydrin and 185 g (2 mol) of epichlorohydrin are charged into a 500 ml four-necked flask equipped with a reflux tube, dropping funnel, thermometer, and stirrer. While stirring the contents, carefully drop 5 ml of concentrated sulfuric acid from the dropping funnel, causing intense heat generation and reaction (1) to proceed. The temperature inside the flask is maintained at 130°C and the reaction is continued for about 1 hour, and when the epichlorohydrin is completely consumed, the flask is quickly cooled. When the temperature inside the flask drops to 50°C, add powdered sodium hydroxide little by little until the neutralization point is confirmed. As a result of gas chromatography analysis, the intermediate equivalent to 304g (yield 60%)

【式】が得られてい ることが判つた。 この中間を粗生成物のまゝ100℃付近まで加
熱した後、20重量%濃度の水酸化ナトリウム水溶
液を滴下する。反応系のPHを約8に保ちながら、
前記水酸化ナトリウム水溶液250gを約1時間で
仕込み(2)の反応を終了する。反応生成液を室温ま
で冷却した後、水相と油相とを分液ロートで分別
する。得られた油相を蒸留し、中間体
It was found that the following formula was obtained. After heating this intermediate as a crude product to around 100°C, a 20% by weight aqueous sodium hydroxide solution is added dropwise. While maintaining the pH of the reaction system at approximately 8,
250 g of the above sodium hydroxide aqueous solution was added in about 1 hour to complete the reaction (2). After the reaction product liquid is cooled to room temperature, it is separated into an aqueous phase and an oil phase using a separating funnel. The resulting oil phase is distilled and the intermediate

【式】をを250g(収 率96%)得た。 マクマホンカラムを取付けた内容積500mlの四
ツ口フラスコに、46gのフレーク状水酸化ナトリ
ウム及び200gの脱水した工業用ジグライム(ジ
エチレングリコールジメチルエーテル)を仕込
み、ジグライム還流下に加熱撹拌する。均一な分
散状態が得られた後、前記中間体をフラスコ内
に滴下する。カラム頂部を130℃以下に、カラム
下部を130℃以上に保ちつゝ、中間体と少量の
ジグライムの滴下を続ける。約3時間で中間体
を150g、ジグライムを70g滴下する。この間に
(3)の反応が進行し、カラム頂部から生成GVEと
ジグライムおよび水少量が留出する。留出物を室
温に冷却して捕集すると二相に分離するので、分
液ロートにより粗GVEを水相と分離する。得ら
れた粗GVEを硫酸ナトリウムで脱水、さらにモ
レキユラーシーブ(4A)で完全に脱水した後、
減圧蒸留すると、34.4g(3段目収率30%)のグ
リシジルビニルエーテル(純度99.5%以上)が得
られる。 実施例 2 実施例1における(1)の反応で、濃硫酸の代りに
エピクロルヒドリンと等重量のシリカ・アルミナ
(100メツシユ・アルミナ28重量%)を用いる他
は、実施例1と同様に(1)の反応を行なつた。約1
時間の反応後、直ちに反応液を過してシリカ・
アルミナを除去した。ガスクロマトグラフイーに
よる分析の結果、中間体が329g(収率75%)
生成したことが判つた。以下、実施例1と同様に
(2)の反応及び(3)の反応を行ない、最終的に精製
GVE70g(3段目収率29%)を得た。 比較例 1 実施例1と同様に(1)の反応及び(2)の反応を行な
つて得た中間体250gを用いて、ジグライムを
使用せずに(3)の反応を行なつた。即ち、反応器に
250gの中間体と46gの水酸化ナトリウムを仕
込み、反応温度を除々に上げたところ、185℃に
至つて急激な大きな発熱を伴なう反応を生じ、反
応器内は黄褐色のスポンジ状ポリマーとなつた。
GVEは5g(収率4.5%)しか生成しなかつた。 比較例 2 実施例1における(1)の反応を、反応時間を5時
間に延長して行なう以外、実施例1と同様に実施
した。ガスクロマトグラフイーで分析した結果、
中間体の収量は200g(収率39%)に低下し、
高沸物の副生割合が増大した。 実施例 3 実施例1において、(3)の反応で水酸化ナトリウ
ムの代りに水酸化カリウムを使用する他は、実施
例1と同様に(1)、(2)、(3)の反応を行なつた。その
結果、精製GVE23g(収率20%)が得られた。
250g (yield 96%) of [Formula] was obtained. 46 g of flaked sodium hydroxide and 200 g of dehydrated industrial diglyme (diethylene glycol dimethyl ether) are charged into a 500 ml four-necked flask equipped with a McMahon column, and heated and stirred while the diglyme is refluxed. After obtaining a uniform dispersion, the intermediate is dropped into the flask. While keeping the top of the column below 130°C and the bottom of the column above 130°C, continue dropping the intermediate and a small amount of diglyme. In about 3 hours, 150g of the intermediate and 70g of diglyme are added dropwise. During this time
As the reaction (3) progresses, the produced GVE, diglyme, and a small amount of water are distilled out from the top of the column. When the distillate is cooled to room temperature and collected, it separates into two phases, and the crude GVE is separated from the aqueous phase using a separatory funnel. The obtained crude GVE was dehydrated with sodium sulfate, and then completely dehydrated with molecular sieves (4A).
Distillation under reduced pressure yields 34.4 g (third stage yield: 30%) of glycidyl vinyl ether (purity of 99.5% or higher). Example 2 (1) was carried out in the same manner as in Example 1, except that in the reaction (1) of Example 1, silica-alumina (28% by weight of 100 mesh alumina) equivalent to epichlorohydrin was used instead of concentrated sulfuric acid. The reaction was carried out. Approximately 1
After the reaction for several hours, immediately filter the reaction solution to remove the silica.
Alumina was removed. As a result of gas chromatography analysis, 329g of intermediate (yield 75%)
It was found that it was generated. Hereinafter, similar to Example 1
Perform reaction (2) and reaction (3), and finally purify
70 g of GVE (3rd stage yield 29%) was obtained. Comparative Example 1 Using 250 g of the intermediate obtained by carrying out the reactions (1) and (2) in the same manner as in Example 1, the reaction (3) was carried out without using diglyme. That is, in the reactor
When 250g of the intermediate and 46g of sodium hydroxide were charged and the reaction temperature was gradually raised, the reaction temperature reached 185℃ and a reaction accompanied by a sudden large exotherm occurred, and the inside of the reactor turned into a yellowish brown sponge-like polymer. Summer.
Only 5 g (4.5% yield) of GVE was produced. Comparative Example 2 The reaction (1) in Example 1 was carried out in the same manner as in Example 1, except that the reaction time was extended to 5 hours. As a result of gas chromatography analysis,
The yield of intermediate decreased to 200g (39% yield),
The proportion of high-boiling substances as by-products increased. Example 3 Reactions (1), (2), and (3) were carried out in the same manner as in Example 1, except that potassium hydroxide was used instead of sodium hydroxide in reaction (3). Summer. As a result, 23 g of purified GVE (yield 20%) was obtained.

Claims (1)

【特許請求の範囲】 1 エチレンクロルヒドリンとエピクロルヒドリ
ンを原料として、下記(1)〜(3)の三段階の反応によ
つてグリシジルビニルエーテルを製造するに当
り、(3)の反応を、脱HCl剤としてのアルカリを反
応温度下に少なくとも部分的に溶解可能であり且
つ沸点が160〜200℃である溶媒中で、150〜200℃
の反応温度で、【式】 を少量ずつ反応系に添加供給し且つ生成物を反応
系から留去させながら行なわしめることを特徴と
するグリシジルビニルエーテルの製造方法。 2 脱HCl剤としてのアルカリがアルカリ金属水
酸化物である特許請求の範囲第1項記載の製造方
法。 3 溶媒が非プロトン性の極性有機溶剤である特
許請求の範囲第1項記載の製造方法。 4 溶媒がグリコールエーテル類である特許請求
の範囲第3項記載の製造方法。 5 溶媒がジエチレングリコールジメチルエーテ
ルである特許請求の範囲第4項記載の製造方法。 6 (1)の反応を酸触媒に存在下に実施する特許請
求の範囲第1項記載の製造方法。 7 酸触媒が濃硫酸である特許請求の範囲第6項
記載の製造方法。 8 (2)の反応を50℃以上で150℃未満の範囲から
選定される温度で実施する特許請求の範囲第1項
記載の製造方法。
[Claims] 1. In producing glycidyl vinyl ether by the following three-step reactions (1) to (3) using ethylene chlorohydrin and epichlorohydrin as raw materials, the reaction (3) is performed by removing HCl. in a solvent that can at least partially dissolve the alkali as an agent at the reaction temperature and has a boiling point of 160-200°C, at 150-200°C.
1. A method for producing glycidyl vinyl ether, which is carried out by adding [Formula] little by little to a reaction system and distilling the product from the reaction system at a reaction temperature of . 2. The manufacturing method according to claim 1, wherein the alkali as the HCl removing agent is an alkali metal hydroxide. 3. The manufacturing method according to claim 1, wherein the solvent is an aprotic polar organic solvent. 4. The manufacturing method according to claim 3, wherein the solvent is a glycol ether. 5. The manufacturing method according to claim 4, wherein the solvent is diethylene glycol dimethyl ether. 6. The manufacturing method according to claim 1, wherein the reaction (1) is carried out in the presence of an acid catalyst. 7. The manufacturing method according to claim 6, wherein the acid catalyst is concentrated sulfuric acid. 8. The manufacturing method according to claim 1, wherein the reaction in (2) is carried out at a temperature selected from the range of 50°C or higher and lower than 150°C.
JP10122779A 1979-08-10 1979-08-10 Preparation of glycidyl vinyl ether Granted JPS5626886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10122779A JPS5626886A (en) 1979-08-10 1979-08-10 Preparation of glycidyl vinyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10122779A JPS5626886A (en) 1979-08-10 1979-08-10 Preparation of glycidyl vinyl ether

Publications (2)

Publication Number Publication Date
JPS5626886A JPS5626886A (en) 1981-03-16
JPS6344151B2 true JPS6344151B2 (en) 1988-09-02

Family

ID=14295004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10122779A Granted JPS5626886A (en) 1979-08-10 1979-08-10 Preparation of glycidyl vinyl ether

Country Status (1)

Country Link
JP (1) JPS5626886A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5523076B2 (en) * 2009-12-11 2014-06-18 日本合成化学工業株式会社 Method for producing vinylimidazole compound
CN103145648B (en) * 2013-03-13 2015-04-22 安徽新远化工有限公司 Synthetic method of allyl glycidyl ether

Also Published As

Publication number Publication date
JPS5626886A (en) 1981-03-16

Similar Documents

Publication Publication Date Title
EP1115714B1 (en) Process for the preparation of glycidylesters of branched carboxylic acids
CN108191604B (en) Method for continuously preparing 2-methallyl alcohol
WO2006093281A1 (en) METHOD FOR PRODUCING α-HYDROXY-ω-GLYCIDYL ETHER
US2436311A (en) Preparation of n, n'ethyleneurea
JP2013510087A (en) Method for producing divinylarene dioxide
JP2005525400A (en) High-yield by-product recycling process in anhydrosugar alcohols
JP5014724B2 (en) Method for producing dioxane glycol
JPS6344151B2 (en)
CA1037051A (en) Continuous process for producing glycide
EP0443046B1 (en) Process for preparing 4,4'-dihydroxydiphenyl sulfone
JP4038657B2 (en) Method for producing adamantanone
KR100921944B1 (en) Process for preparing of epichlorohydrine
WO2016065576A1 (en) Process for preparation of high purity guaiacol glycidyl ether
JP3367549B2 (en) Method for producing 3-chloromethyl-3-alkyloxetane
JPH0245439A (en) Production of bisphenol
JPH0791261B2 (en) Process for producing 4,4'-dihydroxydiphenyl sulfone
EP3169657B1 (en) Process for the production of chlorohydrins from glycerol and acyl chlorides
CN114426463A (en) Process for preparing resorcinol
JPS647982B2 (en)
JPH0541616B2 (en)
JPH10212282A (en) Production of 3-chloromethyl-3-alkyloxetane
JPH1129562A (en) Production of 3-chloromethyl-3-alkyloxetane
JPH0532650A (en) Production of glycidyl ethers
JPH05148172A (en) Production of perfluoroalkyl bromide
JPS5850991B2 (en) Oxirane production method