JPS6344032B2 - - Google Patents

Info

Publication number
JPS6344032B2
JPS6344032B2 JP55141088A JP14108880A JPS6344032B2 JP S6344032 B2 JPS6344032 B2 JP S6344032B2 JP 55141088 A JP55141088 A JP 55141088A JP 14108880 A JP14108880 A JP 14108880A JP S6344032 B2 JPS6344032 B2 JP S6344032B2
Authority
JP
Japan
Prior art keywords
wastewater
wastewater treatment
pipe
aeration
flow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55141088A
Other languages
Japanese (ja)
Other versions
JPS5765389A (en
Inventor
Tsukasa Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP55141088A priority Critical patent/JPS5765389A/en
Publication of JPS5765389A publication Critical patent/JPS5765389A/en
Publication of JPS6344032B2 publication Critical patent/JPS6344032B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は超深層曝気法による廃水の生物処理法
に関するもので、詳しくは高層建築物に超深層曝
気槽を設けて廃水を処理する廃水処理法に関する
ものである。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a biological treatment method for wastewater using an ultra-deep aeration method, and more specifically, it relates to a wastewater treatment method in which an ultra-deep aeration tank is provided in a high-rise building to treat wastewater. It is about law.

「従来の技術」 従来より地中50〜150mの深さに上向流管と下
向流管を有する曝気槽を設置したいわゆる超深層
曝気槽による廃水処理法が知られている。この超
深層曝気法は用地が格段に少なくてよく、また、
吹き込み空気の利用率が高いなどの利点を有して
いるが、地中深く曝気槽を構築せねばならないの
で、施工費が高くつき、また汚泥が曝気槽の最深
部に沈降し、これを処理することに困難が伴つて
いた。
"Prior Art" Conventionally, a wastewater treatment method using a so-called ultra-deep aeration tank is known, in which an aeration tank having an upward flow pipe and a downward flow pipe is installed at a depth of 50 to 150 m underground. This ultra-deep aeration method requires much less land, and
Although it has advantages such as a high utilization rate of blown air, construction costs are high because the aeration tank must be built deep underground, and sludge settles to the deepest part of the aeration tank, making it difficult to dispose of it. It was difficult to do so.

一方、都市の再開発に伴い、高層建築物や超高
層建築物が多く建築されているが、水資源の有効
利用が社会的に要請されはじめたため、大規模な
建築物であれば雑用水に中水道を用いるように指
導され、そのため、建築物内に中水を得るための
廃水処理装置を設けることが多くなつている。
On the other hand, with urban redevelopment, many high-rise buildings and skyscrapers are being constructed, but as social demands have begun to make effective use of water resources, large-scale buildings have been forced to use water for general use. People are being instructed to use gray water, and as a result, buildings are increasingly being equipped with wastewater treatment equipment to obtain gray water.

「発明が解決しようとする課題」 このため、従来においては、建築物の地下階の
大きなスペースが、この廃水処理装置のために割
かれているのが実状である。
``Problem to be Solved by the Invention'' For this reason, conventionally, a large space in the basement floor of a building is actually allocated for this wastewater treatment device.

本発明は上記事情に鑑みてなされたもので、高
層建築物に適用でき、処理効果が高く、処理コス
トが低廉で、沈降汚泥の処置が容易で、施工費が
安く、設置スペースを少なくできる高層建築物を
利用した廃水処理法を提供することを目的とする
ものである。
The present invention has been made in view of the above circumstances, and can be applied to high-rise buildings, has high treatment effects, low treatment costs, easy treatment of settled sludge, low construction costs, and can reduce installation space. The purpose is to provide a wastewater treatment method using buildings.

「課題を解決するための手段」 かかる目的を達成するため本発明にかかる廃水
処理法では、高層建築物に、この高層建築物の実
質全高と略同じ高さの下向流管と上向流管を設け
るとともにこれら下向流管の下端部と上向流管の
下端部の間にこれらを連通する連設管を設けて曝
気槽とし、上記連設管に汚泥沈澱室を設け、さら
にこの汚泥沈澱室の底面に漏斗状の凹部を形成す
るとともに凹部の底面に余剰汚泥を排出する管を
取り付けて余乗汚泥を沈積させる一方、下向流管
内の廃水に下方に向けて空気を圧入するとともに
上向流管上部の廃水を下向流管の上部に返送する
ことによつて廃水を循環流動させ深層曝気式に処
理することを特徴とするものである。
"Means for Solving the Problem" In order to achieve the above object, the wastewater treatment method according to the present invention provides a high-rise building with a downward flow pipe and an upward flow pipe of approximately the same height as the substantial total height of the high-rise building. A connecting pipe is provided between the lower end of the downward flow pipe and the lower end of the upward flow pipe to form an aeration tank, and a sludge settling chamber is provided in the connected pipe. A funnel-shaped recess is formed at the bottom of the sludge settling chamber, and a pipe for discharging excess sludge is attached to the bottom of the recess to allow extra sludge to settle, while air is forced downward into the wastewater in the downward flow pipe. At the same time, the wastewater in the upper part of the upflow pipe is returned to the upper part of the downflow pipe, thereby circulating the wastewater and treating it in a deep aeration type.

なお、廃水処理にあたつては、曝気式廃水処理
にかかる公知手段を加えて処理効果を向上させる
ことにより、本発明の構成を生かした展開が得ら
れるものである。
In addition, in wastewater treatment, the structure of the present invention can be utilized by adding known means related to aerated wastewater treatment to improve the treatment effect.

しかして、その実施の態様は、(1)深層曝気槽の
上向流管および下向流管の下方部で連設管の上方
位置に、それぞれ仕切弁を設けて廃水の流速およ
び流量を調節すること、(2)曝気槽の上向流管の中
間部より廃水の一部を抜き出し、この抜き出し廃
水と流入原水とを浮上槽に導き、流入原水中の有
害物を深層曝気槽の液頭圧を利用して浮上分離す
ること、(3)曝気槽の上向流管の上端近傍に上記汚
泥沈澱室に連通する汚泥分離槽を設けて、汚泥沈
澱室に沈澱した余剰汚泥を深層曝気槽の液頭圧を
利用して固液分離すること、(4)汚泥沈澱室に沈澱
した余剰汚泥を脱水機に導き、深層曝気槽の液頭
圧を脱水機の動力に利用して余剰汚泥を脱水する
こと、(5)曝気槽の上向流管の上部に回転円板式濾
材を設け、廃水の上向流エネルギーを利用して回
転円板式濾材を回転させること、(6)連設管内に接
触酸化濾材を設け、かつ曝気槽の上向流管の上部
に脱窒槽を設けて、廃水中のBOD成分および窒
素分を連続的に処理すること、(7)さらに連設管を
点検孔を設けて、連設管内を点検、清掃、機材の
搬入出ができるようにすることでで高層建築物で
有効な中水を得ることが達成される。
Therefore, the mode of implementation is as follows: (1) Gate valves are provided above the connecting pipes in the lower parts of the upward flow pipe and the downward flow pipe of the deep aeration tank to adjust the flow rate and flow rate of wastewater. (2) Part of the wastewater is extracted from the middle part of the upward flow pipe of the aeration tank, and this extracted wastewater and inflowing raw water are guided to the flotation tank, and harmful substances in the inflowing raw water are removed from the liquid head of the deep aeration tank. (3) A sludge separation tank connected to the sludge settling chamber is provided near the upper end of the upward flow pipe of the aeration tank, and excess sludge settled in the sludge settling chamber is transferred to the deep aeration tank. (4) Excess sludge settled in the sludge settling chamber is led to a dehydrator, and the liquid head pressure in the deep aeration tank is used to power the dehydrator to remove excess sludge. (5) A rotating disc type filter is installed above the upward flow pipe of the aeration tank, and the rotating disc type filter is rotated using the upward flow energy of the wastewater. (6) In the continuous pipe, A contact oxidation filter medium is installed, and a denitrification tank is installed above the upward flow pipe of the aeration tank to continuously treat the BOD components and nitrogen content in the wastewater. By installing a system to enable inspection, cleaning, and loading/unloading of equipment into the connected pipes, it is possible to obtain effective gray water in high-rise buildings.

「実施例」 以下、第1図および第2図を参照して本発明に
かかる廃水処理法の基本となる実施例を詳しく説
明する。
"Example" Hereinafter, an example that is the basis of the wastewater treatment method according to the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図は本発明の廃水処理法を実施する場合に
使用される廃水処理装置の基本的な構成を説明す
るために示した概略図であり、図中符号1は高層
建築物である。この高層建築物1の内部にはこの
高層建築物1の全高と略同じ高さを有するシヤフ
ト2が設けられていて、シヤフト2内には深層曝
気槽3が設けられている。この深層曝気槽3は、
上記高層建築物1の実質全高と略同じ高さの下向
流管4および上向流管5と、これら下向流管4の
下端部と上向流管5の下端部の間に設けられてこ
れらを連通させる連設管6とにより、第1図に示
すようにU字形に形成されるのが基本であり、本
発明では、特に、上記連設管6に汚泥沈澱室7を
設け、さらにこの汚泥沈澱室7の底面に漏斗状の
凹部7aを形成し、この凹部7aの底面に余剰汚
泥を排出する管21を取り付けてなる基本構成と
なつている。また、本発明では、上記深層曝気槽
3の上向流管5の上端近傍に汚泥分離槽8を配設
し、この汚泥分離槽8に上記管21を接続しこの
管21を介して上記汚泥沈澱室7の凹部7aに連
通させてなる構成となつている。
FIG. 1 is a schematic diagram illustrating the basic configuration of a wastewater treatment apparatus used in carrying out the wastewater treatment method of the present invention, and reference numeral 1 in the figure represents a high-rise building. A shaft 2 having substantially the same height as the total height of the high-rise building 1 is provided inside the high-rise building 1, and a deep aeration tank 3 is provided within the shaft 2. This deep aeration tank 3 is
A downward flow pipe 4 and an upward flow pipe 5 are provided at substantially the same height as the substantial total height of the high-rise building 1, and between the lower end of these downward flow pipe 4 and the lower end of the upward flow pipe 5. Basically, they are formed into a U-shape as shown in FIG. 1 by a connecting pipe 6 that communicates these.In the present invention, in particular, a sludge settling chamber 7 is provided in the connecting pipe 6, Furthermore, a funnel-shaped recess 7a is formed in the bottom of the sludge settling chamber 7, and a pipe 21 for discharging excess sludge is attached to the bottom of the recess 7a. Further, in the present invention, a sludge separation tank 8 is arranged near the upper end of the upward flow pipe 5 of the deep aeration tank 3, and the pipe 21 is connected to this sludge separation tank 8, and the sludge is passed through the pipe 21. It is configured to communicate with the recess 7a of the precipitation chamber 7.

以下に、第2図のフローチヤートにより本発明
の廃水処理について説明する。
The wastewater treatment of the present invention will be explained below using the flowchart shown in FIG.

建築物1内で発生する生活廃水などが流下して
道面GL下で集められた流入廃水は管9により原
水槽10に貯えられ、管11、弁12、弁13を
経て、原水ポンプ14により下向流管4の上部に
送られ、曝気槽3に満たされたうえ通常のように
活性汚泥が加えられる。従来の曝気槽では地中に
設置されることから、上記の揚水は不要である。
下向流管4の上方にはブロワ15が設置され、そ
こから給気管16が下向流管4内に導かれ、圧縮
空気は廃水中に圧入されて廃水に下向流の運動エ
ネルギーを与えるとともに、廃水は下向流管4を
下降しつつ給気管16により供給された空気と接
触し、活性汚泥の働きにより、浄化される。つい
で、廃水は下向流管4の下端からU字形の底部を
構成する連設管6へ送られ、この連設管6内に形
成された汚泥沈澱室7を経て上向流管5に入り、
上向流管5の上部より循環ポンプ17によつて管
18を経て下向流管4の上部に返送され、再び曝
気処理をうける。処理されて浄化された廃水は上
向流管5の上部より放流管19により抜液されて
必要に応じて二次処理、三次処理を受けて外部に
放流される。この間に、廃水処理中に発生する活
性汚泥の過剰分即ち、余剰汚泥が深層曝気槽3の
底辺部に堆積することが避けられないので、従来
は地中深所におけるその処理に困難があつた。本
発明では深層曝気槽3の連設管6に汚泥沈澱室7
を設け、さらにその底部に漏斗状の凹部7aを形
成して余剰汚泥の沈積を容易にしているから、こ
の堆積した余剰汚泥は必要に応じて深層曝気槽3
の高い液頭圧を利用して弁20、管21を経て上
向流管5の最上部と略同じ位置に設けられた汚泥
分離槽8に導入され、加圧浮上分離されて、濃縮
汚泥と分離水に分離され、各々外部に排出され
る。また余剰汚泥の一部は汚泥返送管22を経て
流入原廃水に返送される。以上が深層曝気法を高
層建築物1のシヤフト2内で行う本発明の基本で
ある。
Domestic wastewater generated in the building 1 flows down and the inflow wastewater is collected under the road surface GL and is stored in a raw water tank 10 through a pipe 9, passes through a pipe 11, a valve 12, and a valve 13, and then is pumped by a raw water pump 14. The sludge is sent to the upper part of the downward flow pipe 4, and the aeration tank 3 is filled with activated sludge as usual. Since conventional aeration tanks are installed underground, the above-mentioned pumping is not necessary.
A blower 15 is installed above the downward flow pipe 4, from which an air supply pipe 16 is guided into the downward flow pipe 4, and compressed air is injected into the wastewater to impart downward kinetic energy to the wastewater. At the same time, the wastewater comes into contact with the air supplied by the air supply pipe 16 while descending through the downward flow pipe 4, and is purified by the action of activated sludge. Next, the wastewater is sent from the lower end of the downward flow pipe 4 to the continuous pipe 6 that forms the bottom of the U-shape, and enters the upward flow pipe 5 through the sludge settling chamber 7 formed within the continuous pipe 6. ,
The air is returned from the upper part of the upward flow pipe 5 to the upper part of the downward flow pipe 4 via the pipe 18 by the circulation pump 17, and is subjected to aeration treatment again. The treated and purified wastewater is drained from the upper part of the upward flow pipe 5 through a discharge pipe 19, subjected to secondary treatment and tertiary treatment as required, and discharged to the outside. During this time, it is unavoidable that excess activated sludge generated during wastewater treatment, that is, surplus sludge, accumulates at the bottom of the deep aeration tank 3. Conventionally, it has been difficult to treat it deep underground. . In the present invention, the sludge settling chamber 7 is connected to the continuous pipe 6 of the deep aeration tank 3.
A funnel-shaped recess 7a is formed at the bottom of the recess 7a to facilitate the deposition of excess sludge, so that the accumulated excess sludge can be transferred to the deep aeration tank 3 as needed.
Using the high head pressure of the liquid, the sludge is introduced into the sludge separation tank 8 provided at approximately the same position as the top of the upward flow pipe 5 through the valve 20 and the pipe 21, where it is floated under pressure and separated into concentrated sludge. It is separated into separated water and discharged to the outside. Further, a portion of the surplus sludge is returned to the inflow source wastewater via the sludge return pipe 22. The above is the basis of the present invention in which the deep aeration method is carried out within the shaft 2 of the high-rise building 1.

「第1の実施態様」 次に第3図に示したフローチヤートは本発明の
廃水処理法に基づく第1の実施態様を示すもの
で、この例においては下向流管4の下部および上
向流管5の下部にそれぞれ仕切弁23,24を設
けたもので、仕切弁23,24の回動を調節する
ことにより深層曝気槽3内の廃水の流量、流速を
調整し、流入廃水の水量および汚染度の変化に対
応することができるようになつている。
"First Embodiment" Next, the flowchart shown in FIG. 3 shows the first embodiment based on the wastewater treatment method of the present invention. Gate valves 23 and 24 are provided at the bottom of the flow pipe 5, and by adjusting the rotation of the gate valves 23 and 24, the flow rate and velocity of wastewater in the deep aeration tank 3 can be adjusted, and the amount of inflowing wastewater can be adjusted. and can respond to changes in the degree of pollution.

「第2の実施態様」 第4図に示したものは、本発明の廃水処理法に
基づく第2の実施態様を示すフローチヤートで、
この例では、上記原水槽10と同じ深さに浮上槽
40を設け、ここで上向流管5の中間部から廃水
の一部を管38、弁39を経て抜き出した処理中
の廃水を、原水槽10の流入原廃水と混合し、こ
の際、抜き出した廃水が常圧にもどる時に発生す
る気泡に流入原廃水中SS分、油分などの有害物
を付着させて、浮上槽40の表面に浮上分離させ
るもので浮上分離水は、原水ポンプ14によつて
下向流管4に送り、処理する。浮上分離物は掻き
よせ機41により集められ、外部に搬出される。
このフローによれば、浮上分離に要する動力に深
層曝気槽3の液頭圧を利用しており、また、原水
の性状にあわせて、上向流管5の中間部からの抜
き出し廃水量を調整するようになつているから、
このような抜き出しと浮上槽40の設置は高層建
築物中での曝気処理の一環を示している。
"Second Embodiment" What is shown in FIG. 4 is a flowchart showing the second embodiment based on the wastewater treatment method of the present invention.
In this example, a flotation tank 40 is provided at the same depth as the raw water tank 10, and a part of the wastewater is extracted from the middle part of the upward flow pipe 5 through a pipe 38 and a valve 39. It is mixed with the inflow raw wastewater of the raw water tank 10, and at this time, harmful substances such as SS and oil in the inflow raw wastewater are attached to the bubbles generated when the extracted wastewater returns to normal pressure, and are deposited on the surface of the flotation tank 40. The floated and separated water is sent to the downward flow pipe 4 by a raw water pump 14 for treatment. The floating substances are collected by a scraper 41 and transported to the outside.
According to this flow, the liquid head pressure in the deep aeration tank 3 is used as the power required for flotation separation, and the amount of wastewater extracted from the middle part of the upward flow pipe 5 is adjusted according to the properties of the raw water. Because I'm used to doing it,
Such extraction and installation of flotation tank 40 represent a part of aeration treatment in high-rise buildings.

「第3の実施態様」 第5図に示すものはこの発明の廃水処理法に基
づく第3の実施態様を示すもので、この例におい
ては、汚泥沈澱室7に堆積した余剰汚泥が弁20
を経て脱水機25に導かれ、脱水機25で、深層
曝気槽3での高液頭圧を動力として利用し、自動
的に余剰汚泥を脱水するように構成されていて、
脱水機25で生じた分離水は濾水槽26に貯めら
れ濾水ポンプ27で原水槽10に返送される。ま
た、上向流管5の上部には廃水の上向流のエネル
ギーを利用して回転する回転円板式濾材28が設
けられ、外部からの動力を用いることなく回転円
板式濾材による公知の接触酸化処理の付加が行え
るようになされていて、廃水の高度な処理が達成
される。処理をうけた廃水は管29により外部に
排水される。
"Third Embodiment" What is shown in FIG. 5 shows the third embodiment based on the wastewater treatment method of the present invention.
The excess sludge is guided to the dehydrator 25, which uses the high liquid head pressure in the deep aeration tank 3 as power to automatically dewater the excess sludge.
Separated water produced in the dehydrator 25 is stored in a filtration tank 26 and returned to the raw water tank 10 by a filtration pump 27. In addition, a rotating disk type filter medium 28 that rotates using the energy of the upward flow of waste water is provided at the upper part of the upward flow pipe 5, and a known catalytic oxidation method using a rotating disk type filter medium is provided without using external power. Additional treatments can be added to achieve a high level of wastewater treatment. The treated wastewater is drained to the outside through a pipe 29.

「第4の実施態様」 第6図に示したフローチヤートは本発明の第4
の実施態様を示し、連設管6に2つの点検孔3
0,31を設け、更に連設管6に廃水中の溶存酸
素を測定するための採水管32を設けたもので、
仕切弁23,24を全閉とし、連設管6内の廃水
を原水ポンプ14などを用いて除去することによ
り、建築物の下部から容易に近接して連設管6内
を点検清掃することや、槽内に機材の搬入するこ
とが可能となり、また、深層曝気槽3の最深部の
廃水中の溶存酸素量の測定が可能となりこの測定
値により吸気管16より廃水中に吹き込む圧縮空
気量を変化させ、最適の溶存酸素量を維持するこ
とができるようになる。
"Fourth Embodiment" The flowchart shown in FIG. 6 is the fourth embodiment of the present invention.
shows an embodiment in which two inspection holes 3 are provided in the connecting pipe 6.
0, 31, and a water sampling pipe 32 for measuring dissolved oxygen in wastewater is provided in the connecting pipe 6.
By fully closing the gate valves 23 and 24 and removing the waste water inside the connecting pipe 6 using the raw water pump 14, etc., the inside of the connecting pipe 6 can be inspected and cleaned easily from the lower part of the building. In addition, it becomes possible to carry equipment into the tank, and it is also possible to measure the amount of dissolved oxygen in the wastewater at the deepest part of the deep aeration tank 3. Based on this measurement value, the amount of compressed air blown into the wastewater from the intake pipe 16 can be determined. It becomes possible to maintain the optimum amount of dissolved oxygen by changing the amount of dissolved oxygen.

「第5の実施態様」 第7図に示したものは本発明の廃水処理法の第
5の実施態様のフローチヤートで、この例では、
連設管6内に公知の接触酸化濾材33を設けると
同時に上向流管5の上部を拡大し、上面を閉塞し
て嫌気性雰囲気にして脱窒槽34に形成し、脱窒
槽34の内部に脱窒菌の棲息する脱窒濾材35を
設けたものである。廃水は下向流管4で曝気処理
を受け、更に連設管6内の接触酸化濾材33によ
り廃水中のBOD成分が更に処理されるとともに、
廃水中の有機性窒素、硝酸性窒素となる。接触酸
化濾材33の働きにより廃水中の溶存酸素量は上
向流管5の上部ではほとんどゼロとなる。この状
態の廃水はついで脱窒槽34に入り、メタノール
槽36より栄養源のメタノールの供給をうけて脱
窒濾材35の脱窒菌により脱窒処理される。上記
のようにしてBOD除去脱窒された廃水は管37
より外部に放流されたり、高層建築物1用の中水
として供用される。なお、この例においては上向
流管5の上部より下向流管4の上部へ廃水を循環
せしめることは行わず、従つて循環ポンプ17お
よび管18は設置しない変化をとる。以上の第1
実施態様ないし第5実施態様の構成部分の内、基
本の実施例と同一のものについては、同一符号を
賦してその説明を省略した。
"Fifth Embodiment" What is shown in FIG. 7 is a flowchart of the fifth embodiment of the wastewater treatment method of the present invention, and in this example,
A known contact oxidation filter medium 33 is provided in the continuous pipe 6, and at the same time the upper part of the upflow pipe 5 is expanded, the upper surface is closed, and an anaerobic atmosphere is created in the denitrification tank 34. A denitrifying filter medium 35 in which denitrifying bacteria live is provided. The wastewater is subjected to aeration treatment in the downward flow pipe 4, and the BOD components in the wastewater are further processed by the contact oxidation filter medium 33 in the continuous pipe 6.
It becomes organic nitrogen and nitrate nitrogen in wastewater. Due to the action of the contact oxidation filter medium 33, the amount of dissolved oxygen in the wastewater becomes almost zero at the upper part of the upflow pipe 5. The wastewater in this state then enters the denitrification tank 34, receives methanol as a nutrient source from the methanol tank 36, and undergoes denitrification treatment by the denitrification bacteria in the denitrification filter medium 35. The wastewater that has undergone BOD removal and denitrification as described above is pipe 37.
The water is discharged to the outside or used as gray water for high-rise buildings 1. In this example, waste water is not circulated from the upper part of the upward flow pipe 5 to the upper part of the downward flow pipe 4, and therefore the circulation pump 17 and the pipe 18 are not installed. The first of the above
Among the constituent parts of the embodiment to the fifth embodiment, those that are the same as those of the basic embodiment are given the same reference numerals, and the explanation thereof is omitted.

「発明の効果」 以上説明したように本発明は、高層建築物に、
この高層建築物の実質全高と略同じ高さの下向流
管と上向流管を設けるとともにこれら下向流管の
下端部と上向流管の下端部の間にこれらを連通す
る連設管を設けて曝気槽とし、上記連設管に汚泥
沈澱室を設け、さらにこの汚泥沈澱室の底面に漏
斗状の凹部を形成するとともに凹部の底面に余剰
汚泥を排出する管を取り付けて余剰汚泥を沈積さ
せる一方、下向流管内の廃水に下方に向けて空気
を圧入するとともに上向流管上部の廃水を下向流
管の上部に返送することによつて廃水を循環流動
させ深層曝気式に処理し、この処理にあたつて、
曝気式廃水処理にかかる公知手段を加えて処理効
果を向上させる展開をはかつたものであるので、
次ぎのような優れた効果を奏するものである。
"Effects of the Invention" As explained above, the present invention provides high-rise buildings with
A downward flow pipe and an upward flow pipe are provided at approximately the same height as the substantial total height of this high-rise building, and a connection is provided between the lower end of these downward flow pipes and the lower end of the upward flow pipe. A pipe is provided to form an aeration tank, a sludge settling chamber is provided in the connecting pipe, a funnel-shaped recess is formed in the bottom of the sludge settling chamber, and a pipe for discharging excess sludge is attached to the bottom of the recess to remove the excess sludge. At the same time, air is injected downward into the wastewater in the downward flow pipe, and the wastewater in the upper part of the upward flow pipe is returned to the upper part of the downward flow pipe to circulate and flow the wastewater. In this process,
This is an attempt to improve the treatment effect by adding known means related to aerated wastewater treatment.
It has the following excellent effects.

廃水を高層建築物の実質全高のほぼ倍の長さ
に相当する曝気槽内の経路で循環流動させて浄
化処理できるので、高度の処理が行え、高層建
築物内で発生した廃水から有効な中水が得られ
る。
Wastewater can be purified by being circulated through a path inside the aeration tank, which is approximately twice as long as the actual total height of a high-rise building, allowing for advanced treatment. water is available.

処理中に発生した余剰汚泥を曝気槽底部の汚
泥沈澱室に形成した漏斗状の凹部に沈積させる
ようにしているから、余剰汚泥の沈積を容易に
することができ、また、この凹部の底面に取り
付けられた管より必要に応じて深層曝気槽の高
い液頭圧を利用して凹部内に沈積した余剰汚泥
を外部のたとえば汚泥分離槽などに送り、この
分離槽で廃水の固液分離を行えるので、余剰汚
泥の処理が容易にかつ低廉に行える。
Excess sludge generated during treatment is deposited in a funnel-shaped recess formed in the sludge settling chamber at the bottom of the aeration tank, making it easier to deposit excess sludge. Using the high liquid head pressure of the deep aeration tank, excess sludge deposited in the recess is sent to an external sludge separation tank, etc., as needed, through the attached pipe, and solid-liquid separation of wastewater can be performed in this separation tank. Therefore, surplus sludge can be treated easily and inexpensively.

曝気槽の底部に連設管を設けたので、この連
設管内に必要に応じて接触酸化濾材を設けるこ
とができ、この濾材により廃水中のBOD成分
を連続的に除去でき、廃水を中水以上の処理水
とすることができる。
Since a continuous pipe is provided at the bottom of the aeration tank, a contact oxidation filter material can be installed in this continuous pipe as needed, and this filter material can continuously remove BOD components in wastewater, converting wastewater into gray water. The above treated water can be treated.

また連設管に点検孔を設けることにより、こ
れら点検孔を通して点検、清掃、機材の搬入出
を行うことができるので、連設管内のメンテナ
ンスを容易に行える。
Furthermore, by providing inspection holes in the continuous pipes, inspection, cleaning, and equipment can be carried in and out through these inspection holes, so maintenance inside the continuous pipes can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の廃水処理法を実施するための
廃水処理装置の一例を示す概略図、第2図は第1
図の装置を使用した本発明の廃水処理法の基本的
の実施例を説明するためのフローチヤート、第3
図は本発明の第1実施態様を説明するためのフロ
ーチヤート、第4図は本発明の第2実施態様を説
明するためのフローチヤート、第5図は本発明の
第3実施態様を説明するためのフローチヤート、
第6図は本発明の第4実施態様を説明するための
フローチヤート、第7図は本発明の第5実施態様
を説明するためのフローチヤートである。 1……高層建築物、2……シヤフト、3……深
層曝気槽、4……下向流管、5……上向流管、6
……連設管、7……汚泥沈澱室、8……汚泥分離
槽、23,24……仕切弁、25……脱水機、2
8……回転円板式濾材、30,31……点検孔、
33……接触酸化濾材、34……脱窒槽、38…
…管、40……浮上槽。
FIG. 1 is a schematic diagram showing an example of a wastewater treatment device for carrying out the wastewater treatment method of the present invention, and FIG.
Flowchart for explaining the basic embodiment of the wastewater treatment method of the present invention using the apparatus shown in the figure, Part 3.
The figure is a flowchart for explaining the first embodiment of the invention, FIG. 4 is a flowchart for explaining the second embodiment of the invention, and FIG. 5 is a flowchart for explaining the third embodiment of the invention. flowchart for,
FIG. 6 is a flow chart for explaining the fourth embodiment of the present invention, and FIG. 7 is a flow chart for explaining the fifth embodiment of the present invention. 1... High-rise building, 2... Shaft, 3... Deep aeration tank, 4... Downflow pipe, 5... Upflow pipe, 6
...Connection pipe, 7...Sludge settling chamber, 8...Sludge separation tank, 23, 24...Gate valve, 25...Dehydrator, 2
8...Rotating disk type filter medium, 30, 31...Inspection hole,
33... Contact oxidation filter medium, 34... Denitrification tank, 38...
...Tube, 40...Flotation tank.

Claims (1)

【特許請求の範囲】 1 高層建築物に、この高層建築物の実質全高と
略同じ高さの下向流管と上向流管を設けるととも
にこれら下向流管の下端部と上向流管の下端部の
間にこれらを連通する連設管を設けて曝気槽と
し、上記連設管に汚泥沈澱室を設け、さらにこの
汚泥沈澱室の底面に漏斗状の凹部を形成するとと
もに凹部の底面に余剰汚泥を排出する管を取り付
けて余剰汚泥を沈積させる一方、下向流管内の廃
水に下方に向けて空気を圧入するとともに上向流
管上部の廃水を下向流管の上部に返送することに
よつて廃水を循環流動させ深層曝気式に処理する
ことを特徴とする高層建築物を利用した廃水処理
法。 2 上記曝気式廃水処理にあたつては、曝気槽の
上向流管および下向流管の下方部で連設管の上方
位置に、それぞれ仕切弁を設けて廃水の流速およ
び流量を調節することを特徴とする特許請求の範
囲第1項記載の高層建築物を利用した廃水処理
法。 3 上記曝気式廃水処理にあたつては、曝気槽の
上向流管の中間部より廃水の一部を抜き出し、こ
の抜き出し廃水と流入原水とを浮上槽に導き、流
入原水中の有害物を深層曝気槽の液頭圧を利用し
て浮上分離することを特徴とする特許請求の範囲
第1項記載の高層建築物を利用した廃水処理法。 4 上記曝気式廃水処理にあたつては、曝気槽の
上向流管の上端近傍に上記汚泥沈澱室に連通する
汚泥分離槽を設けて、汚泥沈澱室に沈澱した余剰
汚泥を深層曝気槽の液頭圧を利用して固液分離す
ることを特徴とする特許請求の範囲第1項記載の
高層建築物を利用した廃水処理法。 5 上記曝気式廃水処理にあたつては、上記汚泥
沈澱室に沈澱した余剰汚泥を脱水機に導き、深層
曝気槽の液頭圧を脱水機の動力に利用して余剰汚
泥を脱水することを特徴とする特許請求の範囲第
1項記載の高層建築物を利用した廃水処理法。 6 上記曝気式廃水処理にあたつては、曝気槽の
上向流管の上部に回転円板式濾材を設け、廃水の
上向流エネルギーを利用して回転円板式濾材を回
転させることを特徴とする特許請求の範囲第1項
記載の高層建築物を利用した廃水処理法。 7 上記曝気式廃水処理にあたつては、上記連設
管内に接触酸化濾材を設け、かつ曝気槽の上向流
管の上部に脱窒槽を設けて、廃水中のBOD成分
および窒素分を連続的に処理することを特徴とす
る第1項記載の高層建築物を利用した廃水処理
法。 8 上記曝気式廃水処理にあたつては、連設管に
それぞれ点検孔を設けて、連設管内を点検、清
掃、機材の搬入出ができるようにしたことを特徴
とする第1項記載の高層建築物を利用した廃水処
理法。
[Scope of Claims] 1 A high-rise building is provided with a downward flow pipe and an upward flow pipe that are approximately the same height as the entire height of the high-rise building, and the lower ends of these downward flow pipes and the upward flow pipe are provided. A connecting pipe is provided between the lower ends to communicate these, forming an aeration tank, and a sludge settling chamber is provided in the connecting pipe, and a funnel-shaped recess is formed in the bottom of the sludge settling chamber, and the bottom of the recess is A pipe is attached to discharge excess sludge to allow the excess sludge to settle, while air is forced downward into the wastewater in the downward flow pipe, and wastewater from the upper part of the upward flow pipe is returned to the upper part of the downward flow pipe. A wastewater treatment method using high-rise buildings, which is characterized by circulating wastewater and treating it by deep aeration. 2. In the aeration-type wastewater treatment mentioned above, gate valves are installed above the connecting pipes in the lower part of the upflow pipe and the downflow pipe of the aeration tank to adjust the flow rate and flow rate of the wastewater. A wastewater treatment method using a high-rise building according to claim 1, characterized in that: 3. In the aeration-type wastewater treatment mentioned above, a part of the wastewater is extracted from the middle part of the upward flow pipe of the aeration tank, and this extracted wastewater and inflowing raw water are guided to the flotation tank to remove harmful substances in the inflowing raw water. A wastewater treatment method using a high-rise building according to claim 1, characterized in that flotation separation is carried out using liquid head pressure in a deep aeration tank. 4. In the aeration-type wastewater treatment described above, a sludge separation tank communicating with the sludge settling chamber is provided near the upper end of the upward flow pipe of the aeration tank, and excess sludge settled in the sludge settling chamber is transferred to the deep aeration tank. A wastewater treatment method using a high-rise building according to claim 1, characterized in that solid-liquid separation is performed using liquid head pressure. 5. In the aeration-type wastewater treatment mentioned above, the excess sludge settled in the sludge settling chamber is led to the dehydrator, and the liquid head pressure in the deep aeration tank is used to power the dehydrator to dewater the excess sludge. A wastewater treatment method using a high-rise building according to claim 1. 6. The above-mentioned aeration-type wastewater treatment is characterized in that a rotating disk type filter medium is provided at the upper part of the upward flow pipe of the aeration tank, and the rotating disk type filter medium is rotated using the upward flow energy of the wastewater. A wastewater treatment method using a high-rise building according to claim 1. 7 In the aeration-type wastewater treatment mentioned above, a contact oxidation filter medium is installed in the above-mentioned continuous pipe, and a denitrification tank is installed above the upward flow pipe of the aeration tank to continuously remove BOD components and nitrogen content in the wastewater. 2. The wastewater treatment method using a high-rise building according to item 1, characterized in that the wastewater treatment method is performed using a high-rise building. 8. In the aeration-type wastewater treatment described above, each of the continuous pipes is provided with an inspection hole so that inspection, cleaning, and equipment can be carried in and out of the continuous pipes. Wastewater treatment method using high-rise buildings.
JP55141088A 1980-10-08 1980-10-08 Treatment of waste water with use of lofty building Granted JPS5765389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55141088A JPS5765389A (en) 1980-10-08 1980-10-08 Treatment of waste water with use of lofty building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55141088A JPS5765389A (en) 1980-10-08 1980-10-08 Treatment of waste water with use of lofty building

Publications (2)

Publication Number Publication Date
JPS5765389A JPS5765389A (en) 1982-04-20
JPS6344032B2 true JPS6344032B2 (en) 1988-09-02

Family

ID=15283916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55141088A Granted JPS5765389A (en) 1980-10-08 1980-10-08 Treatment of waste water with use of lofty building

Country Status (1)

Country Link
JP (1) JPS5765389A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163556A (en) * 1974-10-03 1976-06-02 Ici Ltd
JPS5331367A (en) * 1976-05-14 1978-03-24 Ici Ltd Method and apparatus for treating soliddliquid blended drain
JPS5482844A (en) * 1977-12-14 1979-07-02 Kurita Water Ind Ltd Device for treating foul water in skyscraper
JPS54117155A (en) * 1978-02-11 1979-09-11 Hoechst Ag Biological purifying method of waste water
JPS54117154A (en) * 1978-02-11 1979-09-11 Hoechst Ag Biological purifier of waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163556A (en) * 1974-10-03 1976-06-02 Ici Ltd
JPS5331367A (en) * 1976-05-14 1978-03-24 Ici Ltd Method and apparatus for treating soliddliquid blended drain
JPS5482844A (en) * 1977-12-14 1979-07-02 Kurita Water Ind Ltd Device for treating foul water in skyscraper
JPS54117155A (en) * 1978-02-11 1979-09-11 Hoechst Ag Biological purifying method of waste water
JPS54117154A (en) * 1978-02-11 1979-09-11 Hoechst Ag Biological purifier of waste water

Also Published As

Publication number Publication date
JPS5765389A (en) 1982-04-20

Similar Documents

Publication Publication Date Title
NL1004455C2 (en) Device for the biological treatment of waste water.
US4351730A (en) Treatment of biologically-degradable waste
Martin The activated sludge process
CN107162339A (en) Return flow technique
US4382863A (en) Sludge dewatering system
CN107651749A (en) A kind of integrated bioreactor of pre-treating high concentration oil refining wastewater
US5322621A (en) Equipment for treating sewage by biological oxidation
Krasauskas Review of sludge disposal practices
JPS6344032B2 (en)
JPH10192888A (en) Method and apparatus for cleaning wastewater
KR101543548B1 (en) Filtering apparatus and the use of total phosphorus filtering method
CN206927766U (en) Return flow equipment
JPH11347313A (en) Water treatment utilizing capillarity and apparatus therefor
CN220766710U (en) Composite constructed wetland structure
SU1000422A1 (en) Method and apparatus for purifying effluents
CN111777259B (en) Integrated small-sized sewage treatment device and treatment method
US6024877A (en) Process and installation for the treatment of effluents loaded with organic materials
RU2055816C1 (en) Septic
Porter The activated sludge process of sewage treatment: a bibliography of the subject, with brief abstracts, patents, news items, etc. comp. mainly from current literature
CN213012497U (en) River course sewage microorganism intensive treatment system
CN210030174U (en) Harbor oily sewage is with anaerobism-aerobic treatment system
CN106396300A (en) Sewage treatment device of precast concrete structure and treatment method
JP2686464B2 (en) Wastewater treatment equipment
CN206359316U (en) A kind of moving bed BAF
CA1149975A (en) Sludge dewatering system