JPS6343995B2 - - Google Patents

Info

Publication number
JPS6343995B2
JPS6343995B2 JP510281A JP510281A JPS6343995B2 JP S6343995 B2 JPS6343995 B2 JP S6343995B2 JP 510281 A JP510281 A JP 510281A JP 510281 A JP510281 A JP 510281A JP S6343995 B2 JPS6343995 B2 JP S6343995B2
Authority
JP
Japan
Prior art keywords
diode
voltage
secondary winding
rectifier
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP510281A
Other languages
Japanese (ja)
Other versions
JPS57122671A (en
Inventor
Toshio Nishino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP510281A priority Critical patent/JPS57122671A/en
Publication of JPS57122671A publication Critical patent/JPS57122671A/en
Publication of JPS6343995B2 publication Critical patent/JPS6343995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/062Avoiding or suppressing excessive transient voltages or currents

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明はダイオードまたはスイツチングトラン
ジスタなどの整流素子よりなる整流回路と、その
出力に接がるチヨークコイルに設けたバイアス用
2次巻線に、整流素子の導通サイクル時のみ電流
を流すようにした平滑回路とよりなる整流装置に
係り、導通サイクルのときは直流電流を流してチ
ヨークコイルの磁心の飽和により、低インピーダ
ンスとし、不導通サイクルのときは磁心の不飽和
により高インピーダンスとして、整流素子に逆電
流が流れないようにするにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a rectifier circuit consisting of a rectifier element such as a diode or a switching transistor, and a bias secondary winding provided in a choke coil connected to the output thereof. This is a rectifier device consisting of a smoothing circuit that allows current to flow.During a conduction cycle, DC current is applied to saturate the magnetic core of the chiyoke coil, resulting in a low impedance, and during a non-conducting cycle, the unsaturation of the magnetic core creates a high impedance. The purpose is to prevent reverse current from flowing through the rectifier.

従来通信機や電子機器の電源回路は第1図に示
すようにトランスT1の1次巻線N1に印加したパ
ルス電圧、たは交番電圧により2次巻線N2に生
じた誘起電圧をダイオードD1で整流し、コンデ
ンサC1により平滑し、負荷抵抗RLに直流電圧が
供給される。これらの回路においては、整流され
た電圧はダイオードD1の順方向の抵抗分による
電圧降下分だけ損失として消費される。たとえば
直流出力電圧12Vで、負荷電流が10Aにおいて、
ダイオードD1の電圧降下を1.5Vとしたとき、ダ
イオードD1での損失は電力では10A×1.5V=
15Wになり、出力電力12V×10A=120Wに対し
て12.5%にも達する。したがつてこの整流素子ダ
イオードD1における電圧降下を少なくするため、
電圧降下が0.6V程度のダイオードに代るシヨツ
トキーダイオード整流素子として用いられること
もある。
Conventional power supply circuits for communication equipment and electronic equipment, as shown in Figure 1, use a pulse voltage or alternating voltage applied to the primary winding N 1 of a transformer T 1 to generate an induced voltage in the secondary winding N 2 . The DC voltage is rectified by the diode D1 , smoothed by the capacitor C1 , and is supplied to the load resistor R L. In these circuits, the rectified voltage is consumed as a loss by the voltage drop due to the forward resistance of the diode D1 . For example, when the DC output voltage is 12V and the load current is 10A,
When the voltage drop of diode D 1 is 1.5V, the loss in diode D 1 is 10A x 1.5V =
The output power is 15W, which is 12.5% of the output power of 12V x 10A = 120W. Therefore, in order to reduce the voltage drop in this rectifier diode D1 ,
It is sometimes used as a Schottky diode rectifier in place of a diode with a voltage drop of about 0.6V.

また整流素子としてダイオードの代りに第2図
に示すようにトランジスタQ1を直列に接続する
ことによつてコレクタ・エミツタ間の飽和電圧は
負荷電流10Aで0.5V以下の損失の少ないものとす
ることもできる。
In addition, by connecting a transistor Q1 in series as shown in Figure 2 instead of a diode as a rectifying element, the saturation voltage between the collector and emitter can be made low loss to 0.5V or less at a load current of 10A. You can also do it.

しかしダイオードやトランジスタのような整流
素子には素子が導通状態でないときは、巻線N2
に誘起された逆方向の電圧が印加される。すなわ
ち第1図においてはダイオードD1のアノードに
負電位、カソードに正電位が、また第2図におい
てはトランジスタのエミツタに正電位、コレクタ
に負電位が印加される。しかしシヨツトキーダイ
オードでも一般トランジスタでも、この逆電圧が
素子の持つている規定値以上になると、急に逆電
流が流れて不導通でなくなる。たとえば通常シヨ
ツトキーダイオードでは40V、一般のトランジス
タでは10Vであり、また第1図ならびに第2図の
場合はトランスT1の2次巻線N2には直流出力電
圧の数倍の電圧値をもつ逆電圧が誘起されるの
で、シヨツトキーダイオードでは出力電圧5Vに
使えても出力電圧15Vには使えないことにもな
る。またトランジスタではさらに小さい出力電圧
の場合しか使えない欠点がある。
However, for rectifying elements such as diodes and transistors, when the element is not conducting, the winding N 2
A voltage induced in the opposite direction is applied. That is, in FIG. 1, a negative potential is applied to the anode of the diode D1 and a positive potential to the cathode, and in FIG. 2, a positive potential is applied to the emitter of the transistor, and a negative potential is applied to the collector. However, in both Schottky diodes and general transistors, when this reverse voltage exceeds the specified value of the device, a reverse current suddenly flows and the device ceases to be non-conducting. For example, the voltage is usually 40V for a Schottky diode and 10V for a general transistor, and in the case of Figures 1 and 2, the voltage several times the DC output voltage is applied to the secondary winding N2 of the transformer T1 . Since a reverse voltage is induced, a Schottky diode can be used for an output voltage of 5V, but cannot be used for an output voltage of 15V. Another disadvantage of transistors is that they can only be used for smaller output voltages.

本発明は従来のかかる欠点を除き、整流回路の
出力に接続される平滑回路用チヨークコイルに2
次巻線を施し、整流素子の順方向電圧のときはダ
イオードを通じて直流電流を2次巻線に流し、チ
ヨークコイルの磁心を飽和させてインピーダンス
を下げて損失を少くし、逆方向電圧ではダイオー
ドを通じて直流電流の流れないときは磁心の不飽
和によりインピーダンスを高くし、整流素子に高
い逆電圧が印加するのを防止するものである。
The present invention eliminates such drawbacks of the conventional technology and provides two coils for smoothing circuits connected to the output of the rectifier circuit.
A secondary winding is applied, and when the forward voltage of the rectifying element is present, direct current is passed through the diode to the secondary winding, saturating the magnetic core of the chiyoke coil to lower impedance and reduce loss, and when the voltage is in the reverse direction, direct current is passed through the diode to the secondary winding. When no current flows, the impedance is increased due to unsaturation of the magnetic core, thereby preventing high reverse voltage from being applied to the rectifying element.

第3図は本発明の一実施例を示し平滑回路用チ
ヨークコイルL1の1次巻線n1の上にバイアス用2
次巻線n2を施し、ダイオードD1と同方向のダイ
オードD2および抵抗R1を通じてトランスT1の2
次巻線N2に誘起される電圧を加える。いまダイ
オードD1の導通方向にトランスT1の2次巻線N2
に誘起された電圧によつて負荷直流電流Iが流れ
ると同時に、バイアス用2次巻線n2に直流電流i
が流れる。チヨークコイルL1の1次巻線n1と2次
巻線n2との間にn2≫n1の関係があると、それぞれ
の巻線に流れる直流電流I,iとの間にi≪Iの
関係が得られる。したがつて直流電流iがチヨー
クコイルL1の磁心を飽和させると、チヨークコ
イルL1のインピーダンスは零に近くなり、巻線n1
の直流抵抗分だけとなり、負荷回路の損失が少な
くなる。
FIG. 3 shows an embodiment of the present invention, and a bias coil 2 is connected to the primary winding n 1 of the smoothing circuit coil L 1 .
The next winding n 2 is applied and the 2 of the transformer T 1 is connected through the diode D 2 and the resistor R 1 in the same direction as the diode D 1.
Apply the voltage induced in the next winding N 2 . Now the secondary winding N 2 of the transformer T 1 is connected in the conduction direction of the diode D 1
At the same time, the load DC current I flows due to the voltage induced in the bias secondary winding n2 .
flows. If there is a relationship n 2 ≫ n 1 between the primary winding n 1 and the secondary winding n 2 of the choke coil L 1 , then i ≪ I between the direct current I, i flowing through each winding. The following relationship is obtained. Therefore, when the DC current i saturates the magnetic core of the chiyoke coil L1 , the impedance of the chiyoke coil L1 becomes close to zero, and the winding n1
This reduces the loss in the load circuit.

また逆電圧が印加されたときはダイオードD1
に不導通であり、2次巻線n2に接がるダイオード
D2も不導通となり、直流電流iは2次巻線n2
流れないので、チヨークコイルL1の磁心は飽和
せず高インピーダンスを持つようになる。したが
つてダイオードD1には直接大きな逆電圧は印加
されないので、逆耐圧の低いダイオードやトラン
ジスタなどを整流素子として使うこともできるよ
うになる。
Also, when a reverse voltage is applied, the diode D1
A diode that is non-conducting and in contact with the secondary winding n 2
D2 also becomes non-conductive, and the direct current i does not flow to the secondary winding n2 , so the magnetic core of the chiyoke coil L1 is not saturated and has a high impedance. Therefore, since a large reverse voltage is not directly applied to the diode D1 , a diode or a transistor with a low reverse withstand voltage can be used as a rectifying element.

第4図は本発明の他の実施例を示し、トランス
T1の1次巻線N1に加えられたパルス信号の2次
巻線N2での出力をスイツチング用トランジスタ
Q1によりスイツチングし、さらに第5図に示す
ようにトランスT1の2次側出力電圧V1のパルス
幅T0とトランジスタQ1の出力電圧V2のパルス幅
τ0との間にT0>τ0となるようなパルス幅制御駆動
回路Pを設け、τ0/T0のデユーテイ率を可変と
する。さらにチヨークコイルL1にはバイアス用
2次巻線n2を施し、トランジスタQ1の出力電圧
によりダイオードD1、抵抗R1を通じて2次巻線
n2に直流電流を流して、前述したと同様に損失の
少い平滑回路ができる。またパルス幅制御駆動回
路Pの制御によつてデユーテイ率を可変とすると
ダイオードD1で整流された可変直流電流が2次
巻線n2に流れるので、飽和電流値は変わり、した
がつてインピーダンスも変わる。さらに第4図の
両波整流用ダイオードD2の整流平滑回路につな
がる第2のチヨークコイルL2にも同様に2次巻
線を施して直流電流を流してインピーダンスを小
さくすることもできる。また飽和電流は必ずしも
例示したようにトランスT1と関連して流すこと
もなく、トランジスタQ1の導通時に2次巻線n2
に直流電流が流れるようにトランジスタQ1の導
通サイクルと同期する方法をとればよい。
FIG. 4 shows another embodiment of the present invention, in which a transformer
A switching transistor outputs the pulse signal applied to the primary winding N1 of T1 at the secondary winding N2 .
As shown in FIG . _ _ _ A pulse width control drive circuit P is provided such that >τ 0 and the duty rate of τ 0 /T 0 is made variable. Furthermore, a secondary winding n 2 for bias is applied to the chiyoke coil L 1 , and the output voltage of the transistor Q 1 connects the secondary winding through the diode D 1 and the resistor R 1 .
By passing a direct current through n2 , a smoothing circuit with low loss can be created in the same way as described above. Furthermore, when the duty rate is made variable under the control of the pulse width control drive circuit P, the variable DC current rectified by the diode D1 flows to the secondary winding n2 , so the saturation current value changes and the impedance also changes. change. Further, it is also possible to similarly provide a secondary winding to the second choke coil L 2 connected to the rectifying and smoothing circuit of the double-wave rectifying diode D 2 shown in FIG. 4 to flow a direct current to reduce the impedance. Further, the saturation current does not necessarily flow in connection with the transformer T1 as illustrated, but when the transistor Q1 is conductive, the saturation current flows through the secondary winding n2.
What is necessary is to use a method that synchronizes with the conduction cycle of the transistor Q1 so that a direct current flows through the transistor Q1 .

以上に述べたように本発明は平滑回路のチヨー
クコイルに2次巻線を施し、整流素子の導通サイ
クルに直流電流を流してチヨークコイルの磁心の
飽和値によつてインピーダンスを低くして損失を
少くし、不導通時は直流電流を流さず、インピー
ダンスを高くして、高い逆電圧によつて整流素子
に逆電流が流れないようにすることができる。な
お以上の説明ではトランスT1の1次側にパルス
電圧が入力される場合の例について述べたが、特
にパルス電圧に限らず、正弦波電圧でも同様であ
る。
As described above, the present invention provides a secondary winding to the smoothing circuit's chiyoke coil, passes a direct current during the conduction cycle of the rectifier element, and lowers the impedance and loss by the saturation value of the magnetic core of the chiyoke coil. When non-conducting, direct current does not flow and the impedance is increased to prevent reverse current from flowing through the rectifying element due to a high reverse voltage. In the above description, an example has been described in which a pulse voltage is input to the primary side of the transformer T1 , but the present invention is not limited to a pulse voltage, and the same applies to a sine wave voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のダイオードを用いた基本的整流
回路、第2図は従来のトランジスタを用いた整流
回路、第3図は本発明によるダイオードを整流素
子とした整流回路図、第4図はスイツチングトラ
ンジスタを用いた本発明による整流回路図、第5
図は本発明の整流装置に用いたパルス幅制御駆動
回路により制御される入力および出力の電圧波形
図である。 図において D1,D2:ダイオード、O1:トラ
ンジスタ、L1,L2:チヨークコイル、n1:1次
巻線、n2:バイアス用2次巻線、T1:トランス、
N1:1次巻線、N2:2次巻線、R1:抵抗、C1
コンデンサ、RL:負荷抵抗、P:パルス幅制御
駆動回路。
Figure 1 is a basic rectifier circuit using a conventional diode, Figure 2 is a rectifier circuit using a conventional transistor, Figure 3 is a rectifier circuit diagram using a diode according to the present invention as a rectifier, and Figure 4 is a switch. Rectifier circuit diagram according to the present invention using a switching transistor, No. 5
The figure is a diagram of input and output voltage waveforms controlled by the pulse width control drive circuit used in the rectifier of the present invention. In the figure, D 1 , D 2 : diode, O 1 : transistor, L 1 , L 2 : chiyoke coil, n 1 : primary winding, n 2 : secondary winding for bias, T 1 : transformer,
N 1 : Primary winding, N 2 : Secondary winding, R 1 : Resistance, C 1 :
Capacitor, R L : Load resistance, P: Pulse width control drive circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 交流入力から直流出力を得る整流装置におい
て、ダイオードまたはトランジスタの整流素子、
またはパルス幅制御により断続させるスイツチン
グ用トランジスタ素子の導通時にのみ直流電流が
流れるバイアス用2次巻線を施したチヨークコイ
ルを前記素子に接続してなり、前記直流電流の可
変により、前記チヨークコイルのインピーダンス
を可変ならしめることを特徴とする整流装置。
1 In a rectifier that obtains a DC output from an AC input, a diode or transistor rectifier,
Alternatively, a chiyoke coil having a bias secondary winding through which a direct current flows only when a switching transistor element is turned on and off by pulse width control is connected to the element, and by varying the direct current, the impedance of the chiyoke coil can be adjusted. A rectifying device characterized by being variable.
JP510281A 1981-01-19 1981-01-19 Rectifier Granted JPS57122671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP510281A JPS57122671A (en) 1981-01-19 1981-01-19 Rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP510281A JPS57122671A (en) 1981-01-19 1981-01-19 Rectifier

Publications (2)

Publication Number Publication Date
JPS57122671A JPS57122671A (en) 1982-07-30
JPS6343995B2 true JPS6343995B2 (en) 1988-09-02

Family

ID=11601999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP510281A Granted JPS57122671A (en) 1981-01-19 1981-01-19 Rectifier

Country Status (1)

Country Link
JP (1) JPS57122671A (en)

Also Published As

Publication number Publication date
JPS57122671A (en) 1982-07-30

Similar Documents

Publication Publication Date Title
EP0658968B1 (en) Switching regulator
US5428286A (en) Switching mode power supplies
US5144547A (en) Rectifying circuit with FETs
JP2708773B2 (en) High frequency power supply
KR20000067919A (en) Single ended forward DC-TO-DC converter providing enhanced resetting for synchronous rectification
JPH04299070A (en) Switching regulator
US5070294A (en) Multi-output dc-dc converter using field-effect transistor switched at high frequency
JP3127979B2 (en) DC power supply
US3453521A (en) Dc to dc converter regulator
US4974142A (en) Bootstrap drive for a switch-mode power converter
JPS6343995B2 (en)
JPH09154276A (en) Synchronous rectifier circuit
JPH03872Y2 (en)
JP2740476B2 (en) FET rectifier circuit
JPH062472Y2 (en) Magnetic amplifier control type switching power supply
JPH10248247A (en) Boosting chopper circuit
CA1081322A (en) Emitter follower voltage controlled power supply
JPS5924627B2 (en) switching power supply
JP2918933B2 (en) Voltage detection circuit
JP3019717B2 (en) Switching power supply
JPS631024B2 (en)
JPS5838800Y2 (en) Pulse width modulation power supply circuit
JPH069588Y2 (en) Switching regulator
JPH0638524A (en) Dc/dc converter
JPH10174432A (en) Switching power supply unit