JPS6343995A - Production of aromatic hydrocarbon - Google Patents

Production of aromatic hydrocarbon

Info

Publication number
JPS6343995A
JPS6343995A JP61186959A JP18695986A JPS6343995A JP S6343995 A JPS6343995 A JP S6343995A JP 61186959 A JP61186959 A JP 61186959A JP 18695986 A JP18695986 A JP 18695986A JP S6343995 A JPS6343995 A JP S6343995A
Authority
JP
Japan
Prior art keywords
fraction
separator
separated
gasoline
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61186959A
Other languages
Japanese (ja)
Other versions
JPH0689341B2 (en
Inventor
Kazuyoshi Kiyama
木山 和義
Shigeru Yonekawa
米川 滋
Takashi Tsunoda
隆 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61186959A priority Critical patent/JPH0689341B2/en
Publication of JPS6343995A publication Critical patent/JPS6343995A/en
Publication of JPH0689341B2 publication Critical patent/JPH0689341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To produce an olefin and an arom. hydrocarbon in a high yield, by separating a 5C fraction from a thermally cracked hydrocarbon derived from petroleum and bringing the fraction into contact with crystalline aluminosilicate under particular conditions. CONSTITUTION:A hydrocarbon derived from petroleum (e.g., naphtha) 3 is fed into a steam cracking apparatus 1 to conduct thermal cracking under conditions of a temp. of 750-850 deg.C, a pressure of 0-15kg/cm<2>, and a residence time of 0.1-0.8sec, thereby preparing a reactive fluid 4. The fluid 4 is fed through a heat exchanger 5 into a cracked gasoline separator 7 to separate thermally cracked gasoline 8. The gasoline 8 is fed into a 5C fraction separator 9 to separate it into a 5C fraction 13 and a cyclopentadiene and/or isoprene component 10. The component 10 is fed into a dealkylation apparatus 11 to prepare benzene 12. The 5C fraction 13 is fed into a catalytic cyclization reactor 2 and brought into contact with crystalline aluminosilicate under a conditions of a temp. of 300-600 deg.C and a pressure of 0-60kg/cm<2> to convert it into an arom. compd. 14. The arom. compd. is recycled through a heat exchanger 15 into the separator 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石油系炭化水素を分解してオレフィンおよび
芳香族炭化水素〔以下、BTX (Bはべンゼン、Tは
トルエン、Xはキシレフ k 表ワす)と略記する〕等
の有用な石油化学製品を高収率で、かつ高選訳的に製造
する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention decomposes petroleum hydrocarbons to produce olefins and aromatic hydrocarbons [hereinafter referred to as BTX (B is benzene, T is toluene, and X is xyleph k). This invention relates to a method for producing useful petrochemical products such as (abbreviated as) in high yield and with high selectivity.

(従来の技術) 従来、エタン、プロパンをはじめとする軽質のガス状炭
化水素2よびナフサ、灯軽油等の液状炭化水素をオレフ
ィン、BTXに転換する方法として、第1の方法は、ス
チームクラッキングと呼称される管式熱分解炉を用いる
方法である(91えげ。
(Prior art) Conventionally, the first method for converting light gaseous hydrocarbons such as ethane and propane, and liquid hydrocarbons such as naphtha and kerosene into olefins and BTX is steam cracking. This is a method using a tubular pyrolysis furnace called (91 Ege).

「ザ・オイル・アンド・ガスジャーナル」誌P220へ
222.MAY12.1969に記載)。
222 to "The Oil and Gas Journal" magazine P220. (described in MAY 12.1969).

この方法での熱分解温度は、通常、750〜850Cの
範囲が可能とされている。本方法では反厄がラジカル反
応機構で進行するという性格上、分解温et上げると、
エチレンおよびBTXの収率が増加して、プロピレン、
C4留分の収率が減少し、逆に分解温+ff1Th下げ
ると、プロピレンの収車は増加するものの、エチレン、
BTXの収率は大きく減少するという特徴がある。
The thermal decomposition temperature in this method is generally allowed to range from 750 to 850C. In this method, due to the nature that anti-yakugo proceeds by a radical reaction mechanism, when the decomposition temperature is increased,
Increased yields of ethylene and BTX, propylene,
The yield of C4 fraction decreases, and conversely, if the decomposition temperature + ff1Th is lowered, the amount of propylene collected increases, but ethylene,
It is characterized by a significant decrease in the yield of BTX.

第2の方法としては、特にBTX成分に富む炭化水素を
製造する方法として、ZSM−5系ゼオライト触媒を用
いる方法である。この方法として、例えば、(11芳香
族分が15重量係以下である炭素数5以上の液状炭化水
素をZSM−5系ゼオライトと接触させて芳香族化合物
に転化する方法(特公昭56−42659号)、あるい
は+21 ℃、へC。
The second method is to use a ZSM-5 zeolite catalyst to produce hydrocarbons particularly rich in BTX components. As this method, for example, (a method in which a liquid hydrocarbon having 5 or more carbon atoms and having an aromatic content of 11 or less by weight is brought into contact with a ZSM-5 zeolite to convert it into an aromatic compound (Japanese Patent Publication No. 56-42659) ), or +21 °C, to +21 °C.

パラフィン、オレフィン’)ZSM−5系ゼオライトと
接触させて芳香族化合物に転化する方法(特公昭58−
25568号)などが知られている8(発明が解決しよ
うとする問題点) しかし、第1の方法では、上記したように反応がラジカ
ル反応機構で進行するため、BTXi高収率で得るには
、他めて苛酷な反応条件を必要とし、その結果、管式加
熱炉での、いわゆるコーキングの進行が加速され、反応
管での圧力損失の増大、反応の選択性の低下を招き、デ
コーキングの間隔をせばめなければならない、、ま友、
熱分解での収率構成が、エチレン、BTXに偏より、プ
ロピレン、C4留分を同時に高収率で得ることは困難で
あるという問題がある。
A method of converting paraffins, olefins) into aromatic compounds by contacting them with ZSM-5 zeolite (Japanese Patent Publication No. 1983-
No. 25568), etc. 8 (Problems to be Solved by the Invention) However, in the first method, as the reaction proceeds by a radical reaction mechanism as described above, it is difficult to obtain BTXi in high yield. In addition, harsh reaction conditions are required, and as a result, the progress of so-called coking in the tube heating furnace is accelerated, leading to an increase in pressure loss in the reaction tube, a decrease in reaction selectivity, and decoking. We must shorten the distance between...
There is a problem in that the yield structure in thermal decomposition is biased toward ethylene and BTX, making it difficult to simultaneously obtain propylene and C4 fractions in high yields.

第2の方法では、接触反応において芳香族化合物以外に
、水素、炭素数1〜3の軽質炭化水素が副生ずる念め、
目的とするBTXk回収するには、分離、精製装置が必
要となり、分離、精製に伴なう設備投資、エネルギーが
過大な経済負担となることが避けられない。したがって
、有用な石油化学製品を生産するために、需要に応じた
柔軟な収率構成を維持しつつ、選択的に芳香族炭化水素
を安定的に、かつ安価に生産し、原料である石油系炭化
水素からのエチレン、プロピレン、ブタジェン、BTX
のトータル収率(以下、有効製品収率と略記する)が、
従来のいずれの方法で得られる収ぶ以上であることを可
能とする製造方法が強く望まれている。
In the second method, hydrogen and light hydrocarbons having 1 to 3 carbon atoms are produced as by-products in addition to aromatic compounds in the catalytic reaction,
In order to recover the desired BTXk, separation and purification equipment is required, and it is inevitable that the equipment investment and energy associated with separation and purification will become an excessive economic burden. Therefore, in order to produce useful petrochemical products, we can selectively produce aromatic hydrocarbons stably and inexpensively while maintaining a flexible yield structure according to demand. Ethylene, propylene, butadiene, BTX from hydrocarbons
The total yield (hereinafter abbreviated as effective product yield) of
There is a strong need for a manufacturing method that allows for more than what can be obtained with any of the conventional methods.

(問題点を解決するための手段) 本発明者らは、上記した従来技術の欠点を解消し、原料
である石油系炭化水素からの有効製品収率は従来法以上
であることを可能にして、設備投資、必要エネルギーは
少なくて済む選択的な芳香族炭化水素の製造法について
、鋭意研究を重ねた結果、エチレン製造プロセスにおい
て、石油系炭化水素を熱分解した時に得られる炭素数4
〜5の炭化水素を、500〜600Cの温度および0〜
60 kg/dlGの圧力の条件下で結晶性アルミノシ
リケートと接触させる接触環化反応器に供給して芳香族
化合物に転化し、さらに、そこで得られた反応生成物を
再開エチレン製造プロセスの熱分解ガソリン分離器K 
17サイクルし、芳香族化合物を熱分解ガソリンとして
回収することによって、これを達成することができた。
(Means for Solving the Problems) The present inventors have solved the above-mentioned drawbacks of the conventional technology, and have made it possible to achieve an effective product yield from petroleum hydrocarbons as a raw material that is higher than that of the conventional method. As a result of extensive research into a selective method for producing aromatic hydrocarbons that requires less capital investment and less energy, we have discovered that carbon number 4 obtained when petroleum hydrocarbons are pyrolyzed in the ethylene production process.
-5 hydrocarbons at a temperature of 500-600C and 0-5
It is fed into a catalytic cyclization reactor where it is contacted with crystalline aluminosilicate under pressure conditions of 60 kg/dlG to convert it into aromatic compounds, and the reaction products obtained therein are then restarted for pyrolysis of the ethylene production process. Gasoline separator K
This was achieved by 17 cycles and recovering the aromatics as pyrolysis gasoline.

本発明の方法を工学的に適用した場合の一実施態様を示
す図面圧したがって、本発明の詳細な説明する。
BRIEF DESCRIPTION OF THE DRAWINGS The present invention will now be described in detail.

図面において、1は熱分解工程の管式加熱炉、2は接触
環化工程の反応器である。まず、管式加熱炉1には、ナ
フサ、灯軽油等の液状炭化水素、好ましくはナフサ3が
供給され、750〜850Cの温度、常圧〜15にノ/
mGの圧力、0.1〜0.8秒の滞留時間で熱分解され
て、エチレン、プロピレン、BTX’i主として含む反
応流体4が生成する。反応流体4は熱交換器5に入シ熱
回収され、熱交換器5を高次反応流体6ば、熱分解ガソ
リン分離器7に入り熱分解ガソリン8を分離する。
In the drawings, 1 is a tubular heating furnace for the pyrolysis process, and 2 is a reactor for the catalytic cyclization process. First, a liquid hydrocarbon such as naphtha or kerosene, preferably naphtha 3, is supplied to the tube heating furnace 1 at a temperature of 750 to 850C and a normal pressure to 15%.
It is pyrolyzed at a pressure of mG and a residence time of 0.1 to 0.8 seconds to produce a reaction fluid 4 mainly containing ethylene, propylene, and BTX'i. The reaction fluid 4 enters a heat exchanger 5 for heat recovery, passes through the heat exchanger 5 into a higher order reaction fluid 6, and enters a pyrolysis gasoline separator 7 to separate pyrolysis gasoline 8.

熱分解ガンリン8は、その中の炭素数5留分を分離する
炭素数5留分分離器9に供給され、炭素数5留分13と
BTX成分に富んだ一般にノ・−トカットと称される流
体10に分離される。流体10は例えばベンゼン製造を
目的とする場合は、脱アルキル装置11に供給され、水
素化脱アルキル反応によりベンゼン12が生産される。
The pyrolyzed Ganrin 8 is fed to a 5-carbon fraction separator 9 that separates a 5-carbon fraction therein, which is a 5-carbon fraction 13, which is generally referred to as a no-cut cut rich in BTX components. It is separated into fluid 10. For example, when the fluid 10 is intended to produce benzene, it is supplied to a dealkylation device 11, and benzene 12 is produced by a hydrodealkylation reaction.

一方、炭素数5留分分離器により分離され次炭素数5留
分13は、接触環化反応器2に供給されるが、好ましく
はその前に炭素数5留分13中に含まれるイソプレンを
合成ゴムの有用な原料として、ま友、接触環化反応器2
の触媒の経時劣化抑制の理由からシクロペンタジェンを
分離する装Rt設けるのがよい。
On the other hand, the 5-carbon fraction 13 separated by the 5-carbon fraction separator is fed to the catalytic cyclization reactor 2, but preferably the isoprene contained in the 5-carbon fraction 13 is Mayu, catalytic cyclization reactor 2 as a useful raw material for synthetic rubber
It is preferable to provide a device Rt for separating cyclopentadiene in order to suppress deterioration of the catalyst over time.

接触環化反応器2の反応条件は、常圧〜60kp/cr
IG、好ましくは常圧〜10 ky/crlGの圧力で
The reaction conditions of the catalytic cyclization reactor 2 are normal pressure to 60 kp/cr.
IG, preferably at a pressure of normal pressure to 10 ky/crlG.

温度300へ600C1好ましくは450へ600Cで
ある。mi窒間速IJ[(W)TSV)は0.1 ヘ1
0 Hr−’、好ましくは0.1 ヘ2.OHr−’、
さらに好ましくは0.1〜0.8 )(r−1とする。
The temperature is 300 to 600C, preferably 450 to 600C. mi Nitrogen velocity IJ [(W)TSV) is 0.1 He1
0 Hr-', preferably 0.1 h2. OHr-',
More preferably, it is 0.1 to 0.8) (r-1).

また、上記接触環化において使用する触媒としては、固
体酸触媒としての機能を持つアルミノシリケートゼオラ
イトが広く使用できる。望ましくはZSM−5系のゼオ
ライト、例えば、111芳香族成分が15重i%以下で
ある炭素数5以上の液状炭化水素を芳香族化合物に転化
する方法(特公昭56−42639)、あるいは12:
エチレン−沸点204C以下の炭化水素を芳香族化合物
に転化する方法(特開昭5O−4029)などに用いら
れているゼオライト触媒を使用することが好ましい。
Furthermore, as the catalyst used in the catalytic cyclization, aluminosilicate zeolite having a function as a solid acid catalyst can be widely used. Preferably, ZSM-5 type zeolite, for example, a method of converting a liquid hydrocarbon having 5 or more carbon atoms in which the 111 aromatic component is 15% by weight or less into an aromatic compound (Japanese Patent Publication No. 56-42639), or 12:
It is preferable to use a zeolite catalyst used in a method for converting hydrocarbons having a boiling point of 204 C or less into aromatic compounds (JP-A-5O-4029).

ここで言うZSM−5系ゼオライトとは、X@回折パタ
ーンがZSM−5と同一、あるいは類似しているもので
あって、金属としてアルミニウムの代りに他のものが入
ったものでもよく、また、アルミニウムと共に他の元素
が入ったものでもよい。
The ZSM-5 series zeolite mentioned here is one whose X@ diffraction pattern is the same as or similar to ZSM-5, and may contain other metals instead of aluminum, and It may also contain other elements along with aluminum.

本発明において使用する触媒として、さらに好ましくは
、亜鉛を含むZSM−5型ゼオライトに2いて、該28
M−5型ゼオライトが下記(1)〜T iii )を満
たすものである。
More preferably, the catalyst used in the present invention is ZSM-5 type zeolite containing zinc, and the 28
The M-5 type zeolite satisfies the following (1) to Tiii).

(1)ケイ素/アルミニウムの原子比が10,75、好
ましくは12S50 (11)亜鉛/ケイ素の原子比がo、o o a〜0.
03、好ましくは0.01〜0.02のχ1成を有し+
 il)ピリジンを用い、昇温速度を15C/分とじ之
場合の昇温脱離法による500へ900Cにおける当y
z SM−5型ゼオライト1f当りのピリジンの脱離量
が40〜120μmol/fなお、上記(iii )の
ピリジン脱着量の範囲は、ZSM−5型ゼyFライトf
600,800CO温度、0.1〜1気圧の水分圧、0
.2へ20時間の処理時間の条件下で、水蒸気共存下で
加熱処理し、触媒の活性低下を抑制し、安定化させるこ
とによって得られる。
(1) The atomic ratio of silicon/aluminum is 10.75, preferably 12S50. (11) The atomic ratio of zinc/silicon is o, o o a to 0.
03, preferably has a χ1 component of 0.01 to 0.02 +
il) Equivalence at 500 to 900C by temperature-programmed desorption method using pyridine and heating rate of 15C/min.
z The amount of pyridine desorbed per 1f of SM-5 type zeolite is 40 to 120 μmol/f.The range of the amount of pyridine desorbed in (iii) above is the same as that of ZSM-5 type zeolite f.
600,800 CO temperature, water pressure of 0.1 to 1 atm, 0
.. It is obtained by heating the catalyst in the coexistence of water vapor under conditions of a treatment time of 20 hours to suppress a decrease in the activity of the catalyst and stabilize it.

さらに、上記の触媒において、ZSM−5型ゼオライト
が低級アルキル尿素化合物、低級アルキルチオ尿素化合
物から選ばれた1種以上の化合物の共存下で水熱合成さ
れたZSM−5型ゼオライトであるのが望ましい。
Furthermore, in the above catalyst, it is preferable that the ZSM-5 type zeolite is hydrothermally synthesized in the coexistence of one or more compounds selected from lower alkyl urea compounds and lower alkyl thiourea compounds. .

本発明においては、前記接触環化反応器の型式として、
流動床のみでなく固定床反応器が使用できるという長所
がある。
In the present invention, the type of the catalytic cyclization reactor is as follows:
It has the advantage that not only a fluidized bed but also a fixed bed reactor can be used.

この接触環化反応器2では、供給された炭素数5留分1
3および後述する炭素数4留分19が触媒の作用により
、高収率、高選択的KBTX成分へと転化し、BTX成
分に冨んだ反応流体14を生成する。
In this catalytic cyclization reactor 2, the supplied carbon number fraction 1
3 and a carbon number fraction 19 to be described later are converted into a high-yield, highly selective KBTX component by the action of a catalyst, producing a reaction fluid 14 rich in the BTX component.

接触環化反応器2ft出友反応流体14は、熱交換器1
5に入シ熱回収された後、再度反応流体6と合流して熱
分解ガソリン分離器7に供給される。
The catalytic cyclization reactor 2ft Izumo reaction fluid 14 is transferred to the heat exchanger 1
After the input heat is recovered in step 5, it joins with the reaction fluid 6 again and is supplied to the pyrolysis gasoline separator 7.

これにより、反応流体16に含まれるBTX成分は、熱
分解ガソリン8として、ま念、水素、炭素数1へ4の炭
化水素は、分解ガス17として分離される。すなわち、
反応流体16からのBTX分離を、フレッシュフィード
された原料炭化水素3から生成し1BTX留分含みの反
応流体6と同一の熱分解ガソリン分離器7を用いて実施
することにより、接触環化反応器2y&:出た反応流体
14のための独立した分離回収装置を設ける必要がなく
なり、分離回収の友めの設備投資とエネルギー使用を大
巾に削減できる。
As a result, the BTX component contained in the reaction fluid 16 is separated as pyrolyzed gasoline 8, and hydrogen and hydrocarbons having 1 to 4 carbon atoms are separated as cracked gas 17. That is,
By carrying out the BTX separation from the reaction fluid 16 using the same pyrolysis gasoline separator 7 as the reaction fluid 6 produced from the freshly fed feedstock hydrocarbon 3 and containing 1 BTX fraction, the catalytic cyclization reactor 2y&: There is no need to provide an independent separation and recovery device for the discharged reaction fluid 14, and equipment investment and energy usage for separation and recovery can be greatly reduced.

一方、熱分解ガソリン分離器7を出た反応流体17は、
炭素数4留分分離器18に供給され、炭素数4留分19
と水素、炭素数1へ3の軽質炭化水素からなる反応流体
20に分離される。反応流体20は、分離精製装置21
に供給され、水素おヨヒメタン22、エチレンおよびプ
ロピレン等の軽質オレフィン23、エタンおよびプロパ
ン等の軽質パラフィン24に分離されるー 炭素数4留分19はそのまま炭素数5留分13に合流さ
せて接触環化反応器2に供給してもよいが、好ましくは
炭素数4留分中に含まれる石油化学製品の原料として有
用なプタジエ/、インブチレンのうち1種もしくF12
種分離する装置を設けるのがよい。炭素数4留分19も
接触環化反応器2に供給されることにより、炭素数5留
分13と同様に、同一反応、同一経路を経て生成し7?
:BTX成分は、熱分解ガンリン8として回収される。
On the other hand, the reaction fluid 17 leaving the pyrolysis gasoline separator 7 is
The 4-carbon fraction separator 18 is supplied with a 4-carbon fraction 19.
and hydrogen, and a reaction fluid 20 consisting of light hydrocarbons having 1 to 3 carbon atoms. The reaction fluid 20 is transferred to a separation and purification device 21
and separated into hydrogen and methane 22, light olefins such as ethylene and propylene 23, and light paraffins such as ethane and propane 24 - The 4-carbon fraction 19 is directly combined with the 5-carbon fraction 13 and subjected to a catalytic ring process. Preferably, F12 or one of Poutadier/Imbutylene, which is useful as a raw material for petrochemical products contained in the C4 fraction, may be supplied to the chemical reaction reactor 2.
It is advisable to provide a device for species separation. When the 4-carbon fraction 19 is also supplied to the catalytic cyclization reactor 2, it is produced through the same reaction and the same route as the 5-carbon fraction 13.
:BTX component is recovered as pyrolyzed Ganlin 8.

以上、図面には、原料炭化水素の熱分解により生成され
る通常は燃料としてしか評価されない炭素数4留分、炭
素数5留分を接触環化反応させ、そこで選択的、高収率
にBTXt−生成させて、その分離回収を独立した分離
口収装fを用いることなく、既設の熱分解ガソリン分離
装置を共有して熱分解ガソリンとして回収する場合を示
した。
Above, the drawings show that the 4-carbon and 5-carbon fractions produced by thermal decomposition of feedstock hydrocarbons, which are normally evaluated only as fuel, are subjected to a catalytic cyclization reaction, in which BTXt is selectively and in high yield. - The case where the generated pyrolysis gasoline is separated and recovered as pyrolysis gasoline by sharing an existing pyrolysis gasoline separation device without using an independent separation port collection f is shown.

(発明の効果) 以上、詳細に説明した本発明によれば、以下の効果を奏
することができる。
(Effects of the Invention) According to the present invention described in detail above, the following effects can be achieved.

(1)従来の石油系炭化水素の熱分解と、接触環化技術
を有機的に組合せることにより、接触環化反応によって
生成し次軽質ガス、BTXの分離、精製、回収のための
設備投資、エネルギー使用を大巾に削減することができ
る。
(1) Capital investment for the separation, purification, and recovery of BTX, the light gas produced by the catalytic cyclization reaction, by organically combining conventional thermal decomposition of petroleum hydrocarbons and catalytic cyclization technology. , energy usage can be significantly reduced.

(21原料の石油系炭化水素からの有効製品収率が、従
来の熱分解では約60重量係前後であったものが、副生
品であるC4、℃、留分の選択的芳香族化により約65
重量憾程度Kまで増加することができる。
(21) The effective product yield from petroleum hydrocarbons, which is a raw material, was around 60% by weight in conventional thermal cracking, but by selective aromatization of C4, °C, and fractions, which are by-products, Approximately 65
The weight can be increased to a degree K.

(3)熱分解プロセスと接触環化プロセスの有機的な組
合せにより、各々単独なプロセスでは達成不可能な有効
製品収率を維得しつつ、あるいはそれ以上を可能とし、
石油化学製品の需要に応じ友フレキシブルな収率構成音
とることが可能となる。
(3) The organic combination of the pyrolysis process and the catalytic cyclization process allows for maintaining or exceeding effective product yields that are unattainable by each process alone;
It becomes possible to have a flexible yield structure depending on the demand for petrochemical products.

すなわち、例えば、プロピレン収率を増加させる几めに
熱分解温度を下げると、通常は、エチレン、BTXの収
率減少により、有効製品収率の大幅な減少を招くが、C
4、C5留分を選択的にBTX成分へと転化することが
可能だなるゆえ、接触環化プロセスも含めたトータルの
有効製品収率は、従来の熱分解と変らず、あるいはそれ
以上を可能にし、しかも、プロピレン、BTXの選択的
な増産が可能となる。
That is, for example, lowering the pyrolysis temperature to increase the propylene yield usually results in a significant decrease in the effective product yield due to a decrease in the yield of ethylene, BTX;
4. Since it is possible to selectively convert the C5 fraction to the BTX component, the total effective product yield including the catalytic cyclization process can be the same as or even higher than that of conventional thermal cracking. Moreover, it becomes possible to selectively increase the production of propylene and BTX.

、(実施例) 次に、本発明を実施例により、さらに詳しく説明する。,(Example) Next, the present invention will be explained in more detail with reference to Examples.

実施例1,2、比較例1,2 (11触媒の調製 (a)ケイ酸ソーダ(水ガラス3号)290/−i蒸留
水230fに溶解させ7’CA液、−別に硫酸アルミニ
ウム16水塩11.4j’およびテトラプロピルアンモ
ニウムブロマイド502、硫酸13?を蒸留水300f
に溶解させたB液′5I:調合(7念。次いで、ホモジ
ナイザーを用い、A液を強攪拌下にB液を添加し、均質
混合ゲル状にした。このゲルf 1 tオートクレーブ
に仕込み、160C11000rpmの攪拌下、35時
間保持結晶化させた、反応後固形物を濾過、水洗、脱水
、乾燥i、550C13時間空気中で焼成した。得られ
た白色粉末をX線回折で確認し念ところ、ZSM−5型
の回折パターンを示した。螢光X線分析によpsi/A
t比を求めたところ、25であった。このゼオライトラ
Examples 1 and 2, Comparative Examples 1 and 2 (11 Preparation of catalyst (a) Sodium silicate (water glass No. 3) 290/-I Dissolved in 230f of distilled water 7'CA solution, - Separately aluminum sulfate hexahydrate 11.4j' and tetrapropylammonium bromide 502, sulfuric acid 13? in distilled water 300f
Solution B '5I dissolved in: Preparation (7 times. Next, using a homogenizer, add Solution B to Solution A under strong stirring to form a homogeneous mixed gel. This gel f 1 was charged into an autoclave and heated at 160C 11000 rpm. After the reaction, the solid substance was filtered, washed with water, dehydrated, dried, and calcined in air at 550C for 13 hours.The resulting white powder was confirmed by X-ray diffraction, and was found to be ZSM. -5 type diffraction pattern.Fluorescent X-ray analysis showed a psi/A diffraction pattern.
The t ratio was found to be 25. This zeolite.

10%塩化アンモニウム水溶液を用い常法によりイオン
変換し、H型ゼオライトとした。次いで、硝酸亜鉛5%
水溶−i’に含浸させ、蒸発乾固1.乾燥、焼成(50
0℃、3時間)シ、亜鉛含有ゼオライトとした。次に、
これを9〜20メツシユに圧縮成型、整粒後、活性コン
トロールの目的から石英反応管に充填し、80容量憾の
スチーム中(♀素希釈、大気圧)で650℃、1時間処
理した(触媒A)。
Ion conversion was performed using a 10% ammonium chloride aqueous solution in a conventional manner to obtain H-type zeolite. Then 5% zinc nitrate
Impregnated with water solution-i' and evaporated to dryness 1. Drying, firing (50
(0° C., 3 hours) and zinc-containing zeolite. next,
After compression molding and sizing into 9 to 20 meshes, they were filled into a quartz reaction tube for the purpose of activity control, and treated in 80 volumes of steam (primary dilution, atmospheric pressure) at 650°C for 1 hour (catalyst A).

(b)活性コントロールのためのスチーミング条件が6
507::、5時間である以外は、触媒Aと同一の方法
で調製(触媒B)。
(b) Steaming conditions for activity control are 6
507::, prepared in the same manner as Catalyst A, except for 5 hours (Catalyst B).

(c) 触媒Aの調製のうち、テトラプロピルアンモニ
ウムブロマイドを使用する代りに、1,5−ジメチル尿
素23.4 ′?を用いる以外は、同様の方法で調製し
た。fc’x L、活性コントロールの友めのスチーミ
ングは、触媒Bと同一な650C15時間実施し念(触
媒C)。
(c) In the preparation of catalyst A, instead of using tetrapropylammonium bromide, 1,5-dimethylurea 23.4'? It was prepared in the same manner except that . fc'x L, steaming for activity control was carried out at 650C for 15 hours, the same as for catalyst B (catalyst C).

(21転化反応 転化反応の実施例は、原料として中東系ナフサ(沸点4
0〜180C)を用い、まず前型熱分解装置へ、常圧、
スチーム希釈比0.5、各所定温度の条件で供給、熱分
解し、そこで得られたC4留分。
(21 Conversion Reaction In the conversion reaction example, Middle Eastern naphtha (boiling point 4
0 to 180C), first to the front type pyrolysis equipment, normal pressure,
The C4 fraction obtained was supplied and thermally decomposed at a steam dilution ratio of 0.5 and each predetermined temperature.

Cs留分を各々ブタジェン、インブチレン、イソプレン
およびシクロペンタジェン全蒸留分離後、それらを上記
した触媒を充填した固定床反応器に供給し、接触環化さ
せた後、反応流体を熱分解ガソリン分離塔へ供給、リサ
イクルさせた。
After the Cs fractions are separated by total distillation of butadiene, imbutylene, isoprene, and cyclopentadiene, respectively, they are supplied to a fixed bed reactor packed with the above-mentioned catalyst, and after catalytic cyclization, the reaction fluid is separated into pyrolysis gasoline. It was supplied to the tower and recycled.

第1表には、比較例として現実的な熱分解条件の範囲で
、マイルドに熱分解し几場合、苛酷に熱分解し次場合の
みの収率を、各々比較例1、比較例2として併せて記す
。ま之、8g1表での実施例に用いた接触環化用の触媒
は、上記調製した中の触媒Aを使用した。
Table 1 shows the yields of mild pyrolysis and severe pyrolysis within the range of realistic pyrolysis conditions as Comparative Example 1 and Comparative Example 2, respectively. It is written as follows. However, as the catalyst for catalytic cyclization used in the examples in Table 8g1, Catalyst A prepared above was used.

第1表 *I  M効與品*11.=BY+PY−+flジx7
+ca〜a芳香族*2  EY=エチレン、PY=プロ
ピレン第1表の実施例と比較例から明らかなように、本
発明の方法によれば、ブタジェン、インブチレンを除い
たC4留分、イソプレ/、シクロペンタジェンを除い友
C5留分を接触環化させ、熱分解ガソリン分離塔ヘリサ
イクルすることにより、従来燃料評価しかされないC4
,℃、留分は消滅し、選択的に有用なC0〜C8芳香族
を生成していることがわかる。また、有効製品収率も熱
分解のみの場合に比べ約5〜8%も上昇し、しかも、マ
イルドに熱分解した時の方が、その上昇幅は大きいゆえ
、接触環化プロセスの有機的な組合せにより、熱分解の
みでは不可能な、有効製品収率を減少させることなく需
要に応じた任意な熱分解の運転条件全可能とすることを
示している。
Table 1 *I M effect products *11. =BY+PY-+fljix7
+ca~a aromatic *2 EY = ethylene, PY = propylene As is clear from the examples and comparative examples in Table 1, according to the method of the present invention, the C4 fraction excluding butadiene and imbutylene, isopre/ By catalytically cyclizing the C5 fraction excluding cyclopentadiene and recycling it to the pyrolysis gasoline separation tower, C4, which has conventionally only been evaluated as a fuel, is produced.
, C, the fraction disappears, and it can be seen that useful C0 to C8 aromatics are selectively produced. In addition, the effective product yield also increases by about 5 to 8% compared to the case of only thermal decomposition, and the increase is larger when using mild thermal decomposition. The combination shows that any pyrolysis operating conditions can be achieved according to demand without reducing the effective product yield, which is not possible with pyrolysis alone.

実施例3,4 第2表には、C4留分、C5留分各々を触媒Aを用いて
接触環化させ友時の一通過転化による反応生成物を示す
Examples 3 and 4 Table 2 shows the reaction products obtained by catalytic cyclization of each of the C4 and C5 fractions using catalyst A and one-pass conversion.

第2表 ×1ナフサの熱分解より生成したC1留分がらブタジェ
ン、インブチレンを除い之留分 ×2 ナフサの熱分解より生成し7tcs留分からイソ
グレン、シクロペンタジェンを除すた留分 *3℃、〜8芳香族選択率−生成し2c、、、芳香族留
分/転化率第2表より、いずれの留分も転化率、C6〜
C8芳香族選択率共に高く、本反応が選択的4C6〜℃
、芳香族生成に有用なことを示している。
Table 2 × 1 Distillate obtained by removing butadiene and inbutylene from the C1 fraction produced by thermal decomposition of naphtha × 2 Distillation obtained by removing isogrene and cyclopentadiene from the 7tcs fraction produced by thermal decomposition of naphtha *3 °C, ~8 Aromatic selectivity - produced 2c,... Aromatic fraction/conversion rate From Table 2, all fractions have a conversion rate of C6 ~
Both C8 aromatic selectivity is high, and this reaction is selective at 4C6~℃
, which has been shown to be useful for aromatic production.

実施例5〜7 第5表には、イソプレン、シクロペンタジェンを蒸留分
離したC、留分を、触媒A、B、Ct−用いて転化率を
一定にするようW)(SVは若干変化させ、連続通油し
比時の触媒の経時劣化から求めた各々の触媒での触媒活
性半減期を示している。ここで言う触媒活性半減期とは
、接触環化反応を一次とし、連続通油による触媒の活性
経時劣化傾向の把握から、初期の反応速度定数の%にな
るまでの期日を言う。
Examples 5 to 7 Table 5 shows that isoprene and cyclopentadiene were separated by distillation. , shows the catalytic activity half-life of each catalyst determined from the aging deterioration of the catalyst during continuous oil passage.The catalytic activity half-life here refers to the catalytic cyclization reaction as the primary This is the date from which the activity of the catalyst deteriorates over time until it reaches % of the initial reaction rate constant.

第  3  表 触媒A、B、C共に温度、転化率が一定であれば、C6
へC1芳香族収率もほぼ一定であることがわかる。
Table 3 If the temperature and conversion rate of catalysts A, B, and C are constant, C6
It can be seen that the C1 aromatic yield is also almost constant.

しかし、触媒の耐劣化性については、℃、B、Aのj狐
に優れていることが明らかである。
However, it is clear that the deterioration resistance of the catalyst is superior to that of ℃, B, and A.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施態様を示すフローソートである。 The figure is a flow sort showing one embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)石油系炭化水素をスチームクラッキング装置によ
り熱分解した後、熱分解ガソリン分離器により分離され
る熱分解ガソリンを炭素数5留分分離器に供給して炭素
数5留分を分離し、該留分またはその中のシクロペンタ
ジエン、イソプレンの1種もしくは2種を分離したもの
を、300〜600℃の温度および0〜60kg/cm
^2Gの圧力の条件下で結晶性アルミノシリケートと接
触させる接触環化反応器に供給して芳香族化合物に転化
し、得られる反応生成物を前記熱分解ガソリン分離器へ
リサイクルすることを特徴とする芳香族炭化水素の製造
法。
(1) After pyrolyzing petroleum hydrocarbons using a steam cracking device, the pyrolysis gasoline separated by a pyrolysis gasoline separator is supplied to a 5-carbon fraction separator to separate a 5-carbon fraction; The fraction or one or two of cyclopentadiene and isoprene contained therein is separated at a temperature of 300 to 600°C and a mass of 0 to 60 kg/cm.
It is characterized in that it is supplied to a catalytic cyclization reactor in which it is brought into contact with crystalline aluminosilicate under a pressure condition of ^2G to convert it into an aromatic compound, and the resulting reaction product is recycled to the pyrolysis gasoline separator. A method for producing aromatic hydrocarbons.
(2)スチームクラッキング装置による熱分解が、温度
750〜850℃、圧力0〜15kg/cm^2、滞留
時間0.1〜0.8秒である特許請求の範囲第1項記載
の方法。
(2) The method according to claim 1, wherein the thermal decomposition using a steam cracking device is performed at a temperature of 750 to 850°C, a pressure of 0 to 15 kg/cm^2, and a residence time of 0.1 to 0.8 seconds.
(3)石油系炭化水素をスチームクラッキング装置によ
り熱分解した後、熱分解ガソリン分離器により分離され
る熱分解ガソリンを炭素数5留分分離器に供給して炭素
数5留分を分離し、該留分またはその中のシクロペンタ
ジエン、イソプレンの1種もしくは2種を分離したもの
と、熱分解ガソリンを分離した残りの熱分解生成物を炭
素数4留分分離器に供給して炭素数4留分を分離し、該
留分またはその中のブタジエン、イソブチレンの1種も
しくは2種を分離したものとを、300〜600℃の温
度および0〜60kg/cm^2Gの圧力の条件下で結
晶性アルミノシリケートと接触させる接触環化反応器に
供給して芳香族化合物に転化し、得られる反応生成物を
前記熱分解ガソリン分離器へリサイクルすることを特徴
とする芳香族炭化水素の製造法。
(3) After pyrolyzing petroleum hydrocarbons using a steam cracking device, the pyrolyzed gasoline separated by a pyrolyzed gasoline separator is supplied to a 5-carbon fraction separator to separate a 5-carbon fraction; The fraction, or one or two of cyclopentadiene and isoprene contained therein, and the remaining pyrolysis product from which the pyrolyzed gasoline has been separated are fed to a 4-carbon fraction separator to obtain 4-carbon fractions. The fraction is separated, and the fraction or one or two of butadiene and isobutylene separated therein is crystallized at a temperature of 300 to 600°C and a pressure of 0 to 60 kg/cm^2G. A method for producing aromatic hydrocarbons, which comprises supplying the aromatic hydrocarbons to a catalytic cyclization reactor in which they are brought into contact with a catalytic aluminosilicate to convert them into aromatic compounds, and recycling the resulting reaction product to the pyrolysis gasoline separator.
JP61186959A 1986-08-11 1986-08-11 Aromatic hydrocarbon manufacturing method Expired - Lifetime JPH0689341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61186959A JPH0689341B2 (en) 1986-08-11 1986-08-11 Aromatic hydrocarbon manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61186959A JPH0689341B2 (en) 1986-08-11 1986-08-11 Aromatic hydrocarbon manufacturing method

Publications (2)

Publication Number Publication Date
JPS6343995A true JPS6343995A (en) 1988-02-25
JPH0689341B2 JPH0689341B2 (en) 1994-11-09

Family

ID=16197718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61186959A Expired - Lifetime JPH0689341B2 (en) 1986-08-11 1986-08-11 Aromatic hydrocarbon manufacturing method

Country Status (1)

Country Link
JP (1) JPH0689341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065420A1 (en) * 2012-10-25 2014-05-01 Jx日鉱日石エネルギー株式会社 Olefin and single-ring aromatic hydrocarbon production method, and ethylene production device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065420A1 (en) * 2012-10-25 2014-05-01 Jx日鉱日石エネルギー株式会社 Olefin and single-ring aromatic hydrocarbon production method, and ethylene production device
CN104736679A (en) * 2012-10-25 2015-06-24 吉坤日矿日石能源株式会社 Olefin and single-ring aromatic hydrocarbon production method, and ethylene production device
CN104736679B (en) * 2012-10-25 2016-08-17 吉坤日矿日石能源株式会社 Alkene and the manufacture method of monocyclic aromatic hydrocarbon and their manufacture device

Also Published As

Publication number Publication date
JPH0689341B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
KR100237508B1 (en) Production of olefins
JP4953817B2 (en) Process for producing ethylene and propylene
RU2144525C1 (en) Hydrocarbon stock catalytic conversion process
KR100803993B1 (en) Production of propylene
US6410813B1 (en) Production of olefins
JP4048458B2 (en) Olefin production
JP3012948B2 (en) Catalytic cracking process in the presence of a catalyst containing zeolite ZSM with open pores
JP2013512981A (en) Debottlenecking method for steam cracker units to increase propylene production
KR20010032821A (en) Production of catalysts for olefin conversion
JPH11246870A (en) Production of olefin
KR970704648A (en) Process for producing aromatic hydrocarbons (PROCESS FOR PRODUCING AROMATIC HYDROCARBON)
BRPI0610750A2 (en) process for converting a hydrocarbon feedstock
WO2003099964A1 (en) Production of olefins
JPH11246872A (en) Production of olefin
US20170044446A1 (en) Process for the aromatization of dilute ethylene
EP0093477B1 (en) Conversion of certain hydrocarbons using divalent-copper-containing zsm-5 type catalyst
JP4240339B2 (en) Process for producing aromatic hydrocarbons
SU1194267A3 (en) Method of producing c2-c4 olefins
US20230357654A1 (en) Process for converting naphtha to light olefins with separation
JPS6341592A (en) Production of olefin and aromatic hydrocarbon from hydrocarbon
JPS6343995A (en) Production of aromatic hydrocarbon
JPS6320877B2 (en)
JPS58203923A (en) Conversion of certain kind of hydrocarbon using silicalite catalyst
BR112020011769A2 (en) processes for the preparation of hydrocarbon compositions
NL8401578A (en) CONVERSION OF OLEFINS IN HIGH MOLOCULAR WEIGHT HYDROCARBONS WITH SILICATE CATALYST.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term