JPS6343789A - Fusion welding method by high density energy beam - Google Patents

Fusion welding method by high density energy beam

Info

Publication number
JPS6343789A
JPS6343789A JP61185171A JP18517186A JPS6343789A JP S6343789 A JPS6343789 A JP S6343789A JP 61185171 A JP61185171 A JP 61185171A JP 18517186 A JP18517186 A JP 18517186A JP S6343789 A JPS6343789 A JP S6343789A
Authority
JP
Japan
Prior art keywords
substrate
molten metal
welding method
sintered alloy
fusion welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61185171A
Other languages
Japanese (ja)
Inventor
Haruyuki Uchiumi
内海 晴之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61185171A priority Critical patent/JPS6343789A/en
Publication of JPS6343789A publication Critical patent/JPS6343789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To prevent a welding crack and to uniformize the quality of a weld zone by performing a welding without applying the projection of a beam on a sintered ally and so as to sufficiently refine a molten metal pool after executing a nickel plating on the weld zone of a base plate. CONSTITUTION:A nickel plating is executed near the weld zone of a base plate 1 in advance and the nickel composition ratio is increased by mixing the nickel plated into a molten metal in case of the projection of a beam 13. The hardenability of the case of a cooling is thus relaxed and the fusion with the blade edge tip 2 of a sintered alloy is helped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高密度エネルギービームによる溶融溶接法
、例えば、コンクリートやアスファルト道路などの表面
層を切断するための鋸刃の基板と刃先チップとの高密度
エネルギービームによる溶融溶接法に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a fusion welding method using a high-density energy beam, for example, a saw blade substrate and a cutting edge tip for cutting surface layers of concrete, asphalt roads, etc. This relates to a fusion welding method using a high-density energy beam.

〔従来の技術〕[Conventional technology]

一般に、コンクリートやアスファルト道路の表面に切込
みを入れるために使用される鋸刃は、第4図および第5
図に示すように、基板(1)および基板(1)に溶着さ
れている刃先チップ(2)によって構成されている。
Generally, saw blades used to cut into the surface of concrete or asphalt roads are shown in Figures 4 and 5.
As shown in the figure, it consists of a substrate (1) and a cutting edge tip (2) welded to the substrate (1).

刃先チップ(2)は切断する物の種類等によって成分が
調整され、コバルト系、ブロンズ系、タングステン・カ
ーバイド系、鉄系などがあり、いずれも、主成分金属、
添加成分金属、バインダーおよび人工ダイヤモンド粒な
どを混合して焼結されたものである。
The composition of the cutting edge tip (2) is adjusted depending on the type of object to be cut, and there are cobalt-based, bronze-based, tungsten carbide-based, iron-based, etc.
It is made by mixing and sintering additive metals, binder, artificial diamond particles, etc.

また、基板と呼ばれる回転板の部分は、工具鋼(SK)
材、Or−Mo鋼(SOM)材、フルテンサイド系ステ
ンレス鋼材などの耐熱工具鋼等特殊鋼で構成されている
In addition, the part of the rotating plate called the base plate is made of tool steel (SK).
It is made of special steel such as heat-resistant tool steel, such as steel, Or-Mo steel (SOM), and Flutenside stainless steel.

そして従来の製造法は、この刃先チップ(2)と基板(
1)との接合を、銅ろう付は等のろう付は法などで接合
しているものが多い。
In the conventional manufacturing method, this cutting edge tip (2) and the substrate (
In many cases, the connection with 1) is performed using methods such as copper brazing.

その方法は、刃先チップ(2)と基板(1)との接合部
を高周波加熱するか、又は、バーナ加熱などの手段によ
り、所定温度流加熱した後、ろう材を添加し、ろう付け
を行なうものである。
The method is to heat the joint between the cutting edge tip (2) and the substrate (1) using high-frequency waves or a burner heating method to a predetermined temperature, then add a brazing material and perform brazing. It is something.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のろう付は法によると、基板(1)および刃先チッ
プ(2)を、ろう付は温度すなわち一般には600℃〜
1100°Cまで加熱しなければならず、その加熱範囲
も広くなって、加熱時間がかかるばかりでなく、調質済
みの基板(1)の硬度が、そのろう付は温度まで加熱す
ることによってなまされて、低下するなどの問題点を有
していた。
According to the conventional brazing method, the substrate (1) and the cutting edge tip (2) are bonded together at a temperature that is generally 600℃~
It is necessary to heat up to 1100°C, and the heating range is wide, and not only does it take longer to heat up, but the hardness of the tempered substrate (1) can be reduced by heating it to a temperature of 1100°C. However, there were problems such as a decrease in energy consumption.

また、このようなろう付は法で接合された刃先チップ(
2)は、コンクリートなどの切断時に生ずる鋸刃と加工
物であるコンクリート等との摩擦熱により、融点が低く
、耐熱強度が低いろう材が加熱されて強度が低下する接
合部より剥れるなどの問題点も合わせ有していた。
In addition, this type of brazing can also be applied to the cutting edge tip (
2) is caused by the frictional heat generated between the saw blade and the workpiece, such as concrete, that occurs when cutting concrete, etc., which causes the brazing filler metal, which has a low melting point and low heat resistance strength, to heat up and peel off from the joint where the strength decreases. It also had some problems.

この発明は、上記のような問題点を解決するためになさ
れたもので、特殊鋼からなる基板と焼結合金チップとの
接合を、基板の温度上昇による硬度低下を防止するとと
もに接合部の耐熱強度を高めることができる溶接法を得
ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to join a substrate made of special steel and a sintered alloy chip by preventing a decrease in hardness due to an increase in the temperature of the substrate, and by improving the heat resistance of the joint. The purpose is to obtain a welding method that can increase strength.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る高密度エネルギービームによる溶融溶接
法は、耐熱強度のある高密度ビームによる溶融溶接を行
なう際に、基板および刃先チップ等接合される焼結金属
チップのみの突合せ溶接ではボンド部の接合強度が低下
する欠点を補うために、基板の少なくとも溶接部近くに
あらかじめニッケルメッキを施しておいて溶接時の溶融
金属中の成分構成を改善するとともに、ビームの照射を
焼結合金チップにかけることなく、また、十分に溶融金
属が精練されるようにして溶接するものである。
In the fusion welding method using a high-density energy beam according to the present invention, when performing fusion welding using a high-density beam with heat-resistant strength, when butt welding only the sintered metal chips to be joined, such as the substrate and the cutting edge tip, it is difficult to join the bond part. In order to compensate for the drawback of reduced strength, nickel plating is applied in advance at least near the welding area of the board to improve the composition of the molten metal during welding, and the beam irradiation is applied to the sintered alloy tip. In addition, welding is performed in such a way that the molten metal is sufficiently refined.

〔作 用〕[For production]

溶融金属中にメツキされているニッケル成分が溶融させ
るので、溶接割れが生じに<<、かつ、基板と焼結合金
チップとの融合も良好となり、また、ビーノ・を焼結合
金チップにかけないようにしているので、焼結合金チッ
プに対する熱影響も少なくなり、更に、溶融金属池の精
練も十分になされるので、溶融金属すなわち溶接部が均
質化し、ブローアウトもない。
Since the nickel component plated in the molten metal is melted, weld cracking is prevented, and the fusion between the substrate and the sintered alloy chip is good, and the nickel component plated in the molten metal is melted. Therefore, the thermal influence on the sintered alloy chip is reduced, and furthermore, the molten metal pool is sufficiently refined, so the molten metal, that is, the welded part, is homogenized and there is no blowout.

〔実施例〕〔Example〕

以下、この発明をその一実施例を示す図に基づいて説明
する。
The present invention will be explained below based on the drawings showing one embodiment thereof.

第1図および第2図において、符号(1)は円板状の基
板、(2)は基板(1)に接合される焼結合金チップ例
えば刃先チップ、(11)は基板(1)の少なくとも溶
接部近傍にメツキされたニッケル層、(12)は溶接後
に形成される溶接ビード、(13)は高エネルギー密度
のビーム例えば電子ビーム又はレーザビームを示す。
In FIGS. 1 and 2, reference numeral (1) indicates a disk-shaped substrate, (2) indicates a sintered alloy chip, such as a cutting edge tip, which is bonded to the substrate (1), and (11) indicates at least one of the substrates (1). A nickel layer is plated near the weld, (12) a weld bead formed after welding, and (13) a high energy density beam, such as an electron beam or a laser beam.

また、第3図において、符号(15a)はビーム(16
)を照射した所を上部から見たビームスポットであって
、(13b)はビームオシレーション方向を示し、(1
4)は被溶接物の回転方向すなわち溶接方向を示す。
In addition, in FIG. 3, the symbol (15a) is the beam (16
) is the beam spot seen from above, where (13b) indicates the beam oscillation direction, and (1
4) indicates the rotation direction of the workpiece, that is, the welding direction.

コンクリート切断用鋸刃の基板(1)には、一般に調質
された鋼材が使用されるが、これにはコンクIJ −ト
などの加工物を切断する際の耐熱強度、弾性強度を保つ
ためlこ、工具鋼(EIK)材、C!r−MO鋼(SO
M)材、マルテンサイト系ステンレス鋼材などの高炭素
鋼、高クロム鋼等特殊鋼が用いられ、一方、焼結合金チ
ップ例えば刃先チップ(2)には、コンクリートの切削
性をよくするために、タングステンカーバイドなどの硬
い焼結合金が使用され、更に切削性を高める目的で人工
ダイヤモンド粒などが混入される。
Tempered steel is generally used for the base plate (1) of saw blades for cutting concrete, but this material has lubricants to maintain heat resistance and elastic strength when cutting workpieces such as concrete IJ. This, tool steel (EIK) material, C! r-MO steel (SO
M) materials, high carbon steels such as martensitic stainless steel materials, and special steels such as high chromium steels are used.On the other hand, for the sintered alloy tips, for example, the cutting edge tips (2), in order to improve the cutting properties of concrete, A hard sintered alloy such as tungsten carbide is used, and artificial diamond particles are mixed in to improve machinability.

しかるに、これらの基板(1)と刃先チップ(2)とは
、共Iこ溶接性が悪く、従来はろう付は法で接合されて
いたものである。
However, both the substrate (1) and the cutting edge tip (2) have poor weldability and have conventionally been joined by brazing.

これを溶融溶接法lこよって溶接する場合には、電子ビ
ーム又はレーザビームのようにできるだけ高密度エネル
ギービームを用い、できるだけ溶融部を少なくする溶接
法が望ましい。これは溶融部が多くなればそれだけ炭素
など低融点成分の析出、結晶化が進み、溶接割れの原因
となるからである。
If this is to be welded by a fusion welding method, it is desirable to use a high-density energy beam such as an electron beam or a laser beam to minimize the number of fused parts. This is because the more molten parts there are, the more the precipitation and crystallization of low melting point components such as carbon progresses, causing weld cracking.

また、刃先チップ(2)の材質は焼結合金材であり、ビ
ームを刃先チップ(2)に直接照射すると、含有ガスに
よるブローアウト、急熱、急冷による脆弱化などが起こ
るために避けなくてはならない。
In addition, the material of the cutting edge tip (2) is a sintered alloy material, and direct irradiation of the beam to the cutting edge tip (2) must be avoided because blowout due to contained gas, rapid heating, and embrittlement due to rapid cooling will occur. Must not be.

また、一方、高密度エネルギービームによるビード幅の
狭い溶接では、溶接後の溶融部の急冷につながり、従っ
て、焼入現象を伴なって、ボンド部の割れにつながる。
On the other hand, welding with a narrow bead width using a high-density energy beam leads to rapid cooling of the molten part after welding, which is accompanied by a quenching phenomenon, leading to cracking of the bond part.

そこで、あらかじめ基板(1)の少なくとも溶接部近傍
に約20/1m以上のニッケルメッキを施しておき、ビ
ーム照射の際に溶融金属中にメツキされているニッケル
を混入させてニッケル成分比率を高めることにより、冷
却の際の焼入性を緩和するとともに、焼結合金である刃
先チップ(2)との融合をも助けるようにさせている。
Therefore, it is recommended to apply nickel plating of approximately 20/1 m or more to at least the vicinity of the welding part of the substrate (1) in advance, and increase the nickel component ratio by mixing the plated nickel into the molten metal during beam irradiation. This not only eases hardenability during cooling, but also facilitates fusion with the cutting edge tip (2), which is a sintered alloy.

次にビームの照射位置と、照射角度およびビームのオシ
レーション効果について述べる。
Next, we will discuss the beam irradiation position, irradiation angle, and beam oscillation effect.

ビーム照射位置は、必ず基板(1)側へオフセットさせ
てビームが直接刃先チップ(2)に当たらないよう配慮
する。この場合のオフセット量(15)は溶接後の表面
ビード幅の約半分弱が理想で、ビームの種類、基板の厚
さ、溶接速度等によって異なるが、一般的には0.1〜
0.5mmの範囲である。
Be sure to offset the beam irradiation position toward the substrate (1) so that the beam does not directly hit the cutting edge tip (2). The offset amount (15) in this case is ideally about a little less than half of the surface bead width after welding, and although it varies depending on the type of beam, substrate thickness, welding speed, etc., it is generally 0.1~
The range is 0.5 mm.

次にビームの照射角度(16)は、基板(1)に対し垂
直な角度より基板側へ1°〜5°傾ける。これは溶接ビ
ード断面形状が表側で広く、裏側で狭くなるのに対し、
刃先チップ側で頂度刃先チップの接合端面と平行になる
ようにするためで、刃先チップ(2)に対する熱影響の
加不足を無くするためである。
Next, the beam irradiation angle (16) is tilted 1° to 5° toward the substrate from the angle perpendicular to the substrate (1). This is because the cross-sectional shape of the weld bead is wider on the front side and narrower on the back side.
This is to ensure that the apex of the cutting edge tip is parallel to the joining end surface of the cutting edge tip, and to eliminate the excess or lack of thermal influence on the cutting edge tip (2).

また、第3図に示すように、ビームを溶接方向き同方向
に±0.1〜±o、s aI++の幅で60〜2000
Hzでオシレーションさせるときは、溶融金属中の成分
の均質化、含有ガスや不純物によるブローアウトを溶融
金属から分離させ、また、これを促進することによって
、ボンド部内の大きな空洞、又は、ビード表面の大きな
り[/−ターの発生を防ぐためである。
In addition, as shown in Fig. 3, the beam is aligned in the same direction as the welding direction with a width of ±0.1 to ±o and a width of 60 to 2000 s aI++.
When oscillating at Hz, the components in the molten metal are homogenized, the blowout caused by contained gases and impurities is separated from the molten metal, and by promoting this, large cavities in the bond part or the bead surface are This is to prevent the occurrence of a large gap.

以上述べたように、ニッケルメッキ、ビームオフセット
、ビーム傾斜およびビームオシレーションを併用して、
ニッケルの添加と、ビームを刃先チップにかけることな
く、かつ、溶融金属池の精練をすることは、その相乗効
果により、より一層良好な溶接結果をもたらす。
As mentioned above, by using nickel plating, beam offset, beam tilt, and beam oscillation,
The synergistic effect of adding nickel, not applying the beam to the cutting edge tip, and scouring the molten metal pool leads to even better welding results.

また、ニッケルメッキの代わりに、ニッケル薄を基板(
1)と刃先チップ(2)との間にはさみ込んでもよく、
その場合も上記実施例と同様の効果をもたらす。しかし
、メツキに比べて、作業性の面で劣るために、実験段階
のサンプルテストでは有効な手段であるものの、大量生
産には向かない。
Also, instead of nickel plating, thin nickel is used on the substrate (
It may be inserted between 1) and the cutting edge tip (2),
In that case as well, the same effects as in the above embodiment are brought about. However, since it is inferior in terms of workability compared to metal cutting, although it is an effective means for sample testing at the experimental stage, it is not suitable for mass production.

更番こ、基板(1)に対するビーム(13)の照射角度
を、ビーム(13)の傾斜により説明したが、逆にビー
ム(13)を固定して、基板(1)および刃先チップ(
2)を傾けても(図は省略)よく、その効果は上記実施
例と同じである。
The irradiation angle of the beam (13) with respect to the substrate (1) has been explained by the inclination of the beam (13), but conversely, by fixing the beam (13), the angle of irradiation of the beam (13) with respect to the substrate (1) and the cutting tip (
2) may be tilted (not shown), and the effect is the same as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、基板にあらかじめニ
ッケルメッキを施すこととビームを傾けかつオシレーシ
ョンさせて照射することの併用によって、難溶接材の溶
融溶接を可能にするきともに、ニッケル薄をはさみ込む
方法に対して作業性を改善することができ、また、従来
のろう付は法に対して、基板の広範囲の温度上昇による
硬度低下を防止して耐熱強度を増強させ、その結果、基
板と焼結合金チップとの溶融溶接における信頼性を高め
ることができる高密度エネルギービームによる溶融溶接
法が得られる効果を有している。
As described above, according to the present invention, by combining nickel plating on the substrate in advance and irradiation by tilting and oscillating the beam, it is possible to melt weld difficult-to-weld materials, and it is possible to It is possible to improve workability compared to the method of sandwiching the board, and in contrast to the conventional brazing method, it prevents the hardness from decreasing due to a wide range of temperature rise of the board and increases the heat resistance strength. This has the effect of providing a fusion welding method using a high-density energy beam that can improve the reliability of fusion welding between the substrate and the sintered alloy chip.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すビーム照射状態の断
面図、第2図は第1図のビーム照射前のニッケルメッキ
層と刃先チップとの関係を示す断面図、第6図は第1図
により溶接する場合のビーム照射位置、ビームオシレー
ション方向、溶接方向の関係を示すコンクIJ −ト切
断用鋸刃の平面図、第4図は従来方法により刃先チップ
を接合して構成した鋸刃の構成平面図、第5図は第4図
の断面図である。 (1)・・基板、(2)・・焼結合金チップ(刃先チッ
プ) s (”)・・ニッケル層、(12)・Φ溶接ビ
ード、(13)ψ−ビーム、(15)+1・オフセット
量、(16) @・照射角度。 なお、各図中、同一符号は同−又は相当部分を示す。 篤1図 、!¥)2図
FIG. 1 is a cross-sectional view showing an embodiment of the present invention in a beam irradiation state, FIG. 2 is a cross-sectional view showing the relationship between the nickel plating layer and the cutting edge tip before beam irradiation in FIG. 1, and FIG. Figure 1 is a plan view of a concrete IJ-cut saw blade showing the relationship between the beam irradiation position, beam oscillation direction, and welding direction when welding, and Figure 4 is a plan view of a saw blade constructed by joining blade tips using a conventional method. A structural plan view of the blade, FIG. 5 is a sectional view of FIG. 4. (1)...Substrate, (2)...Sintered alloy tip (cutting edge tip) s ('')...Nickel layer, (12)・Φ weld bead, (13) ψ-beam, (15) +1・offset Quantity, (16) @・Irradiation angle. In each figure, the same symbol indicates the same or equivalent part. Figure 1, Figure 2)

Claims (3)

【特許請求の範囲】[Claims] (1)焼結合金チップと特殊鋼からなる基板とをビーム
溶接する高密度エネルギービームによる溶融溶接法にお
いて、基板の溶接部および基板全体のいずれかにニッケ
ルメッキを施した後、ビームの照射を焼結合金チップに
かけることなく、かつ、溶融金属池が十分精練されるよ
うにして溶接する高密度エネルギービームによる溶融溶
接法。
(1) In the fusion welding method using a high-density energy beam, which beam-welds a sintered alloy chip and a substrate made of special steel, the beam is irradiated after nickel plating either the welded part of the substrate or the entire substrate. A fusion welding method that uses a high-density energy beam to weld the molten metal pool without applying it to the sintered alloy chip, while ensuring that the molten metal pool is sufficiently refined.
(2)ビームの照射が焼結合金チップにかからないよう
にする方法が、基板と焼結合金チップとの突合せ部より
基板側へ表面ビード幅の約半分弱オフセットし、かつ、
基板側へビームを傾けてビーム照射する特許請求の範囲
第1項記載の高密度エネルギービームによる溶融溶接法
(2) A method for preventing beam irradiation from hitting the sintered alloy chip is to offset the abutting portion of the substrate and the sintered alloy chip toward the substrate by a little less than half the width of the surface bead, and
A fusion welding method using a high-density energy beam according to claim 1, wherein the beam is irradiated with the beam tilted toward the substrate.
(3)溶融金属池の十分な精練が、ビームを溶接進行方
向と同方向へ±0.1〜±0.5mmの幅で60Hz〜
2000Hzでオシレーションさせることによる精練で
ある特許請求の範囲第1項又は第2項記載の高密度エネ
ルギービームによる溶融溶接法。
(3) Sufficient scouring of the molten metal pool allows the beam to move in the same direction as the welding direction with a width of ±0.1 to ±0.5 mm and a frequency of 60 Hz to
A fusion welding method using a high-density energy beam according to claim 1 or 2, which is refining by oscillating at 2000 Hz.
JP61185171A 1986-08-08 1986-08-08 Fusion welding method by high density energy beam Pending JPS6343789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185171A JPS6343789A (en) 1986-08-08 1986-08-08 Fusion welding method by high density energy beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185171A JPS6343789A (en) 1986-08-08 1986-08-08 Fusion welding method by high density energy beam

Publications (1)

Publication Number Publication Date
JPS6343789A true JPS6343789A (en) 1988-02-24

Family

ID=16166074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185171A Pending JPS6343789A (en) 1986-08-08 1986-08-08 Fusion welding method by high density energy beam

Country Status (1)

Country Link
JP (1) JPS6343789A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224022A (en) * 1988-07-13 1990-01-26 Silver Roi:Kk Tip saw
US6035844A (en) * 1996-09-25 2000-03-14 Matsushita Electric Works, Ltd. Cutting tool and method for making the same
JP2017001139A (en) * 2015-06-11 2017-01-05 株式会社アマダホールディングス Tip jointing method and saw blade

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224022A (en) * 1988-07-13 1990-01-26 Silver Roi:Kk Tip saw
US6035844A (en) * 1996-09-25 2000-03-14 Matsushita Electric Works, Ltd. Cutting tool and method for making the same
JP2017001139A (en) * 2015-06-11 2017-01-05 株式会社アマダホールディングス Tip jointing method and saw blade

Similar Documents

Publication Publication Date Title
KR100639450B1 (en) Method of applying wear-resistant materials to turbine blades, and turbine blades having wear-resistant materials
CA2550787C (en) Shimmed laser beam welding process for joining superalloys for gas turbine applications
KR100729893B1 (en) High energy beam welding of single-crystal superalloys and assemblies formed thereby
US6489583B1 (en) Shimmed electron beam welding process
KR101491585B1 (en) Method of welding metallic glass with crystalline metal by high-energy beam
EP0163914A1 (en) Method for welding cutter segments
JPS6343789A (en) Fusion welding method by high density energy beam
JP4978121B2 (en) Butt joining method of metal plates
JP2005279744A (en) Butt welding method of different kind of material using high energy beam
JP2003266182A (en) Friction stir welding method for different kind of metallic material
JPS6343788A (en) Laser beam welding method
Dwivedi et al. Design of Welded Joints: Weld Bead Geometry: Selection, Welding Parameters
JPS62220294A (en) Laser beam welding method and its equipment
JPH02280970A (en) Method of welding titanium clad steel plate
JPH10244369A (en) Method and device of combined welding by arc and laser using belt-like electrode
JP6684548B2 (en) Chip joining method
JPS60141397A (en) Build-up material using heat source having high energy density as heat source
RU2106948C1 (en) Laser method for manufacture of disk saw
JPH1094916A (en) Cutter and manufacture thereof
SU1127717A1 (en) Method of fusion welding of steel sheets plated with titanium
JPS60232876A (en) Saw-tooth for cutting concrete
JP2024086171A (en) Method for manufacturing spot welded joint, and spot welded joint
WO2003018239A1 (en) Welding of a wearing piece to a metal work piece
JPH0771742B2 (en) Joining method of titanium carbide sintered alloy and stainless steel
JPS60234776A (en) Welding method of cutter segment