JPS6343744B2 - - Google Patents

Info

Publication number
JPS6343744B2
JPS6343744B2 JP53028892A JP2889278A JPS6343744B2 JP S6343744 B2 JPS6343744 B2 JP S6343744B2 JP 53028892 A JP53028892 A JP 53028892A JP 2889278 A JP2889278 A JP 2889278A JP S6343744 B2 JPS6343744 B2 JP S6343744B2
Authority
JP
Japan
Prior art keywords
resin
magnetic
magnetic toner
weight
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53028892A
Other languages
Japanese (ja)
Other versions
JPS54121744A (en
Inventor
Shigeyuki Shiromoto
Koji Nagai
Hiromi Kameda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2889278A priority Critical patent/JPS54121744A/en
Publication of JPS54121744A publication Critical patent/JPS54121744A/en
Publication of JPS6343744B2 publication Critical patent/JPS6343744B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は、静電潜像現像方法、詳しくは、磁性
トナーと非磁性トナーとを混合してなる磁性現像
剤を使用して静電潜像を現像する静電潜像現像方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrostatic latent image developing method, specifically, an electrostatic latent image developing method in which an electrostatic latent image is developed using a magnetic developer made of a mixture of magnetic toner and non-magnetic toner. The present invention relates to an image developing method.

従来、静電潜像現像方法としては、カスケード
現像法、磁気刷子現像法等、絶縁性を有する非磁
性トナーとキヤリアとを混合してなる2成分系現
像剤を使用する方法が実用に供されている。この
種の現像法におけるキヤリアは、非磁性トナーの
搬送、荷電に関与し、場合によつては現像電極と
して機能するが、現像によつて消費されることが
ないため徐々にその機能が低下したり、キヤリア
と非磁性トナーとの混合比に変化をきたして現像
画像の画質を低下させるという問題があつた。こ
れを解決する方法として、出願人は、キヤリアと
しての機能とトナーとしての機能を合わせもつ磁
性トナーを非磁性トナーと混合して磁性現像剤を
調製し、この磁性現像剤を使用して静電潜像を現
像する新たな現像方法を特願昭51−158110号にて
提案した。この方法は、磁性粉と樹脂とを主成分
とする磁性トナーと、樹脂を主成分とする絶縁性
の非磁性トナーとを混合して磁性現像剤を調製
し、キヤリアとしての機能を持つ磁性トナーによ
つて非磁性トナーを現像位置まで搬送させ、そこ
で両トナーで静電潜像を現像し、次いでコロナチ
ヤージヤにより転写紙にトナー画像を転写させ、
定着するものである。この現像法においては、磁
性トナー自体も現像時に消費されるため、従来キ
ヤリアのように劣化という問題は起こらないが、
磁性トナーおよび非磁性トナーの構成成分として
同じ樹脂を用いた場合でも磁性トナーに搬送機能
を維持させるためには磁性トナー中に磁性粉を多
量に含有させなければならず、その結果、磁性ト
ナー中に占める樹脂の割合が少なくなり、必然的
に磁性トナーの定着性が悪くなつて、中間調の再
現が困難となつたり面積像の荒れ等の問題が発生
することが明らかとなつた。
Conventionally, as electrostatic latent image developing methods, methods using a two-component developer formed by mixing an insulating non-magnetic toner and a carrier, such as a cascade development method and a magnetic brush development method, have been put into practical use. ing. The carrier in this type of development method is involved in transporting and charging the non-magnetic toner, and in some cases functions as a development electrode, but since it is not consumed during development, its function gradually decreases. In addition, there has been a problem in that the mixing ratio of the carrier and the non-magnetic toner changes, resulting in a deterioration in the quality of the developed image. As a way to solve this problem, the applicant prepared a magnetic developer by mixing magnetic toner, which has both the functions of a carrier and a toner, with a non-magnetic toner, and used this magnetic developer to generate electrostatic charges. A new developing method for developing latent images was proposed in Japanese Patent Application No. 158110/1983. In this method, a magnetic developer is prepared by mixing a magnetic toner whose main components are magnetic powder and resin, and an insulating non-magnetic toner whose main components are resin. The non-magnetic toner is conveyed to the development position by the toner, where the electrostatic latent image is developed with both toners, and then the toner image is transferred to the transfer paper by the corona charger.
It is here to stay. In this developing method, the magnetic toner itself is also consumed during development, so there is no problem of deterioration as with conventional carriers.
Even when the same resin is used as a component of magnetic toner and non-magnetic toner, in order for the magnetic toner to maintain its transport function, it is necessary to contain a large amount of magnetic powder in the magnetic toner. It has become clear that as the proportion of resin in the magnetic toner decreases, the fixing properties of the magnetic toner inevitably deteriorate, making it difficult to reproduce halftones and causing problems such as rough area images.

一方、磁性トナーの定着性の向上を計るため、
その構成樹脂として非磁性トナーの構成樹脂より
も低軟化点の樹脂を用いることも考えられるが、
この場合、経時による現像剤の劣化やスリーブ上
でのトナーの凝集という新たな問題を生じる。即
ち、前記現像法では、通常、現像スリーブを固定
し、現像スリーブ内部の磁石を回転させるように
した磁気刷子現像装置を用いるが、現像スリーブ
上でのトナーの搬送性を確保するため磁石の回転
はある程度高速にならざるを得ず、その結果、磁
場の高速変化による渦電流が現像スリーブ等の導
電材中に発生し、発熱現象を起こす。従つて、磁
性トナーの構成樹脂として低軟化点の樹脂を用い
た場合、前記現像スリーブ等の発熱によつて現像
スリーブ上でトナーが凝集したり、あるいはまた
経時による現像剤の劣化が著しいという欠点があ
る。
On the other hand, in order to improve the fixing properties of magnetic toner,
It is conceivable to use a resin with a lower softening point than the constituent resin of the non-magnetic toner, but
In this case, new problems arise such as deterioration of the developer over time and aggregation of toner on the sleeve. That is, in the above-mentioned developing method, a magnetic brush developing device is usually used in which the developing sleeve is fixed and a magnet inside the developing sleeve is rotated. must be at a certain high speed, and as a result, eddy currents due to the high-speed changes in the magnetic field are generated in the conductive material such as the developing sleeve, causing heat generation. Therefore, when a resin with a low softening point is used as the constituent resin of the magnetic toner, there are disadvantages in that the toner aggregates on the developing sleeve due to the heat generated by the developing sleeve, or the developer deteriorates significantly over time. There is.

本発明は、前記の如き問題や欠点に鑑みてなさ
れたもので、定着性の向上と、経時による現像剤
の劣化、更には前記トナーの凝集等の問題解消と
を同時に達成し得る静電潜像現像方法を提供する
ことを目的とするものである。そして、本発明に
係る静電潜像現像方法は、磁性粉と、第1の樹脂
と、該第1の樹脂よりも高い軟化点を有する第2
の樹脂とを主成分とする磁性トナーであつて、前
記磁性粉の一部が磁性トナー表面に露出し、該磁
性粉の非露出部が前記第1の樹脂により被覆され
ると共に該第1の樹脂を介して前記第2の樹脂に
より結着されている磁性トナーと、前記第2の樹
脂と略同一の軟化点を有する第3の樹脂を主成分
とする非磁性トナーとを混合してなる磁性現像剤
を使用して静電潜像を現像することを特徴とする
ものである。
The present invention has been made in view of the problems and drawbacks described above, and is an electrostatic latent material that can simultaneously improve fixing performance, solve problems such as developer deterioration over time, and toner aggregation. It is an object of the present invention to provide an image developing method. The electrostatic latent image developing method according to the present invention includes a magnetic powder, a first resin, and a second resin having a softening point higher than that of the first resin.
A magnetic toner having a resin as a main component, in which a part of the magnetic powder is exposed on the surface of the magnetic toner, a non-exposed part of the magnetic powder is covered with the first resin, and a part of the magnetic powder is covered with the first resin. A magnetic toner bound by the second resin via a resin, and a non-magnetic toner whose main component is a third resin having substantially the same softening point as the second resin. This method is characterized by developing an electrostatic latent image using a magnetic developer.

本発明に係る静電潜像現像方法において使用す
る磁性トナーは、磁性粉、第1の樹脂及び第1の
樹脂よりも高い軟化点を有する第2の樹脂とを主
成分とするものであるが、表面に前記磁性粉を確
実に露出させることを目的として、前記磁性粉の
表面が第1の樹脂で被覆されている構造のもの
(以下、磁性粉露出トナーと記す)であることが
好適である。
The magnetic toner used in the electrostatic latent image developing method according to the present invention is mainly composed of magnetic powder, a first resin, and a second resin having a higher softening point than the first resin. In order to ensure that the magnetic powder is exposed on the surface, it is preferable that the surface of the magnetic powder is coated with a first resin (hereinafter referred to as magnetic powder exposed toner). be.

前記の如き構造の磁性粉露出トナーは、具体的
には、次の方法等によつて製造される。即ち、先
ず磁性粉を第1の樹脂と混練した後、第1の樹脂
より高い軟化点を有する第2の樹脂と共に第2の
樹脂の軟化点以上の温度で混練し、凝固後、粉砕
することによつて製造することができる。
Specifically, the exposed magnetic powder toner having the structure described above is manufactured by the following method. That is, first, magnetic powder is kneaded with a first resin, then kneaded with a second resin having a higher softening point than the first resin at a temperature equal to or higher than the softening point of the second resin, solidified, and then pulverized. It can be manufactured by.

そして、例えば、前記方法に従つて磁性粉露出
トナーを製造すると、第1、2の樹脂を磁性粉と
同時に混練して磁性トナーを製造した場合と異な
り、第1、2の樹脂は均質化せず、磁性粉が第1
の樹脂で被覆された状態で軟化点の高い第2の樹
脂中に分散された形態を採るため、粉砕時に第1
の樹脂の部分で割れ易く、その部分の磁性粉が磁
性トナー粒子の表面に露出する確率が非常に高
い。また、軟化点の低い第1の樹脂は磁性粉の表
面に付着された状態で存在するため、磁性トナー
全体の軟化点(融点)を下げることなく、しか
も、経時による現像剤の劣化、トナーの凝集等の
問題を生じることなく定着性を向上させることも
できる。
For example, when a magnetic powder-exposed toner is manufactured according to the above method, unlike the case where a magnetic toner is manufactured by kneading the first and second resins at the same time as magnetic powder, the first and second resins are not homogenized. First, magnetic powder is the first
Because the resin is coated with the first resin and dispersed in the second resin with a high softening point, the first
It is easy to break at the resin part, and there is a very high probability that the magnetic powder in that part will be exposed on the surface of the magnetic toner particles. In addition, since the first resin with a low softening point exists in a state attached to the surface of the magnetic powder, it does not lower the softening point (melting point) of the entire magnetic toner, and can prevent the deterioration of the developer over time and the toner. It is also possible to improve fixing properties without causing problems such as aggregation.

前記磁性トナーの第2の樹脂、及び非磁性トナ
ーの第3の樹脂は同一であつても良く、要は、第
3の樹脂が第2の樹脂と略同一の軟化点を有して
いれば良い。
The second resin of the magnetic toner and the third resin of the non-magnetic toner may be the same, in short, as long as the third resin has substantially the same softening point as the second resin. good.

これら第2、3の樹脂としては、比較的高い軟
化点を有する樹脂が使用されて良く、通常、80〜
180℃、好ましくは、90〜140℃の軟化点を有する
ものが好適であり、例えば、ポリスチレン樹脂、
スチレン・アクリル酸エステル共重合体、スチレ
ン・アクリロニトリル共重合体などのスチレン系
樹脂、脂環族飽和炭化水素等の熱可塑性樹脂があ
げられる。
As these second and third resins, resins having a relatively high softening point may be used, and usually 80 to 80
Those having a softening point of 180°C, preferably 90 to 140°C are suitable, such as polystyrene resin,
Examples include styrene resins such as styrene/acrylic acid ester copolymers and styrene/acrylonitrile copolymers, and thermoplastic resins such as alicyclic saturated hydrocarbons.

第2の樹脂の軟化点を前記範囲にしたのは、第
2の樹脂の軟化点が80℃未満では、それよりも10
℃以上軟化点の低い第1の樹脂で磁性粉を被覆す
るようにしている関係上、第1の樹脂との混合比
にもよるが、磁性粒子が熱により凝集固化し易く
なり、その軟化点が180℃を越えると、磁性粒子
製造時に高温で混練しなければならず、場合によ
つては、第1の樹脂が変質する恐れがあるからで
ある。
The reason why the softening point of the second resin is set to the above range is that when the softening point of the second resin is less than 80℃, it is 10
Because the magnetic powder is coated with the first resin, which has a low softening point of ℃ or more, the magnetic particles tend to coagulate and solidify due to heat, depending on the mixing ratio with the first resin. If the temperature exceeds 180°C, the magnetic particles must be kneaded at a high temperature during production, and in some cases, the first resin may deteriorate in quality.

また、第1の樹脂としては、前記第2、3の樹
脂よりも10℃以上低い軟化点を有する樹脂が使用
されて良く、通常、50〜100℃、好ましくは50〜
85℃軟化点を有するものが好適であり、例えば、
水添ロジン、脂肪酸アマイド、スチレン系樹脂、
塩化ビニル樹脂、酢酸ビニル樹脂等の熱可塑性樹
脂があげられる。
Further, as the first resin, a resin having a softening point lower by 10°C or more than the second and third resins may be used, and is usually 50 to 100°C, preferably 50 to 100°C.
Those having a softening point of 85°C are suitable, for example,
Hydrogenated rosin, fatty acid amide, styrene resin,
Examples include thermoplastic resins such as vinyl chloride resin and vinyl acetate resin.

第1の樹脂の軟化点を前記範囲にしたのは、第
1の樹脂は、磁性粉を露出させ易くすると共に定
着性を向上させるために使用されるが、その軟化
点と第2の樹脂の軟化点との差が10℃未満では、
磁性粉を露出させる効果が十分に期待できないか
らである。また、第1の樹脂の軟化点が50℃未満
では、磁性粒子が熱によりスリーブ上で凝集、固
化し易くなり、100℃を越えると、第2の樹脂と
の関係で定着性が悪化するからである。
The reason why the softening point of the first resin is set in the above range is that the first resin is used to make it easier to expose the magnetic powder and to improve fixing properties. If the difference from the softening point is less than 10℃,
This is because the effect of exposing the magnetic powder cannot be expected to be sufficient. In addition, if the softening point of the first resin is less than 50°C, the magnetic particles will tend to aggregate and solidify on the sleeve due to heat, and if it exceeds 100°C, the fixing properties will deteriorate due to the relationship with the second resin. It is.

磁性粉としては、鉄、コバルト、ニツケル、ク
ロム、マンガンおよびそれらの化合物もしくは合
金、例えば、その金属粉、四三酸化鉄、γ酸化第
二鉄、二酸化クロム、酸化マンガン、フエライ
ト、マンガン・銅系合金などがあげられる。
Magnetic powders include iron, cobalt, nickel, chromium, manganese, and their compounds or alloys, such as their metal powders, triiron tetroxide, gamma ferric oxide, chromium dioxide, manganese oxide, ferrite, manganese/copper-based Examples include alloys.

なお、磁性トナーや非磁性トナーに所要の色を
付与するため、要すれば、カーボンブラツク、無
機顔料、有機顔料等の着色剤を添加しても良い。
Incidentally, in order to impart a desired color to the magnetic toner or non-magnetic toner, a coloring agent such as carbon black, an inorganic pigment, an organic pigment, etc. may be added, if necessary.

磁性トナーにおける第1の樹脂と第2の樹脂と
の割合は、使用する樹脂や磁性トナーの使用条件
に応じて任意に設定することができるが、通常、
第1の樹脂は全樹脂に対して10〜90重量%、好ま
しくは20〜60重量%となるように混合される。こ
れは、第1の樹脂の含有量が10重量%未満では、
磁性粉の個々の粉末粒子を十分に被覆することが
できず、粉砕時に磁性粉が露出する確率が低くな
ると同時に、定着性が悪くなり、90重量%を越え
ると、磁性粉を被覆している第1の樹脂の部分か
ら割れ易くなるため磁性粉が露出する確率は高く
なるが、荷電粒子の表面に露出する第1の樹脂の
量が多くなり過ぎて、保存時や使用時に受ける熱
によつて凝集固化し易くなるからである。また、
両トナーの平均粒径は5〜50μm、好ましくは10
〜30μmが好適である。
The ratio of the first resin and the second resin in the magnetic toner can be arbitrarily set depending on the resin used and the usage conditions of the magnetic toner, but usually,
The first resin is mixed in an amount of 10 to 90% by weight, preferably 20 to 60% by weight based on the total resin. This means that if the content of the first resin is less than 10% by weight,
Individual powder particles of magnetic powder cannot be sufficiently coated, and the probability that the magnetic powder will be exposed during crushing becomes low, and at the same time, fixing properties become poor. The probability that the magnetic powder will be exposed increases as the first resin part becomes easier to break, but the amount of the first resin exposed on the surface of the charged particles becomes too large and the heat received during storage and use increases. This is because it becomes easy to coagulate and solidify. Also,
The average particle size of both toners is 5 to 50 μm, preferably 10 μm.
~30 μm is suitable.

次に、本発明に係る静電潜像現像方法の実施例
についてその比較例とともに説明する。
Next, examples of the electrostatic latent image developing method according to the present invention will be described together with comparative examples thereof.

実施例 1 四三酸化鉄(平均粒径:0.3μm)125重量部と、
低軟化点の樹脂としてピコラスチツクA−75(エ
ツソ化学製、スチレン系樹脂、軟化点:75℃)25
重量部をボールミルにて混合、粉砕後、加熱ニー
ダーにて120℃で溶融混練し、次いでこれとは別
にボールミルにて混合粉砕して用意した高軟化点
の樹脂としてのプライオライトACL(グツドイヤ
ーケミカル製、スチレン・アクリル酸エステル共
重合体、軟化点:160℃)100重量部とカーボンブ
ラツク(平均粒径:0.3μm)4重量部との混合物
を添加して170℃で10分混練し、冷却凝固後、ハ
ンマーミルにて粗粉砕し、ジエツトミルにて微粉
砕後、分級して平均粒径20μmの磁性トナーを製
造した。
Example 1 125 parts by weight of triiron tetroxide (average particle size: 0.3 μm),
As a low softening point resin, Picolastic A-75 (manufactured by Etsuo Chemical, styrene resin, softening point: 75℃)25
After mixing and pulverizing the weight parts in a ball mill, they were melt-kneaded in a heating kneader at 120°C, and then separately mixed and pulverized in a ball mill to prepare a high softening point resin called Priorite ACL (Guddoyer). Add a mixture of 100 parts by weight of styrene/acrylic acid ester copolymer (manufactured by Chemical Co., Ltd., softening point: 160°C) and 4 parts by weight of carbon black (average particle size: 0.3 μm), and knead at 170°C for 10 minutes. After cooling and solidifying, the mixture was coarsely pulverized in a hammer mill, finely pulverized in a jet mill, and then classified to produce a magnetic toner having an average particle size of 20 μm.

また、これとは別にプライオライトACL100重
量部、カーボンブラツク(平均粒径:0.3μm)10
重量部、オイルブラツク1重量部をボールミルに
て混合粉砕後、加熱ニーダーにて170℃にて30分
混練し、冷却凝固後、磁性トナーと同様にして粉
砕、分級し、平均粒径15μmの非磁性トナーを製
造した。
In addition, 100 parts by weight of Pryolite ACL, 10 parts by weight of carbon black (average particle size: 0.3 μm)
Part by weight and 1 part by weight of oil black were mixed and pulverized in a ball mill, kneaded for 30 minutes at 170°C in a heating kneader, cooled and solidified, and then pulverized and classified in the same manner as magnetic toner. A magnetic toner was produced.

前記の如く製造して得た磁性トナー100重量部
と非磁性トナー50重量部をV型撹拌器にて充分混
合して磁性現像剤を調製し、この現像剤を粉像転
写型電子写真複写機の磁気刷子現像装置内に装填
し、連続実写テストを行なつたところ、初期の1
枚目からカブリのない高濃度で定着性の良い鮮明
な複写画像が得られ、磁石回転数を2000rpmにあ
げても現像スリーブ上でのトナーの凝集は生じな
かつた。また、経時による現像剤の劣化もみられ
なかつた。なお、磁気刷子現像装置は現像スリー
ブ固定、内部磁石回転式であり、磁石回転数は
1200rpm、被現像面である感光体の移動速度は
8.7cm/秒、その最高表面電位は−750Vであり、
感光体上のトナー像の普通紙への転写はコロナ放
電により行い、定着はヒートローラ方式で、その
定着温度は180℃であつた。
A magnetic developer is prepared by thoroughly mixing 100 parts by weight of the magnetic toner and 50 parts by weight of the non-magnetic toner produced as described above in a V-type stirrer, and this developer is used in a powder image transfer type electrophotographic copying machine. When loaded into the magnetic brush developing device of
Clear, fog-free, high-density, and well-fixed copied images were obtained from the first copy, and toner aggregation did not occur on the developing sleeve even when the magnet rotation speed was increased to 2000 rpm. Further, no deterioration of the developer over time was observed. The magnetic brush developing device has a fixed developing sleeve and a rotating internal magnet, and the magnet rotation speed is
The moving speed of the photoreceptor, which is the surface to be developed, is 1200 rpm.
8.7cm/sec, its highest surface potential is -750V,
Transfer of the toner image on the photoreceptor to plain paper was performed by corona discharge, and fixing was performed using a heat roller method, and the fixing temperature was 180°C.

また、複写原稿として線像チヤートと面積像チ
ヤートとを用い、全トナー消費量100mg当たりの
磁性トナーの消費量を測定したところ、各々30
mg、20mgであつた。
In addition, when we measured the amount of magnetic toner consumed per 100 mg of total toner consumption using a line image chart and an area image chart as copy documents, we found that each
mg, 20mg.

比較例 1 実施例1において、当初の混合工程で添加され
たピコラスチツクA−75に代えて、次工程で添加
する樹脂と同一のプライオライトACL(25重量
部)を用い、同様にして平均粒径20μmの磁性ト
ナーを製造した。
Comparative Example 1 In Example 1, Pryolite ACL (25 parts by weight), which is the same as the resin added in the next step, was used in place of Picolastick A-75 added in the initial mixing step, and the average particle size was adjusted in the same manner. A 20 μm magnetic toner was produced.

この低軟化点の樹脂を含まない磁性トナー
(100重量部)と実施例1の非磁性トナー(50重量
部)とを充分混合して磁性現像剤を調製し、実施
例1と同様にして連続実写テストを行つたとこ
ろ、初期の10枚程度から若干のカブリを発生した
他、複写画像の定着性が不充分で濃度も低く、ま
たカブリを除くべく現像バイアス電圧を高くする
と複写画像の濃度も低下してしまつた。
A magnetic developer was prepared by sufficiently mixing this low softening point resin-free magnetic toner (100 parts by weight) with the non-magnetic toner (50 parts by weight) of Example 1, and the developer was continuously produced in the same manner as in Example 1. When we conducted a photo-copying test, we found that some fogging occurred from the first 10 copies, the fixation of the copied images was insufficient and the density was low, and when we increased the developing bias voltage to remove the fogging, the density of the copied images also decreased. It has declined.

比較例 2 実施例1において、磁性トナーの組成成分全部
をボールミルで同時に混合粉砕した後、加熱ニー
ダーにて170℃で30分溶融混練し、冷却凝固後、
粉砕し、分級して平均粒径20μmの磁性トナーを
製造した。
Comparative Example 2 In Example 1, all the components of the magnetic toner were simultaneously mixed and pulverized in a ball mill, then melted and kneaded in a heating kneader at 170°C for 30 minutes, and after cooling and solidifying,
It was crushed and classified to produce a magnetic toner with an average particle size of 20 μm.

この磁性トナー(100重量部)と実施例1の非
磁性トナー(50重量部)を充分混合して磁性現像
剤を調製し、実施例1と同様にして連続実写テス
トを行つたところ、得られた複写画像は比較例1
のものに比べ良好ではあるが、若干カブリ気味で
あり、定着性は良好であつたが磁石回転数を
2000rpmに上げたとき現像スリーブ上に若干のト
ナーの凝集がみられた。また、線像チヤートおよ
び面積像チヤートを原稿として用いた場合の全ト
ナー消費量100mg当たりの磁性トナーの消費量は
各々40mg、20mgであつた。この磁性トナーは実施
例1に比べれば若干劣るけれども、比較例1と比
べても充分に定着性等の改善されたものであると
言える。
A magnetic developer was prepared by sufficiently mixing this magnetic toner (100 parts by weight) with the non-magnetic toner (50 parts by weight) of Example 1, and a continuous printing test was conducted in the same manner as in Example 1. The copied image is Comparative Example 1
Although it was better than the original, there was some fogging, and although the fixing performance was good, the number of rotations of the magnet was
When the speed was increased to 2000 rpm, some toner agglomeration was observed on the developing sleeve. Further, when a line image chart and an area image chart were used as original documents, the amount of magnetic toner consumed per 100 mg of total toner consumption was 40 mg and 20 mg, respectively. Although this magnetic toner is slightly inferior to that of Example 1, it can be said that it has sufficiently improved fixing properties and the like compared to Comparative Example 1.

実施例 2 ピコラスチツクD−125(エツソ・ケミカル製スチ
レン系樹脂、軟化点:125℃) 100重量部 エピコート1002(シエル・ケミカル製、エポキシ
樹脂、軟化点:82℃) 50重量部 CDX−660(戸田工業製、γ−Fe2O3) 300重量部 ケツチエンブラツクEC(ライオン油脂製)
10重量部 前記組成を用い、実施例1と同様にして平均粒
径12μmの磁性トナーを製造した。
Example 2 Picolastic D-125 (styrene resin manufactured by Etsu Chemical, softening point: 125°C) 100 parts by weight Epicoat 1002 (manufactured by Ciel Chemical, epoxy resin, softening point: 82°C) 50 parts by weight CDX-660 (Toda Industrially manufactured, γ-Fe 2 O 3 ) 300 parts by weight Ketsuen Black EC (manufactured by Lion Oil)
10 parts by weight A magnetic toner having an average particle size of 12 μm was produced in the same manner as in Example 1 using the above composition.

この磁性トナー(100重量部)と実施例1の非
磁性トナー(30重量部)を充分混合して磁性現像
剤を調製し、実施例1と同様にして連続実写テス
トを行つたところ、初期の1枚からカブリのな
い、定着性の良い鮮明な複写画像が得られ、磁石
の回転速度を上げても現像スリーブ上でのトナー
の凝集は生じなかつた。
A magnetic developer was prepared by sufficiently mixing this magnetic toner (100 parts by weight) with the non-magnetic toner (30 parts by weight) of Example 1, and a continuous printing test was conducted in the same manner as in Example 1. A clear copy image with good fixability and no fog was obtained from one sheet, and toner aggregation did not occur on the developing sleeve even when the rotational speed of the magnet was increased.

比較例 3 ピコラスチツクD−125(軟化点:125℃)
150重量部 CDX−660 300重量部 ケツチエンブラツク 10重量部 前記組成物をボールミルにて混合粉砕した後、
加熱ニーダーにて150℃で充分混練し、冷却凝固
後、実施例1と同様にして粉砕、分級し、平均粒
径12μmの磁性トナーを製造した。
Comparative example 3 Picolastick D-125 (softening point: 125°C)
150 parts by weight CDX-660 300 parts by weight Kettchen Black 10 parts by weight After mixing and pulverizing the above composition in a ball mill,
The mixture was sufficiently kneaded at 150° C. in a heating kneader, cooled and solidified, and then crushed and classified in the same manner as in Example 1 to produce a magnetic toner having an average particle size of 12 μm.

この磁性トナー(100重量部)と実施例1の非
磁性トナー(30重量部)を充分混合して磁性現像
剤を調製し、連続実写テストを行つたところ、初
期の2〜3枚から若干のカブリを発生した他、複
写画像の定着性が不充分でもあつた。
A magnetic developer was prepared by sufficiently mixing this magnetic toner (100 parts by weight) with the non-magnetic toner (30 parts by weight) of Example 1, and a continuous printing test was conducted. In addition to causing fogging, the fixing properties of the copied images were also insufficient.

実施例 3 ハイマーUP110(三洋化成製、スチレン・アクリ
ル共重合体、軟化点:104℃) 100重量部 エステルガムH(荒川林産化学製、水添ロジン、
軟化点:70℃) 40重量部 RB−BL(チタン工業製、マグネタイト)
200重量部 カーボンブラツク 10重量部 上記組成を用い、実施例1と同様にして平均粒
径13μmの磁性トナーを製造した。
Example 3 Hymer UP110 (manufactured by Sanyo Chemical Co., Ltd., styrene-acrylic copolymer, softening point: 104°C) 100 parts by weight Ester Gum H (manufactured by Arakawa Forestry Chemical Co., Ltd., hydrogenated rosin,
Softening point: 70℃) 40 parts by weight RB-BL (manufactured by Titanium Industries, magnetite)
200 parts by weight Carbon black 10 parts by weight A magnetic toner having an average particle size of 13 μm was produced in the same manner as in Example 1 using the above composition.

この磁性トナー(100重量部)と実施例1の非
磁性トナー(25重量部)を充分混合して磁性現像
剤を調製し、実施例1と同様にして連続実写テス
トを行つたところ同様に良好な結果を得た。
A magnetic developer was prepared by sufficiently mixing this magnetic toner (100 parts by weight) with the non-magnetic toner (25 parts by weight) of Example 1, and a continuous printing test was conducted in the same manner as in Example 1, and the same results were obtained. I got good results.

実施例 4 ハイマSBM73(三洋化成製、スチレン・アクリル
共重合体、軟化点:94℃) 80重量部 エステルガムH(軟化点:70℃) 30重量部 四三酸化鉄 100重量部 前記組成を用い、エステムガムHと磁性粉を加
熱ニーダーにて120℃で30分混練した後、ハイマ
ーSBM73を加え、更に30分間混練した後、冷却
凝固させ、これを実施例1と同様にして粉砕、分
級し、平均粒径14μmの磁性トナーを製造した。
Example 4 Hyma SBM73 (manufactured by Sanyo Kasei, styrene-acrylic copolymer, softening point: 94°C) 80 parts by weight Ester Gum H (softening point: 70°C) 30 parts by weight Triiron tetroxide 100 parts by weight Using the above composition After kneading Estem Gum H and magnetic powder in a heating kneader at 120°C for 30 minutes, Hymer SBM73 was added and kneaded for an additional 30 minutes, cooled and solidified, and crushed and classified in the same manner as in Example 1. A magnetic toner having an average particle size of 14 μm was produced.

また、これとは別に、ピコラスチツクD−125
(軟化点:125℃)100重量部、カーボンブラツク
10重量部、オイルブラツクBS(オリエント化学
製)を加熱ニーダーにて130℃で10分混練後、150
℃で5分混練し、これを冷却凝固させた後、粉
砕、分級して平均粒径15μmの非磁性トナーを製
造した。
In addition, apart from this, Pikorastic D-125
(Softening point: 125℃) 100 parts by weight, carbon black
After kneading 10 parts by weight of Oil Black BS (manufactured by Orient Chemical) in a heating kneader at 130°C for 10 minutes,
The mixture was kneaded at .degree. C. for 5 minutes, cooled and solidified, then pulverized and classified to produce a non-magnetic toner having an average particle size of 15 .mu.m.

前記磁性トナー(100重量部)と非磁性トナー
(20重量部)を充分に混合して磁性現像剤を調製
し、実施例1と同様にして連続実写テストを行つ
たところ、初期からカブリのない鮮明なコピーが
得られ、その定着性も良好であつた。また、トナ
ー混合比を変化させて、カブリがなく定着性の良
好な複写画像の得られる許容範囲を調べたとこ
ろ、磁性トナーと非磁性トナーの比は10:0.3〜
10:11までであつた。
A magnetic developer was prepared by sufficiently mixing the above magnetic toner (100 parts by weight) and non-magnetic toner (20 parts by weight), and a continuous printing test was conducted in the same manner as in Example 1. As a result, there was no fog from the beginning. Clear copies were obtained and the fixing properties were also good. In addition, when we investigated the acceptable range for obtaining a copy image with no fog and good fixing properties by varying the toner mixing ratio, we found that the ratio of magnetic toner to non-magnetic toner was 10:0.3~
It was until 10:11.

実施例 5 フエライト(Mn・Zn)O・Fe2O3(TDK製)
100重量部 アマイドC(花王石鹸製、脂肪酸アマイド 軟化
点:70℃) 20重量部 プライオライトAC(グツドイヤー・ケミカル製ス
チレン・アクリル共重合体、軟化点:160℃)
40重量部 前記組成を用い、実施例1と同様にして平均粒
径16μmの磁性トナーを製造した。
Example 5 Ferrite (Mn・Zn)O・Fe 2 O 3 (manufactured by TDK)
100 parts by weight Amide C (manufactured by Kao Soap, fatty acid amide, softening point: 70°C) 20 parts by weight Priorite AC (styrene-acrylic copolymer, manufactured by Gutdeyer Chemical, softening point: 160°C)
40 parts by weight A magnetic toner having an average particle size of 16 μm was produced in the same manner as in Example 1 using the above composition.

この磁性トナー(100重量部)と実施例4の非
磁性トナー(50重量部)とを充分混合して磁性現
像剤を調製し、実施例1と同様にして連続実写テ
ストを行つたところ、実施例1と同様カブリのな
い定着性の良い鮮明な複写画像が得られ、磁石の
回転速度を2000rpmにしても現像スリーブ上での
トナーの凝集は生じなかつた。また、磁性トナー
と非磁性トナーの混合比の許容上限は10:12で、
線像チヤート、面積像チヤートに対する磁性トナ
ー消費量はトナー消費量100mg当たり、それぞれ
30mg、25mgであつた。
A magnetic developer was prepared by sufficiently mixing this magnetic toner (100 parts by weight) with the non-magnetic toner (50 parts by weight) of Example 4, and a continuous printing test was conducted in the same manner as in Example 1. As in Example 1, a clear copy image with good fixability and no fogging was obtained, and no aggregation of toner on the developing sleeve occurred even when the rotational speed of the magnet was set to 2000 rpm. Also, the upper limit of the mixing ratio of magnetic toner and non-magnetic toner is 10:12.
Magnetic toner consumption for line image chart and area image chart is per 100 mg of toner consumption, respectively.
The doses were 30mg and 25mg.

実施例 6 四三酸化鉄 100重量部 ピコラスチツクD−125(軟化点:125℃)
40重量部 ピコラスチツクA−75(軟化点:75℃)10重量部 カーボンブラツク 4重量部 前記組成を用い、四三酸化鉄とピコラスチツク
A−75とピコラスチツクD−125の一部(10重量
部)を加熱ニーダーにて170℃で10分混練した後、
残部のピコラスチツクD−125とカーボンブラツ
クを加えて更に10分間混練し、これを冷却した
後、実施例1と同様にして平均粒径22μmの磁性
トナーを製造した。
Example 6 Triiron tetroxide 100 parts by weight Picolastic D-125 (softening point: 125°C)
40 parts by weight Picolastick A-75 (softening point: 75°C) 10 parts by weight Carbon black 4 parts by weight Using the above composition, triiron tetroxide, Picolastick A-75 and a part (10 parts by weight) of Picolastick D-125 were added. After kneading for 10 minutes at 170℃ in a heating kneader,
The remaining Picolastic D-125 and carbon black were added and kneaded for a further 10 minutes. After cooling, a magnetic toner having an average particle size of 22 μm was produced in the same manner as in Example 1.

この磁性トナー(100重量部)と実施例4で製
造した非磁性トナー(10重量部)とを充分混合し
て磁性現像剤を調製し、実施例1と同様にして連
続実写テストを行つたところ、初期からカブリが
なく定着性の良い鮮明な複写画像が得られ、磁石
の回転速度を2000rpmにしても現像スリーブ上で
のトナーの凝集は生じなかつた。また、磁性トナ
ーと非磁性トナーの混合比の許容上限は10:12.5
で、線像チヤート、面積像チヤートに対する磁性
トナー消費量は、それぞれ30mg、20mgであつた。
A magnetic developer was prepared by sufficiently mixing this magnetic toner (100 parts by weight) with the non-magnetic toner (10 parts by weight) produced in Example 4, and a continuous printing test was conducted in the same manner as in Example 1. A clear copy image with good fixability and no fogging was obtained from the beginning, and toner aggregation did not occur on the developing sleeve even when the rotation speed of the magnet was set to 2000 rpm. Also, the upper limit of the mixing ratio of magnetic toner and non-magnetic toner is 10:12.5.
The amount of magnetic toner consumed for the line image chart and the area image chart was 30 mg and 20 mg, respectively.

実施例 7 鉄粉(平均粒径5μm) 100重量部 アルコンP−100(荒川林産化学製、脂環族飽和炭
化水素、軟化点:100℃) 50重量部 ピコラスチツクA−50(軟化点:50℃)30重量部 前記組成を用い、ピコラスチツクA−50と鉄粉
とをロールミルにて120℃で15分混練した後、ア
ルコンP−100を徐々に加え、10分間混練後、冷
却凝固し、実施例1と同様にして粉砕、分級し平
均粒径50μmの磁性トナーを製造した。
Example 7 Iron powder (average particle size 5 μm) 100 parts by weight Alcon P-100 (manufactured by Arakawa Forestry Chemical, alicyclic saturated hydrocarbon, softening point: 100°C) 50 parts by weight Picolastic A-50 (softening point: 50°C) ) 30 parts by weight Using the above composition, Picolastic A-50 and iron powder were kneaded in a roll mill at 120°C for 15 minutes, then Alcon P-100 was gradually added, kneaded for 10 minutes, and solidified by cooling. The powder was crushed and classified in the same manner as in 1 to produce a magnetic toner having an average particle size of 50 μm.

この磁性トナー(100重量部)を実施例4の非
磁性トナーと同組成で同様に製造された平均粒径
6μmの非磁性トナー(30重量部)と混合して磁
性現像剤を調製し、実施例1と同様にして連続実
写テストを行つたところ、初期からカブリがなく
定着性の良い鮮明な複写画像が得られ、また磁石
回転速度を2000rpmに速めても現像スリーブ上で
のトナーの凝集は生じなかつた。
This magnetic toner (100 parts by weight) was prepared in the same manner as the non-magnetic toner of Example 4 with the same composition and average particle size.
A magnetic developer was prepared by mixing it with 6 μm non-magnetic toner (30 parts by weight), and a continuous copying test was conducted in the same manner as in Example 1. Clear copied images with good fixability and no fogging from the beginning were obtained. Even when the magnet rotation speed was increased to 2000 rpm, toner aggregation did not occur on the developing sleeve.

以上の結果から明らかなように、本発明に係る
静電潜像現像方法によれば、カブリがなく定着性
の良い鮮明な現像画像を得ることができる他、経
時による現像剤の劣化がないことに加え、線像と
面積像に対する磁性トナーの消費量に大きな差が
なく、しかも磁性トナーと非磁性トナーの混合比
の許容範囲も広いので長期にわたつて安定した現
像が可能であり、更には、現像スリーブ上などで
トナーが凝集することがないため現像装置の保守
も簡単であるなどの効果が得られる。
As is clear from the above results, according to the electrostatic latent image developing method according to the present invention, it is possible to obtain a clear developed image with no fog and good fixability, and there is no deterioration of the developer over time. In addition, there is no big difference in the amount of magnetic toner consumed for line images and area images, and there is also a wide tolerance range for the mixing ratio of magnetic toner and non-magnetic toner, making stable development possible over a long period of time. Since the toner does not aggregate on the developing sleeve or the like, the developing device can be easily maintained.

Claims (1)

【特許請求の範囲】 1 磁性粉と、第1の樹脂と、該第1の樹脂より
も高い軟化点を有する第2の樹脂とを主成分とす
る磁性トナーであつて、前記磁性粉の一部が磁性
トナー表面に露出し、該磁性粉の非露出部が前記
第1の樹脂により被覆されると共に該第1の樹脂
を介して前記第2の樹脂により結着されている磁
性トナーと、前記第2の樹脂と略同一の軟化点を
有する第3の樹脂を主成分とする非磁性トナーと
を混合してなる磁性現像剤を使用して静電潜像を
現像することを特徴とする静電潜像現像方法。 2 前記第2の樹脂と第3の樹脂とが同一樹脂で
あることを特徴とする特許請求の範囲第1項記載
の静電潜像現像方法。 3 前記第2の樹脂の軟化点が第1の樹脂の軟化
点よりも10℃以上高いことを特徴とする特許請求
の範囲第1項又は第2項記載の静電潜像現像方
法。
[Scope of Claims] 1. A magnetic toner mainly composed of magnetic powder, a first resin, and a second resin having a higher softening point than the first resin, wherein one of the magnetic powders a magnetic toner in which a portion of the magnetic powder is exposed on the surface of the magnetic toner, and a non-exposed portion of the magnetic powder is covered with the first resin and bonded with the second resin via the first resin; The electrostatic latent image is developed using a magnetic developer mixed with a non-magnetic toner whose main component is a third resin having substantially the same softening point as the second resin. Electrostatic latent image development method. 2. The electrostatic latent image developing method according to claim 1, wherein the second resin and the third resin are the same resin. 3. The electrostatic latent image developing method according to claim 1 or 2, wherein the softening point of the second resin is 10° C. or more higher than the softening point of the first resin.
JP2889278A 1978-03-14 1978-03-14 Dry type developing process in electrophotography Granted JPS54121744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2889278A JPS54121744A (en) 1978-03-14 1978-03-14 Dry type developing process in electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2889278A JPS54121744A (en) 1978-03-14 1978-03-14 Dry type developing process in electrophotography

Publications (2)

Publication Number Publication Date
JPS54121744A JPS54121744A (en) 1979-09-21
JPS6343744B2 true JPS6343744B2 (en) 1988-09-01

Family

ID=12261037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2889278A Granted JPS54121744A (en) 1978-03-14 1978-03-14 Dry type developing process in electrophotography

Country Status (1)

Country Link
JP (1) JPS54121744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11126010B2 (en) 2018-07-24 2021-09-21 Zygospec Co., Ltd. Spectacle frame and temple thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616665A (en) * 1984-06-20 1986-01-13 Canon Inc Formation of image
JPH0810611B2 (en) * 1990-10-02 1996-01-31 山一電機工業株式会社 connector
JP4579779B2 (en) * 2005-06-28 2010-11-10 京セラミタ株式会社 Image forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145224A (en) * 1976-05-28 1977-12-03 Ricoh Co Ltd Dry type developing powder
JPS534549A (en) * 1976-07-02 1978-01-17 Konishiroku Photo Ind Co Ltd Magnetic toner
JPS539125A (en) * 1976-07-13 1978-01-27 Ricoh Co Ltd Dry type devloping powder and its manufacture
JPS5319031A (en) * 1976-08-05 1978-02-21 Fujitsu Ltd Magnetically attractable developing agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145224A (en) * 1976-05-28 1977-12-03 Ricoh Co Ltd Dry type developing powder
JPS534549A (en) * 1976-07-02 1978-01-17 Konishiroku Photo Ind Co Ltd Magnetic toner
JPS539125A (en) * 1976-07-13 1978-01-27 Ricoh Co Ltd Dry type devloping powder and its manufacture
JPS5319031A (en) * 1976-08-05 1978-02-21 Fujitsu Ltd Magnetically attractable developing agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11126010B2 (en) 2018-07-24 2021-09-21 Zygospec Co., Ltd. Spectacle frame and temple thereof

Also Published As

Publication number Publication date
JPS54121744A (en) 1979-09-21

Similar Documents

Publication Publication Date Title
JPS6046428B2 (en) electrostatography
JPS6343744B2 (en)
JP2858005B2 (en) Development method
JPH02211456A (en) Electrostatically charged image developing method
US4262076A (en) Method for manufacturing magnetically attractive toner particles and particle
JPS6342778B2 (en)
US5334472A (en) Toner for developing static charge images
US4362802A (en) Powdery developing material for electrophotographic reproduction
JP3173321B2 (en) Development method
JP2715690B2 (en) Electrophotographic developer composition
JPS6353544B2 (en)
JPH07120066B2 (en) Developer and developing method
JPS58105166A (en) Dry developer
JPH0257302B2 (en)
JP2962040B2 (en) Method for developing one-component insulating magnetic toner
JPH0430012B2 (en)
JPH0451249A (en) Magnetic toner and production thereof
JPS6325333B2 (en)
JP2906818B2 (en) Carrier composition for electrostatic image developer
JPH04178653A (en) Electrically conductive magnetic toner
JPS60140263A (en) Manufacture of toner for electrophotography
JPS6350698B2 (en)
JPH0466958A (en) Developer and image forming method
JPS6079363A (en) Developer for electrostatic charge image
JPH04367867A (en) Magnetic toner