JPS6343709B2 - - Google Patents

Info

Publication number
JPS6343709B2
JPS6343709B2 JP54106524A JP10652479A JPS6343709B2 JP S6343709 B2 JPS6343709 B2 JP S6343709B2 JP 54106524 A JP54106524 A JP 54106524A JP 10652479 A JP10652479 A JP 10652479A JP S6343709 B2 JPS6343709 B2 JP S6343709B2
Authority
JP
Japan
Prior art keywords
chromium
iron
sample
carbon
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54106524A
Other languages
Japanese (ja)
Other versions
JPS5630646A (en
Inventor
Masanori Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP10652479A priority Critical patent/JPS5630646A/en
Publication of JPS5630646A publication Critical patent/JPS5630646A/en
Publication of JPS6343709B2 publication Critical patent/JPS6343709B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 本発明は、炭素およびクロムを含む鉄系合金の
クロム含有量を分析するに先だつて行う鉄系合金
のクロム分析前処理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pretreatment method for chromium analysis of an iron-based alloy, which is performed prior to analyzing the chromium content of an iron-based alloy containing carbon and chromium.

一般に、炭素CおよびクロムCrを含む鉄系合
金よりなる量産品に対してその品質保証のために
該鉄系合金の成分を確認すべく、特にCr含有量
の分析が行われており、このようなクロム分析を
行う場合その前処理として該鉄系合金の試料を酸
等に溶解させる必要がある。
In general, mass-produced products made of iron-based alloys containing carbon C and chromium Cr are analyzed for their Cr content in order to confirm the composition of the iron-based alloys in order to guarantee their quality. When performing a chromium analysis, it is necessary to dissolve the iron-based alloy sample in an acid or the like as a pretreatment.

ところで、このようなFe−C−Cr系合金にお
いては特にCrとCとの親和性が強く、Crの少な
くとも一部はCrの炭化物あるいは複合炭化物を
形成して存在しており、CrおよびCの双方の含
有量が多い程Crの炭化物の形成の割合が高い。
そのため、Fe−C−Cr系合金のクロム分析前処
理として上記Fe−C−Cr系合金の試料を酸に溶
解させようとしても、Cの含有量が2重量%以下
あるいはCrの含有量が3重量%以下であれば、
酸に完全に溶解するが、Cの含有量が2重量%以
上で且つCrの含有量が3重量%以上になると、
Crの炭化物あるいは複合炭化物が多量に存在す
ることにより、アルカリに対しては不溶であるの
は勿論のこと、酸に対しても完全に溶解せず、そ
の結果、分析誤差が大きいという不具合がある。
By the way, in such Fe-C-Cr alloys, Cr and C have a particularly strong affinity, and at least a part of Cr exists in the form of Cr carbide or composite carbide, and Cr and C have a particularly strong affinity. The higher the content of both, the higher the rate of Cr carbide formation.
Therefore, even if you try to dissolve the Fe-C-Cr alloy sample in acid as a pretreatment for chromium analysis of Fe-C-Cr alloy, the C content is less than 2% by weight or the Cr content is less than 3% by weight. If it is less than % by weight,
It completely dissolves in acid, but if the C content is 2% by weight or more and the Cr content is 3% by weight or more,
Due to the presence of a large amount of Cr carbide or composite carbide, it is not only insoluble in alkalis but also completely insoluble in acids, resulting in a problem of large analytical errors. .

また、前処理として上記Fe−C−Cr系合金の
試料を熔融剤で熔融する場合には、高温度となつ
てCが激しく燃焼するが、このCの高温燃焼によ
つて試料が飛散してしまい、分析定量ができない
という問題がある。
In addition, when the above Fe-C-Cr alloy sample is melted with a melting agent as a pretreatment, the temperature becomes high and C burns violently, but this high-temperature combustion causes the sample to scatter. There is a problem that it is difficult to analyze and quantify.

そこで、本発明はかかる点に鑑みてなされたも
のであり、Fe−C−Cr系合金の試料を、試料の
飛散が生じないような比較的低温度のもとで酸素
によりCを炭酸ガスとして除去すると同時に、
FeおよびCrを酸化物にしてその後処理を容易に
行い得るようにすることにより、簡単な分析操作
でもつてクロム分析を精度良く行い得るようにし
た鉄系合金のクロム分析前処理法を提供するもの
である。
Therefore, the present invention was made in view of this point, and the present invention was made by converting C to carbon dioxide gas using oxygen at a relatively low temperature that does not cause scattering of the Fe-C-Cr alloy sample. At the same time as removing
To provide a pretreatment method for chromium analysis of iron-based alloys, which enables accurate chromium analysis with simple analytical operations by converting Fe and Cr into oxides so that post-treatment can be easily performed. It is.

すなわち、本発明は、炭素およびクロムを含む
鉄系合金のクロム含有量を分析する鉄系合金のク
ロム分析法において、上記鉄系合金のクロム含有
量を分析する前に、該鉄系合金の試料を炭素燃焼
装置内に装入し、該炭素燃焼装置の温度を650〜
700℃に保持し且つ炭素燃焼装置に酸素を供給し
て、上記試料中の炭素を燃焼除去するとともにク
ロムおよび鉄を酸化することを特徴とするもので
ある。
That is, the present invention provides a chromium analysis method for iron-based alloys that analyzes the chromium content of iron-based alloys containing carbon and chromium. is charged into a carbon combustion device, and the temperature of the carbon combustion device is set to 650~
It is characterized by maintaining the temperature at 700°C and supplying oxygen to a carbon combustion device to burn off carbon in the sample and oxidize chromium and iron.

以下、本発明について詳細に説明する。 The present invention will be explained in detail below.

本発明の対象とする鉄系合金はCおよびCrを
含むFe−C−Cr系合金であり、特に、本発明は
酸、アルカリおよび熔融剤に不溶であるC2重量
%以上、Cr3重量%以上を含み、Crの少なくとも
一部が炭化物(単なるCrの炭化物CrmCnおよび
複合炭化物(Fe、Mo、…、Cr)mCn)を形成し
ているものに対して有効であり、またFe−C−
Cr系の焼結合金に限らず、鋳鉄に対しても適用
できる。
The iron-based alloy targeted by the present invention is a Fe-C-Cr-based alloy containing C and Cr. In particular, the present invention focuses on containing 2% by weight or more of C and 3% by weight or more of Cr, which are insoluble in acids, alkalis, and melting agents. It is effective for those in which at least a part of Cr forms a carbide (simple Cr carbide CrmCn and composite carbide (Fe, Mo, ..., Cr) mCn), and it is also effective for Fe-C-
It can be applied not only to Cr-based sintered alloys but also to cast iron.

そして、上記Fe−C−Cr系合金のクロム含有
量を分析するに先だつて行う前処理として、先
ず、Fe−C−Cr系合金の試料を粉砕して粉粒状
にする。この粉粒状試料の粒子径は250〜350メツ
シユ程度に設定されており、250メツシユより大
きいと、特に焼結合金の場合には粉砕する際、鋳
鉄等と比べてネバくて試料が略均一に粉砕されず
に選択的に粉砕されることにより、試料として偏
析した部分を用いることになり、分析偏差が生じ
るため、250メツシユより小さくして分析偏差を
防止し分析を精度よく行うようにするためであ
り、また350メツシユより小さくすると、上記微
粉化による分析偏差防止効果が飽和し、却つて粉
砕時間が長くかかつて無駄であり、よつて250〜
350メツシユの範囲のものが好ましい。
As a pretreatment performed prior to analyzing the chromium content of the Fe--C--Cr alloy, a sample of the Fe--C--Cr alloy is first ground into powder. The particle size of this powder sample is set to about 250 to 350 mesh, and if it is larger than 250 mesh, especially in the case of sintered alloys, it will be sticky compared to cast iron etc. and the sample will not be uniform. By selectively pulverizing without being crushed, a segregated part is used as a sample, which causes analysis deviation, so we made it smaller than 250 mesh to prevent analysis deviation and perform analysis with high accuracy. Moreover, if the mesh size is smaller than 350 mesh, the effect of preventing analysis deviation due to the above-mentioned pulverization becomes saturated, and the grinding time becomes long or wasteful.
A range of 350 mesh is preferred.

次に、このような粉粒状試料を図面に示すよう
な炭素燃焼装置A内に装入する。該炭素燃焼装置
Aは図示の如く、一端に酸素供給管1が連結さ
れ、他端が大気に開放された磁製管2からなり、
該磁製管2には温度計3を近接して臨しめてい
る。この磁製管2内に、粉粒状試料Sを石英ボー
ト4に収容して装入し、温度計3による制御のも
とで炭素燃焼装置A内の温度を650〜700℃に保持
しながら、酸素供給管1から磁製管2内に酸素ガ
スO2を供給すると、試料S中のCは酸素ガスO2
と反応して燃焼し、炭酸ガスCO2として除去され
るとともに、該試料S中のFeおよびCrは酸素ガ
スO2と反応してそれぞれFe2O3およびCr2O3の酸
化物となる。
Next, such a powder sample is charged into a carbon combustion apparatus A as shown in the drawing. As shown in the figure, the carbon combustion device A consists of a porcelain tube 2 connected to an oxygen supply tube 1 at one end and opened to the atmosphere at the other end.
A thermometer 3 is placed close to the porcelain tube 2. A powder sample S was placed in a quartz boat 4 and charged into the porcelain tube 2, and the temperature inside the carbon combustion device A was maintained at 650 to 700°C under the control of the thermometer 3. When oxygen gas O 2 is supplied from the oxygen supply pipe 1 into the porcelain tube 2, C in the sample S becomes oxygen gas O 2
Fe and Cr in the sample S react with oxygen gas O 2 to become oxides of Fe 2 O 3 and Cr 2 O 3 , respectively, and are removed as carbon dioxide gas CO 2 .

ここにおいて、上記炭素燃焼装置の温度は、
650℃以下であれば、Cの燃焼が十分でなく試料
中の全炭素Cを十分に燃焼除去できず、また700
℃以上であれば、Cが激しく燃焼して試料が飛散
するとともにCrおよびFeが溶解して塊状となり、
後処理における熔融が完全に行い得ないが、650
〜700℃の範囲では試料の飛散もなくCを完全に
燃焼除去することができるので、よつて650〜700
℃の範囲に設定されている。
Here, the temperature of the carbon combustion device is
If the temperature is below 650°C, the combustion of C will not be sufficient and all the carbon in the sample will not be removed by combustion, and if the temperature is below 700°C,
If the temperature is above ℃, C will burn violently and the sample will scatter, while Cr and Fe will dissolve and form lumps.
Although complete melting cannot be achieved during post-processing, 650
In the range of ~700℃, C can be completely burned off without scattering of the sample, so
It is set in the range of ℃.

また、上記酸素ガスO2の供給量は、Cの完全
燃焼化および試料の飛散防止を考慮して、始めは
0.25/分で5分間供給し、引き続いて0.5/
分で10分間供給するのが好ましい。尚、上記のよ
うに純酸素ガスを供給する代わりに、空気を供給
してもよいのは勿論であり、この場合供給量は当
然異なり、多量の供給量を必要とする。
In addition, the above supply amount of oxygen gas O 2 is set at the beginning, taking into account the complete combustion of C and the prevention of scattering of the sample.
0.25/min for 5 minutes, followed by 0.5/min.
It is preferable to feed for 10 minutes in minutes. Note that, of course, instead of supplying pure oxygen gas as described above, air may be supplied, but in this case, the supply amount is naturally different and a large amount of supply is required.

このようにして酸化物として残つたFe2O3およ
びCr2O3は、それぞれ後処理において熔融剤とし
て例えばNa2CO3により容易にかつ完全に熔融さ
せることができる。これら熔融させたものは、公
知の技術である鉱酸(例えば塩酸、硝酸と水との
混合液)を加えて加熱することによつて容易に分
解させることができ、この分解した溶液に対して
Cr及びFeの市販の原子吸光分析用標準液を基準
液として、CrとFeについて原子吸光分析装置で
吸光度を測定し含有量を求める。(このような原
子吸光分析についてはJIS G1257(1975)等を参
照) ここに、上記CrおよびFeの化学分析における
各々の含有量の算出式の一例を示すと、 Cr(%)=Cr2O3の重量(g)×0.6842/試料(g)×1
00 Fe(%)=Fe2O3の重量(g)×0.6994/試料(g)×1
00 であり、これらの式より各含有量を容易に算出す
ることができる。
The Fe 2 O 3 and Cr 2 O 3 remaining as oxides in this way can be easily and completely melted in the post-treatment using, for example, Na 2 CO 3 as a melting agent. These melts can be easily decomposed by adding and heating a mineral acid (for example, a mixture of hydrochloric acid, nitric acid and water) using a known technique, and the decomposed solution can be
Using a commercially available standard solution for atomic absorption spectrometry of Cr and Fe as a reference solution, the absorbance of Cr and Fe is measured using an atomic absorption spectrometer to determine the content. (For such atomic absorption analysis, refer to JIS G1257 (1975), etc.) Here, an example of the calculation formula for each content in the chemical analysis of Cr and Fe is shown as follows: Cr (%) = Cr 2 O Weight of 3 (g) x 0.6842 / sample (g) x 1
00 Fe (%) = Weight of Fe 2 O 3 (g) x 0.6994/sample (g) x 1
00, and each content can be easily calculated from these formulas.

以上説明したように、本発明によれば、Fe−
C−Cr系合金のクロム含有量を分析する前に、
該Fe−C−Cr系合金の試料を炭素燃焼装置に装
入し、該炭素燃焼装置の温度を650〜700℃に保持
し且つ炭素燃焼装置に酸素を供給するという簡単
な操作でもつて、Fe−C−Cr系合金試料中のC
をCO2として容易に除去することができるととも
に、FeおよびCrが酸化物となり後処理を容易に
行うことができるので、Fe−C−Cr系合金のク
ロム分析を精度良く行うことができ、Fe−C−
Cr系合金製製品の品質保証管理に大いに寄与す
ることができるものである。また、C量を測定す
る必要がある場合には、別に試料を用意し、公知
の炭素分析装置で分析定量する。
As explained above, according to the present invention, Fe-
Before analyzing the chromium content of C-Cr alloys,
Fe-C-Cr alloy samples are charged into a carbon combustion device, the temperature of the carbon combustion device is maintained at 650 to 700°C, and oxygen is supplied to the carbon combustion device. -C in C-Cr alloy sample
can be easily removed as CO 2 , and Fe and Cr become oxides that can be easily post-treated, allowing accurate chromium analysis of Fe-C-Cr alloys. -C-
This can greatly contribute to quality assurance management of Cr-based alloy products. Furthermore, if it is necessary to measure the amount of C, a sample is prepared separately and analyzed and quantified using a known carbon analyzer.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を例示する概略説明図
である。 A……炭素燃焼装置、S……試料、1……酸素
供給管、2……磁製管、3……温度計、4……石
英ボート。
The drawings are schematic illustrations illustrating embodiments of the invention. A... Carbon combustion device, S... Sample, 1... Oxygen supply pipe, 2... Porcelain tube, 3... Thermometer, 4... Quartz boat.

Claims (1)

【特許請求の範囲】 1 炭素およびクロムを含む鉄系合金のクロム含
有量を分析する鉄系合金のクロム分析法におい
て、上記鉄系合金のクロム含有量を分析する前
に、該鉄系合金の試料を炭素燃焼装置内に装入
し、該炭素燃焼装置の温度を650〜700℃に保持し
且つ炭素燃焼装置に酸素を供給して、上記試料中
の炭素を燃焼除去するとともにクロムおよび鉄を
酸化することを特徴とする鉄系合金のクロム分析
前処理法。 2 鉄系合金は、炭素2重量%以上、クロム3重
量%以上を含み、クロムの少なくとも一部が炭化
物を形成しているものである特許請求の範囲第1
項記載の鉄系合金のクロム分析前処理法。 3 鉄系合金が焼結合金である特許請求の範囲第
1項記載の鉄系合金のクロム分析前処理法。
[Scope of Claims] 1. In the chromium analysis method for iron-based alloys that analyzes the chromium content of iron-based alloys containing carbon and chromium, before analyzing the chromium content of the iron-based alloys, The sample is charged into a carbon combustion device, the temperature of the carbon combustion device is maintained at 650 to 700°C, and oxygen is supplied to the carbon combustion device to burn off the carbon in the sample and remove chromium and iron. A pretreatment method for chromium analysis of iron-based alloys, which are characterized by oxidation. 2 The iron-based alloy contains 2% by weight or more of carbon and 3% by weight or more of chromium, and at least a part of the chromium forms a carbide.
Pretreatment method for chromium analysis of iron-based alloys described in Section 1. 3. A pretreatment method for chromium analysis of an iron-based alloy according to claim 1, wherein the iron-based alloy is a sintered alloy.
JP10652479A 1979-08-20 1979-08-20 Pretreatment method of chromium analysis of iron alloy Granted JPS5630646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10652479A JPS5630646A (en) 1979-08-20 1979-08-20 Pretreatment method of chromium analysis of iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10652479A JPS5630646A (en) 1979-08-20 1979-08-20 Pretreatment method of chromium analysis of iron alloy

Publications (2)

Publication Number Publication Date
JPS5630646A JPS5630646A (en) 1981-03-27
JPS6343709B2 true JPS6343709B2 (en) 1988-09-01

Family

ID=14435781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10652479A Granted JPS5630646A (en) 1979-08-20 1979-08-20 Pretreatment method of chromium analysis of iron alloy

Country Status (1)

Country Link
JP (1) JPS5630646A (en)

Also Published As

Publication number Publication date
JPS5630646A (en) 1981-03-27

Similar Documents

Publication Publication Date Title
Fleming et al. Determination of volatile hydride-forming metals in steel by atomic absorption spectrometry
Lim et al. Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays
Schaller et al. Elimination kinetics of metals after an accidental exposure to welding fumes
JPS6343709B2 (en)
Paynter Microdetermination of manganese in animal tissues by flameless atomic absorption spectrometry
Yoon et al. Total and soluble metal contents in flux-cored arc welding fumes
De-Qiang et al. Stabilization of organic and inorganic mercury in the graphite furnace with (NH4) 2PdCl6–(NH4) 3RhCl6 as a mixed chemical modifier
EP3108240B1 (en) Analyzer for analyzing carbon (c) and sulfur (s) in metals
DE3538778C2 (en)
Virtamo et al. Carbon monoxide in foundry air
Burke Rapid combustion method for the determination of sulfur in nickel-, iron-, and copper-blase alloys
Uchihara et al. Direct solid sampling conductive heating vaporisation system for the determination of sulfur in steel without chemical treatment by inductively coupled plasma atomic emission spectrometry (ICP-AES)
Mahmood et al. Some observations on the use of electrothermal atomic absorption spectrophotometry for the determination of chromium and copper in Portland cements
Mehra et al. Determination of chromium, manganese, iron and nickel content of hair for evaluating exposure to metals in occupational environment
DE10254748B3 (en) Device and method for the detection of sulfuryl fluoride
Chen et al. Determination of silicon in nickel-based alloys using electrothermal atomic absorption spectrometry with longitudinal Zeeman-effect background correction and zinc oxide pretreatment
Kobayashi et al. Determination of Trace Tellurium and Gallium in Nickel-Base Heat-Resisting Alloys by Graphite-Furnace Atomic Absorption Spectrometry
JPS62238457A (en) Analysis of nitrogen in nuclear fuel oxide
JP2815454B2 (en) Quantitative analysis method for metal elements in sulfur
Lim et al. Cretaceous—Tert1ary clays
Stromatt ANALYTICAL CHEMISTRY OF BORON CARBIDE.
Slickers et al. The Accuracy of Spectrometric Analyses, Particularly for Carbon in Steel and Cast Iron
EP0023523A1 (en) Method for the transformation into sulphur dioxide of sulphuric anhydride contained in a gas mixture
CN112408497A (en) Preparation method of ferrous sulfide
Updegrove et al. Wet chemical oxidation method for carbon determination in ferrous alloys