JPS6343705B2 - - Google Patents

Info

Publication number
JPS6343705B2
JPS6343705B2 JP55145155A JP14515580A JPS6343705B2 JP S6343705 B2 JPS6343705 B2 JP S6343705B2 JP 55145155 A JP55145155 A JP 55145155A JP 14515580 A JP14515580 A JP 14515580A JP S6343705 B2 JPS6343705 B2 JP S6343705B2
Authority
JP
Japan
Prior art keywords
electrode
immobilized
redox
thin film
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55145155A
Other languages
Japanese (ja)
Other versions
JPS5769667A (en
Inventor
Akihiro Imai
Shiro Nankai
Takashi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55145155A priority Critical patent/JPS5769667A/en
Publication of JPS5769667A publication Critical patent/JPS5769667A/en
Publication of JPS6343705B2 publication Critical patent/JPS6343705B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 本発明は、酸化還元酵素の電子伝達体として機
能するレドツクス化合物の固定化に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the immobilization of redox compounds that function as electron carriers for oxidoreductases.

一般に酸化還元酵素は、基質の酸化還元を行う
場合、電子伝達体を必要とする。電子伝達体とし
ては、酸素(O2)がよく知られているが、レド
ツクス化合物と総称される有機化合物の中にも優
れた電子伝達能を示すものがある。例えば、ベン
ゾキノン、メチレンブルー、2,6−ジクロロイ
ンドフエノール、フエリシアン化カリ等である。
これらのレドツクス化合物の多くは、水に容易に
溶解する水溶性化合物であるので、実際にこのレ
ドツクス化合物を用いて酵素反応を実用面に利用
する場合、種々の不都合を生ずる。
In general, oxidoreductases require an electron carrier when redoxing a substrate. Oxygen (O 2 ) is well known as an electron carrier, but some organic compounds collectively called redox compounds also exhibit excellent electron transfer ability. For example, benzoquinone, methylene blue, 2,6-dichloroindophenol, potassium ferricyanide, etc.
Since many of these redox compounds are water-soluble compounds that easily dissolve in water, various inconveniences occur when these redox compounds are used for practical enzymatic reactions.

例えば、酵素とレドツクス化合物を溶液中に溶
解して用いた場合、1回の測定で高価な酵素や化
合物を使い棄てにしなければならない。
For example, when enzymes and redox compounds are dissolved in a solution and used, the expensive enzymes and compounds must be disposed of after one measurement.

また、水溶性化合物を電極上に固定化するのは
大変困難で、例えば米国特許第3838033号明細書
に述べられているように、電極と半透性膜で囲ま
れた空間内に酵素およびレドツクス化合物を保持
して溶液中への溶出を減少させる等の工夫をして
も、溶液中への溶出を押さえることは困難であ
る。
Furthermore, it is very difficult to immobilize water-soluble compounds on electrodes; for example, as described in U.S. Pat. No. 3,838,033, enzymes and redox compounds can be Even if efforts are made to retain the compound and reduce its elution into the solution, it is difficult to suppress its elution into the solution.

このようにレドツクス化合物の多くは、水溶性
で実用上の目的に利用しにくいため、水溶性レド
ツクス化合物を高分子化して難溶性化させるか、
レドツクス化合物としてほとんど水に溶解しない
2,3−ジクロル−1,4−ナフトキノン、クロ
ルアニル、ブロムアニル等を電子伝達体として利
用することが考えられる。
In this way, many redox compounds are water-soluble and difficult to use for practical purposes.
It is conceivable to use redox compounds such as 2,3-dichloro-1,4-naphthoquinone, chloranil, and bromoanil, which are hardly soluble in water, as electron carriers.

現在までにこのような水に溶解しないレドツク
ス化合物はあまり明らかでなく数も少ない。その
ためこのような不溶性(難溶性)レドツクス化合
物の固定化はあまりなされていない。
To date, such water-insoluble redox compounds are not very clear and are few in number. Therefore, immobilization of such insoluble (poorly soluble) redox compounds has not been done much.

本発明者らは、このような不溶性レドツクス化
合物を電子伝達体として用いて電極上に種々のバ
インダーによつて固定化させることを検討した結
果、紫外線硬化樹脂によつて電極上に固定化した
場合に優れた特性を示すことを見出した。
The present inventors investigated the use of such insoluble redox compounds as electron carriers and immobilized them on electrodes with various binders, and found that when immobilized on electrodes with ultraviolet curable resin, It has been found that this material exhibits excellent properties.

すなわち、単位電極面積あたりのレドツクス化
合物の存在密度が高いこと、レドツクス化合物を
よく保持していること、電導特性をよくするため
にレドツクス化合物含有層が薄膜を形成できるこ
と、必要に応じてカーボン等が集電材料で添加で
きること、電極面への付着強度が優れているこ
と、レツドツクス化合物の機能に悪影響を与えな
いこと等の条件について特に紫外線硬化樹脂は、
電子伝達特性に重要な薄膜形成能、および実用上
重要な電極面への付着強度に優れていた。一方、
熱可塑性樹脂からなるバインダーの場合は、薄膜
形成能および薄膜の機械的強度に欠点を有してお
り、レドツクス化合物の固定化物質としては十分
な特性をもつていなかつた。
In other words, the density of the redox compound per unit electrode area is high, the redox compound is well retained, the redox compound-containing layer can form a thin film to improve conductivity, and if necessary, carbon etc. In particular, UV-curable resins must be able to be added to current-collecting materials, have excellent adhesion strength to the electrode surface, and have no adverse effect on the function of the redox compound.
It had excellent thin film forming ability, which is important for electron transfer properties, and adhesion strength to electrode surfaces, which is important in practical terms. on the other hand,
In the case of a binder made of a thermoplastic resin, it has drawbacks in its ability to form a thin film and the mechanical strength of the thin film, and does not have sufficient properties as a substance for immobilizing redox compounds.

紫外線硬化樹脂としては、オリゴエステルアク
リレート、ポリウレタンアクリレート、エポキシ
アクリレート等のアクリル系紫外線硬化樹脂、ビ
ニルシクロヘキセンジエポキシド等の脂環エポキ
シ樹脂、その他、ポリビニロキシエチルシンナメ
ート等が良好な特性を示すものであつた。
Examples of UV-curable resins include acrylic UV-curable resins such as oligoester acrylate, polyurethane acrylate, and epoxy acrylate, alicyclic epoxy resins such as vinylcyclohexene diepoxide, and others that exhibit good properties, such as polyvinyloxyethyl cinnamate. It was hot.

紫外線硬化樹脂の中でも、エポキシ樹脂は、硬
化スピードが早く、粘度も低いため(低いもので
100cp以下)薄膜形成能に優れていた。
Among UV-curable resins, epoxy resins have a fast curing speed and low viscosity (low viscosity).
(100cp or less) Excellent thin film forming ability.

このようにレドツクス化合物を紫外線硬化樹脂
で電極上に固定した場合、酵素と優れた電子共役
特性を示した。レドツクス化合物を固定化する場
合、電極との電気的接触を良好にするために、グ
ラフアイト、カーボン等の電導性の電子集電体と
共存させて紫外線硬化樹脂で固定化させることも
できる。
When a redox compound was immobilized on an electrode using an ultraviolet curable resin in this way, it exhibited excellent electronic conjugation properties with the enzyme. When immobilizing a redox compound, it can also be immobilized with an ultraviolet curing resin in the presence of a conductive electron current collector such as graphite or carbon in order to improve electrical contact with the electrode.

電極としては、白金、金、銀などの金属、酸化
スズ、酸化インジウム等の酸化物、その他種々の
半導体、良電気伝導物質等を用いられる。
As the electrode, metals such as platinum, gold, and silver, oxides such as tin oxide and indium oxide, various other semiconductors, and materials with good electrical conductivity can be used.

以下本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

実施例 1 エポキシアクリレートを1g、2,3−ジクロ
ル−1,4−ナフトキノンを0.6g、グラフアイ
トを0.3g、光増感剤0.05gを酢酸エチル3mlに
溶解させた後、酸化スズ導電性ガラス上にスピン
ナーで塗布、乾燥後、水銀ランプを約5分間照射
して硬化させた。薄膜の厚さは約0.3μmであつ
た。この薄膜上にグルコースオキシダーゼをグル
タルアルデヒドで固定化した後、図に示した測定
系にこの酵素およびレドツクス化合物を固定化し
た電極をセツトした。
Example 1 After dissolving 1 g of epoxy acrylate, 0.6 g of 2,3-dichloro-1,4-naphthoquinone, 0.3 g of graphite, and 0.05 g of photosensitizer in 3 ml of ethyl acetate, tin oxide conductive glass was dissolved. After coating with a spinner and drying, it was cured by irradiating it with a mercury lamp for about 5 minutes. The thickness of the thin film was approximately 0.3 μm. After glucose oxidase was immobilized on this thin film with glutaraldehyde, electrodes on which this enzyme and redox compound were immobilized were set in the measurement system shown in the figure.

図において、1はアルゴンガスの導入口、2は
導出口、3は白金よりなる対極、4はガラス多孔
体よりなるセパレータ、5は試料電極、6は緩衝
液、7は塩橋、8は飽和甘汞電極、9はKCl飽和
水溶液である。
In the figure, 1 is an argon gas inlet, 2 is an outlet, 3 is a counter electrode made of platinum, 4 is a separator made of a porous glass material, 5 is a sample electrode, 6 is a buffer solution, 7 is a salt bridge, and 8 is a saturated Ganyu electrode 9 is a KCl saturated aqueous solution.

上記の固定化電極5の電位を飽和甘汞電極8に
対し+0.4Vの定電位に設定した。残余電流が一
定になつた後、グルコースを緩衝液中に10-3
ル/添加したところ、1.3μAの電流増加が認め
られた。
The potential of the above immobilized electrode 5 was set to a constant potential of +0.4 V with respect to the saturated acetate electrode 8. After the residual current became constant, when 10 -3 mol/glucose was added to the buffer solution, a current increase of 1.3 μA was observed.

実施例 2 ビニルシクロヘキセンジエポキシド1g、クロ
ラニル0.4g、硬化剤0.05gを酢酸エチル3mlに
溶解させた後、実施例1と同様にして酸化スズ導
電性ガラス電極上にレドツクス化合物含有薄膜を
形成させた。この電極を図に示した測定系にセツ
トした。グルコースオキシダーゼを緩衝液中に
1.5g/mlの濃度で溶解させた。実施例1と同様
に+0.4V定電位におけるアノード電流の基質添
加による変化を測定したところ、基質であるグル
コース10-3モル/添加によつて0.1μAの電流増
加が認められた。
Example 2 After dissolving 1 g of vinyl cyclohexene diepoxide, 0.4 g of chloranil, and 0.05 g of curing agent in 3 ml of ethyl acetate, a thin film containing a redox compound was formed on a tin oxide conductive glass electrode in the same manner as in Example 1. . This electrode was set in the measurement system shown in the figure. Glucose oxidase in buffer
It was dissolved at a concentration of 1.5 g/ml. When the change in the anodic current due to the addition of the substrate was measured at a constant potential of +0.4V in the same manner as in Example 1, an increase in current of 0.1 μA was observed with the addition of 10 −3 mol/glucose as the substrate.

実施例 3 サンプルAの組成液として、アクリル樹脂0.5
g、ブロムアニル0.6g、グラフアイト0.4gをト
ルエン5mlに溶解させて塗布液を調合後、酸化ス
ズ導電性ガラス上にスピンナーで塗布した。その
後、乾燥させて薄膜を形成させた。薄膜の厚さ
は、約0.5μmであつた。
Example 3 As the composition liquid of sample A, acrylic resin 0.5
After preparing a coating solution by dissolving 0.6 g of bromoanil and 0.4 g of graphite in 5 ml of toluene, it was applied onto tin oxide conductive glass using a spinner. Thereafter, it was dried to form a thin film. The thickness of the thin film was approximately 0.5 μm.

次にサンプルBとして、3,4−エポキシシク
ロヘキシルメチル−3,4−エポキシ−シクロヘ
キサンカルボキシレート1g、ブロムアニル0.6
g、グラフアイト0.4g、硬化剤0.05gを酢酸エ
チル5mlに溶解して塗布液を調合した。酸化スズ
導電性ガラス上にスピンナーで塗布、乾燥後、水
銀ランプで約1分間照射して硬化させた。薄膜の
厚さは約0.4μmであつた。
Next, as sample B, 1 g of 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexanecarboxylate, 0.6 bromoanil
A coating solution was prepared by dissolving 0.4 g of graphite, 0.05 g of curing agent in 5 ml of ethyl acetate. It was applied onto tin oxide conductive glass using a spinner, dried, and then cured by irradiation with a mercury lamp for about 1 minute. The thickness of the thin film was approximately 0.4 μm.

このA、B両サンプルの薄膜上にグルコースオ
キシダーゼをグルタルアルデヒドで固定化した
後、それぞれ実施例1と同一条件で基質添加によ
るアノード電流増加を測定した。グルコース濃度
10-3モル/の添加によりサンプルAは0.2μA、
サンプルBは0.8μAの電流増加を示した。
After glucose oxidase was immobilized on the thin films of both samples A and B with glutaraldehyde, the increase in anodic current due to substrate addition was measured under the same conditions as in Example 1. glucose concentration
With the addition of 10 -3 mol/sample A, 0.2μA,
Sample B showed a current increase of 0.8 μA.

測定液を変えて繰り返し上と同様に基質濃度に
よる電流増加を測定した結果、サンプルAは測定
回数毎に徐々に電流増加量が減少したが、サンプ
ルBはほとんど電流増加量が変化しない安定な特
性を示した。
As a result of repeatedly measuring the current increase due to substrate concentration by changing the measurement solution, we found that the current increase gradually decreased with each measurement for sample A, but the current increase for sample B showed stable characteristics with almost no change. showed that.

以上のように、水に不溶性のレドツクス化合物
を紫外線硬化樹脂で固定化形成したものは、酵素
と優れた電子伝達特性を示した。また、この紫外
線硬化薄膜上への酵素の固定化も安定で強固なも
のであつた。
As described above, a water-insoluble redox compound immobilized with an ultraviolet curable resin showed excellent electron transfer properties with enzymes. Furthermore, the immobilization of the enzyme on this ultraviolet-curable thin film was stable and strong.

【図面の簡単な説明】[Brief explanation of drawings]

図面は実施例の電極を用いた測定系の構成を示
す図である。
The drawing is a diagram showing the configuration of a measurement system using the electrodes of the example.

Claims (1)

【特許請求の範囲】 1 酸化還元酵素の電子伝達体である水に不溶性
のレドツクス化合物を紫外線硬化樹脂で電極上あ
るいはその近傍に固定化したことを特徴とする電
極。 2 紫外線硬化樹脂がエポキシ樹脂である特許請
求の範囲第1項記載の電極。 3 レドツクス化合物が電子集電体と共存して固
定化されている特許請求の範囲第1項記載の電
極。 4 酸化還元酵素が電極あるいはレドツクス化合
物近傍に固定化されている特許請求の範囲第1項
記載の電極。
[Scope of Claims] 1. An electrode characterized in that a water-insoluble redox compound, which is an electron carrier of an oxidoreductase, is immobilized on or near the electrode using an ultraviolet curing resin. 2. The electrode according to claim 1, wherein the ultraviolet curing resin is an epoxy resin. 3. The electrode according to claim 1, wherein the redox compound is immobilized in coexistence with an electron current collector. 4. The electrode according to claim 1, wherein the oxidoreductase is immobilized on the electrode or in the vicinity of the redox compound.
JP55145155A 1980-10-16 1980-10-16 Electrode Granted JPS5769667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55145155A JPS5769667A (en) 1980-10-16 1980-10-16 Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55145155A JPS5769667A (en) 1980-10-16 1980-10-16 Electrode

Publications (2)

Publication Number Publication Date
JPS5769667A JPS5769667A (en) 1982-04-28
JPS6343705B2 true JPS6343705B2 (en) 1988-09-01

Family

ID=15378692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55145155A Granted JPS5769667A (en) 1980-10-16 1980-10-16 Electrode

Country Status (1)

Country Link
JP (1) JPS5769667A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685145B2 (en) * 1988-01-25 1997-12-03 王子製紙株式会社 Enzyme electrode
JP2748516B2 (en) * 1989-03-14 1998-05-06 エヌオーケー株式会社 Glucose sensor
JPH0810245B2 (en) * 1991-07-25 1996-01-31 タバイエスペック株式会社 Airtight sealing device for constant temperature chamber wall penetrating member
JP5181576B2 (en) * 2007-08-17 2013-04-10 ソニー株式会社 FUEL CELL MANUFACTURING METHOD, FUEL CELL, AND ELECTRONIC DEVICE
JP2010102870A (en) * 2008-10-22 2010-05-06 Sony Corp Power generation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266682A (en) * 1975-11-26 1977-06-02 Saburo Fukui Immobilization of enzyme or microbial fungus
JPS5266681A (en) * 1975-11-26 1977-06-02 Saburo Fukui Fixing of enzyme or microbial fungus
JPS53142594A (en) * 1977-05-18 1978-12-12 Saburo Fukui Immobilization of enzyme or microbial cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266682A (en) * 1975-11-26 1977-06-02 Saburo Fukui Immobilization of enzyme or microbial fungus
JPS5266681A (en) * 1975-11-26 1977-06-02 Saburo Fukui Fixing of enzyme or microbial fungus
JPS53142594A (en) * 1977-05-18 1978-12-12 Saburo Fukui Immobilization of enzyme or microbial cells

Also Published As

Publication number Publication date
JPS5769667A (en) 1982-04-28

Similar Documents

Publication Publication Date Title
Turner [7] Amperometric biosensors based on mediator-modified electrodes
Yin et al. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles–silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase
Bartlett et al. Electrochemical immobilization of enzymes. Part V. Microelectrodes for the detection of glucose based on glucose oxidase immobilized in a poly (phenol) film
US4376689A (en) Coenzyme immobilized electrode
Liu et al. Al2O3 sol–gel derived amperometric biosensor for glucose
FI88515C (en) enzyme electrode
Zhang et al. Functionalized inorganic–organic composite material derivated by sol–gel for construction of mediated amperometric hydrogen peroxide biosensor
Wang et al. Improved performance of carbon paste amperometric biosensors through the incorporation of fumed silica
JPS5816698B2 (en) Enzyme electrode and its manufacturing method
Bu et al. NAD (P) H sensors based on enzyme entrapment in ferrocene-containing polyacrylamide-based redox gels
Laurinavicius et al. Oxygen insensitive glucose biosensor based on PQQ-dependent glucose dehydrogenase
Connor et al. Silicone-grease-based immobilisation method for the preparation of enzyme electrodes
JPS6239900B2 (en)
Berchmans et al. Surface modification of glassy carbon by riboflavin
Gopu et al. Stripping Voltammetric Determination of Analgesics in Their Pharmaceuticals Using Nano‐Riboflavin‐Modified Glassy Carbon Electrode
JPH0816664B2 (en) Biosensor and manufacturing method thereof
Brahim et al. Interferent suppression using a novel polypyrrole‐containing hydrogel in amperometric enzyme biosensors
Akbıyık et al. A sensitive amperometric biosensor based on carbon dot 3-chloropropyl-trimethoxysilane modified electrode for detection of neurotransmitter dopamine
JPS6343705B2 (en)
Bartlett et al. Electrochemical immobilization of enzymes. Part VI. Microelectrodes for the detection of L-lactate based on flavocytochrome b 2 immobilized in a poly (phenol) film
JPH01153952A (en) Enzyme sensor
Mousty et al. Fabrication of organic phase biosensors based on multilayered polyphenol oxidase protected by an alginate coating
JP2007518984A (en) Biosensor and manufacturing method
Atta et al. Nanobiosensor for health care
Loughran et al. Amperometric detection of histamine at a quinoprotein dehydrogenase enzyme electrode