JPS6343388Y2 - - Google Patents

Info

Publication number
JPS6343388Y2
JPS6343388Y2 JP16979381U JP16979381U JPS6343388Y2 JP S6343388 Y2 JPS6343388 Y2 JP S6343388Y2 JP 16979381 U JP16979381 U JP 16979381U JP 16979381 U JP16979381 U JP 16979381U JP S6343388 Y2 JPS6343388 Y2 JP S6343388Y2
Authority
JP
Japan
Prior art keywords
gear
combustion
operating
shaft
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16979381U
Other languages
Japanese (ja)
Other versions
JPS5873901U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16979381U priority Critical patent/JPS5873901U/en
Publication of JPS5873901U publication Critical patent/JPS5873901U/en
Application granted granted Critical
Publication of JPS6343388Y2 publication Critical patent/JPS6343388Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 本考案は回転運動から直接動力を取出す全く斬
新な歯車内燃機関の冷却・潤滑装置に関するもの
である。
[Detailed Description of the Invention] The present invention relates to a completely novel cooling and lubricating device for a gear internal combustion engine that extracts power directly from rotational motion.

従来の羽根車式のガスタービンでは、羽根の冷
却が困難でそのため作動ガスの温度に限界があ
り、また作動ガスの高圧縮も困難であつて、熱効
率を高めることができなかつた。そこで、本考案
は上記の問題点を解決すべく、4個以上の偶数個
の作動歯車を環状に配置して噛合せ噛合部の歯と
歯との間で発生する閉じ込み現象を利用して高圧
ガスを発生させると共に作動歯車の軸を中空に形
成して潤滑油ポンプに連通させたものである。
In conventional impeller-type gas turbines, it is difficult to cool the blades, which limits the temperature of the working gas, and it is also difficult to compress the working gas to a high degree, making it impossible to increase thermal efficiency. Therefore, in order to solve the above problems, the present invention utilizes the confinement phenomenon that occurs between the teeth of the meshing part by arranging an even number of operating gears of four or more in a ring. In addition to generating high-pressure gas, the shaft of the operating gear is formed hollow and communicated with a lubricating oil pump.

以下、本考案を添付する図面に示す具体的な実
施例に基いて詳細に説明する。6個の作動歯車
1,2,3,4,5,6を環状に配置して互いに
噛合うようにし作動歯車ケース7にて支持する。
6個の作動歯車1,2,3,4,5,6は環状に
配置されて互いに噛合うため6箇所に噛合点があ
つて、内向きに噛合う噛合点GIが3箇所、外向
きに噛合う噛合点GOが3箇所で、内向き噛合点
GIと外向き噛合点GOとは交互にある。また、噛
合点は作動歯車間の中心O間を結ぶ直線と基準ピ
ツチ円PCとの交点である。一つ置きの作動歯車
1,3,5の軸端に小歯車8を刻設し、この小歯
車8を、環状の作動歯車1,2,3,4,5,6
の中心に配置し作動歯車ケース7の中心を挿通す
る中心主軸9の後部に固着した大歯車10と噛合
せる。
Hereinafter, the present invention will be described in detail based on specific embodiments shown in the accompanying drawings. Six operating gears 1, 2, 3, 4, 5, and 6 are arranged in an annular manner so as to mesh with each other and are supported by an operating gear case 7.
The six operating gears 1, 2, 3, 4, 5, and 6 are arranged in a ring and mesh with each other, so there are six meshing points, three meshing points G I that mesh inward, and three meshing points G I that mesh outward. There are three meshing points G O that mesh with the inward meshing points.
G I and outward engagement point G O alternate. Furthermore, the meshing point is the intersection of the straight line connecting the centers O between the working gears and the reference pitch circle PC. A small gear 8 is carved on the shaft end of every other operating gear 1, 3, 5, and this small gear 8 is connected to an annular operating gear 1, 2, 3, 4, 5, 6.
It meshes with a large gear 10 fixed to the rear of a central main shaft 9 which is disposed at the center of the operating gear case 7 and passes through the center of the operating gear case 7.

作動歯車ケース7は環状に配置された作動歯車
1,2,3,4,5,6の外周および内周に歯部
先端に接触しない範囲で出来るだけ接近して円弧
状壁面11O,11Iを形成し、各内向き噛合点GI
の前方を放射状の排気通路12に形成し排気孔1
3と連通する。
The operating gear case 7 is arranged as close as possible to the outer and inner peripheries of the operating gears 1, 2, 3, 4, 5, and 6 arranged in an annular manner without coming into contact with the tips of the tooth parts, and has arcuate wall surfaces 11O , 11I. and each inward engagement point G I
A radial exhaust passage 12 is formed in front of the exhaust hole 1.
Connects with 3.

作動歯車ケース7の前方に燃焼ブロツク14を
配置し、燃焼ブロツク14の後壁面に吸気孔1
5,16,17を刻設し各内向き噛合点GIの後
方と作動歯車1,2,3,4,5,6の前端面側
から連通する。
A combustion block 14 is arranged in front of the operating gear case 7, and an intake hole 1 is provided on the rear wall of the combustion block 14.
5, 16, and 17 are carved to communicate with the rear of each inward meshing point G I and the front end surface side of the operating gears 1, 2, 3, 4, 5, and 6.

燃焼ブロツク14の後壁面の各外向き噛合点
GOに対向する部位に断熱性の特殊合金の口金1
8を埋設して燃焼ブロツク14との間に球状の予
燃焼室19,20,21を形成する。また、予燃
焼室19,20,21の燃焼ブロツク14側内面
には半球形の耐熱材を用いてもよい。吸気孔1
5,16,17から取入れられた空気は作動歯車
1,2,3,4,5,6の回転により円弧状壁面
11Iを経て外向き噛合点GOの前方に流れ込み作
動歯車1,2,3,4,5,6の噛合う歯と歯と
の間に閉じ込められ高圧に圧縮される。この圧縮
空気を予燃焼室19,20,21に導くために外
向き噛合点GOの前方、例えば第3図図示の位置
の燃焼ブロツク14の後壁面に給気口22を開口
し圧縮空気通路23て連通する。なお、第3図に
は給気口22を2個示しているが、必要に応じて
1個とすることもできる。
Each outward engagement point on the rear wall of the combustion block 14
Special alloy base 1 with heat insulation in the part facing G O
8 is buried to form spherical pre-combustion chambers 19, 20, 21 between the combustion block 14 and the combustion block 14. Furthermore, a hemispherical heat-resistant material may be used for the inner surface of the pre-combustion chambers 19, 20, 21 on the combustion block 14 side. Intake hole 1
Due to the rotation of the operating gears 1, 2, 3, 4, 5, 6, the air taken in from the operating gears 1, 2, 3, 4, 5, and 6 flows through the arcuate wall surface 11 I to the front of the outward meshing point G O. It is trapped between the meshing teeth of 3, 4, 5, and 6 and compressed to high pressure. In order to guide this compressed air to the pre-combustion chambers 19, 20, 21, an air supply port 22 is opened in the rear wall surface of the combustion block 14 in front of the outward meshing point G O , for example, at the position shown in FIG. 23 and communicate. In addition, although two air supply ports 22 are shown in FIG. 3, it may be one if necessary.

燃焼ブロツク14には中心主軸9の近傍に配置
され中心主軸9により駆動される混合気圧縮ギヤ
ポンプ24,25,26が設けられ、このギヤポ
ンプ24,25,26を燃焼ブロツク14の側方
に開口した空気取入口27と空気通路28にて連
通し、空気通路28の途中に針弁29で開閉され
る燃料通路30を開口する。中心主軸9の先端部
に嵌装されたガバナー31はコイルスプリング3
2により常時前方に付勢され、燃焼ブロツク14
の前方に配置されてガバナー31等を覆うガバナ
ーカバー33に基端を枢着したレバー34の中間
部に、コイルスプリング35により前方に付勢さ
れた針弁29の頭部を衝合させ、レバー34の先
端部をガバナー31の裏面に当接させる。中心主
軸9の回転が速くなれば回転数の増加に伴つてガ
バナー31は中心主軸9上を後方へ移動しレバー
34を介して針弁29を後方へ移動させ燃料通路
30の空気通路28での開口での燃料の流路を狭
くし燃料の供給が少なくなる。このように燃料の
空気に対する量を針弁29にて調整しつつギヤポ
ンプ24,25,26を駆動して空気と燃料との
混合気を形成し、圧縮混合気通路36を経て前記
予燃焼室19,20,21に供給する。圧縮混合
気通路36には予燃焼室19,20,21の近傍
に燃焼ガスをギヤポンプ24,25,26側へ逆
流させないための調圧弁37を設け、ギヤポンプ
24,25,26は調圧弁37の設定圧に抗して
圧送する。なお、ギヤポンプ24,25,26は
空気を圧縮しそれで燃料を搬送し、しかも定容量
であつて供給する燃料の量は針弁29で調整す
る。また、予燃焼室19,20,21内に噴入す
る圧縮混合気に着火するために圧縮混合気通路3
6の開口の直前に臨むようにしてグロープラグ3
8,39,40を配置する。ギヤポンプ24,2
5,26で調圧弁37の設定圧に抗して供給され
た圧縮混合気は常時予燃焼室19,20,21内
に常時噴入し、圧縮空気通路23より作動歯車
1,2,3,4,5,6の回転に伴つて噴入する
圧縮空気は予燃焼室19,20,21内で渦流と
なり、グロープラグ38,39,40により着火
され、予燃焼室19,20,21内は常時燃焼が
継続している。噴入圧縮空気は作動歯車1,2,
3,4,5,6の1回転により歯数と同数回予燃
焼室19,20,21内に噴入するが圧縮混合気
は常時予燃焼室19,20,21に噴入しグロー
プラグ38,39,40で着火されているため予
燃焼室19,20,21内では燃焼が常時継続す
る。サイクルごとに着火し燃焼を継続するため余
分の燃料を供給する従来の内燃機関より燃焼効率
がよい。
The combustion block 14 is provided with air-fuel mixture compression gear pumps 24, 25, 26 arranged near the central main shaft 9 and driven by the central main shaft 9, and these gear pumps 24, 25, 26 are opened to the side of the combustion block 14. The air intake port 27 and the air passage 28 communicate with each other, and a fuel passage 30 that is opened and closed by a needle valve 29 is opened in the middle of the air passage 28. A governor 31 fitted to the tip of the central spindle 9 is a coil spring 3
2, the combustion block 14
The head of the needle valve 29, which is biased forward by a coil spring 35, is brought into contact with the middle part of the lever 34, whose base end is pivotally connected to the governor cover 33, which is placed in front of the lever and covers the governor 31, etc. 34 is brought into contact with the back surface of the governor 31. When the rotation of the central main shaft 9 becomes faster, the governor 31 moves backward on the central main shaft 9 as the rotational speed increases, moves the needle valve 29 backward via the lever 34, and causes the air passage 28 of the fuel passage 30 to move backward. The fuel flow path at the opening is narrowed, resulting in less fuel supply. In this way, the gear pumps 24, 25, and 26 are driven while adjusting the amount of fuel relative to the air with the needle valve 29 to form a mixture of air and fuel, which passes through the compressed mixture passage 36 to the pre-combustion chamber 19. , 20, 21. The compressed mixture passage 36 is provided with a pressure regulating valve 37 near the pre-combustion chambers 19, 20, 21 to prevent combustion gas from flowing back toward the gear pumps 24, 25, 26. Force feed against the set pressure. Note that the gear pumps 24, 25, and 26 compress air and convey fuel using it, and have a constant capacity, and the amount of fuel to be supplied is adjusted by a needle valve 29. In addition, the compressed mixture passage 3 is used to ignite the compressed mixture injected into the pre-combustion chambers 19, 20, 21.
Glow plug 3 facing directly in front of the opening in 6.
Place 8, 39, 40. Gear pump 24, 2
The compressed air-fuel mixture supplied at 5, 26 against the set pressure of the pressure regulating valve 37 is always injected into the pre-combustion chambers 19, 20, 21, and is sent to the operating gears 1, 2, 3, through the compressed air passage 23. The compressed air that is injected with the rotation of parts 4, 5, and 6 becomes a vortex in the precombustion chambers 19, 20, and 21, and is ignited by the glow plugs 38, 39, and 40, and the insides of the precombustion chambers 19, 20, and 21 are ignited by glow plugs 38, 39, and 40. Burning continues all the time. The compressed air is injected into operating gears 1, 2,
The compressed mixture is injected into the pre-combustion chambers 19, 20, 21 the same number of times as the number of teeth by one rotation of 3, 4, 5, 6, but the compressed mixture is always injected into the pre-combustion chambers 19, 20, 21 and the glow plug 38 , 39, 40, combustion continues at all times in the pre-combustion chambers 19, 20, 21. Combustion is more efficient than conventional internal combustion engines, which ignite each cycle and provide extra fuel to continue combustion.

予燃焼室19,20,21内の燃焼ガスを外向
き噛合点GO後方の作動歯車1,2,3,4,5,
6の歯面間に形成された燃焼室41に導く燃焼ガ
ス通路口42を外向き噛合点GOの後方例えば第
3図に示すように口金18の端面に開口し燃焼ガ
ス通路43にて連通する。第3図では燃焼ガス通
路口42が2個示されているが必要に応じて1個
としてもよく、前記給気口22との位置関係は第
3図に示すように燃焼ガス通路口42が作動歯車
1,2,3,4,5,6の端面で閉じられた後に
給気口22が開くように配置する。ただ、若干の
間オーバラツプして燃焼ガス通路口42と給気口
22が同時に開くように設定することもある。
The combustion gas in the pre-combustion chambers 19, 20, 21 is directed outward to the meshing point GO of the rear operating gears 1, 2, 3, 4, 5,
A combustion gas passage port 42 leading to the combustion chamber 41 formed between the tooth surfaces of No. 6 is opened at the end face of the mouthpiece 18 behind the outward meshing point G O , for example, as shown in FIG. do. Although two combustion gas passage ports 42 are shown in FIG. 3, one may be provided if necessary, and the positional relationship with the air supply port 22 is such that the combustion gas passage port 42 is shown in FIG. The air supply port 22 is arranged so as to open after being closed by the end faces of the operating gears 1, 2, 3, 4, 5, and 6. However, the combustion gas passage port 42 and the air supply port 22 may be set to open at the same time with a slight overlap.

予燃焼室19,20,21から燃焼ガス通路4
3を経て燃焼室41に至つた燃焼ガスは膨張して
作動歯車1,2,3,4,5,6を回転させる。
膨張した燃焼ガスは作動歯車1,2,3,4,
5,6と円弧状壁面11Oとの間を経て排気通路
12に流出するが、円弧状壁面11Oは作動歯車
1,2,3,4,5,6の歯部先端が接触しない
範囲で接近して形成してあるので、排気通路12
に至るまで円弧状壁面11Oとすると膨張した燃
焼ガスは円弧状壁面11Oと作動歯車1,2,3,
4,5,6の歯との間に閉じ込められた有効なエ
ネルギーとして作動しないため膨張した燃焼ガス
を動エネルギーとして利用すべく作動歯車1,
2,3,4,5,6の歯部先端の外方に排気噴流
路44を下流側に設ける。
Combustion gas passage 4 from pre-combustion chambers 19, 20, 21
The combustion gas that has reached the combustion chamber 41 through the combustion chamber 3 expands and rotates the operating gears 1, 2, 3, 4, 5, and 6.
The expanded combustion gas is transferred to operating gears 1, 2, 3, 4,
5, 6 and the arcuate wall surface 11O to the exhaust passage 12, but the arcuate wall surface 11O is within the range where the tips of the teeth of the operating gears 1, 2, 3, 4, 5, and 6 do not come in contact with each other. Since they are formed close to each other, the exhaust passage 12
Assuming that the arc-shaped wall surface 11 O reaches the arc-shaped wall surface 11 O, the expanded combustion gas moves between the arc-shaped wall surface 11 O and the operating gears 1, 2, 3,
The operating gears 1 and 6 are operated in order to use the expanded combustion gas as dynamic energy because it does not operate as effective energy trapped between the gears 4, 5, and 6.
An exhaust jet flow path 44 is provided on the downstream side outside the tips of the teeth 2, 3, 4, 5, and 6.

本歯車内燃機関は機能部品を支持したり、構成
したり或は覆う枠体、ケース、カバーを製作容易
にするため作動歯車ケース7、燃焼ブロツク1
4、ガバナーカバー33およびフライホイールカ
バー67の4分割とし、ダイキヤスト製とし順に
重合可能なるように中心主軸9を挿通できそれぞ
れの接合面を中心主軸9に垂直な面に形成してあ
る。
This gear internal combustion engine has an operating gear case 7 and a combustion block 1 in order to facilitate the production of frames, cases, and covers that support, constitute, or cover functional parts.
4. The governor cover 33 and the flywheel cover 67 are divided into four parts, made of die cast, and the central main shaft 9 can be inserted therethrough so that they can be sequentially overlapped, and their joint surfaces are formed perpendicular to the central main shaft 9.

作動歯車ケース7の前方には各排気孔13から
それぞれ単独に燃焼ガスを排出するのでなく1箇
所から排出すべく1個の排出口45を有する環状
の排気管46を接続する。また、燃焼ブロツク1
4の前方には吸気孔15,16,17からの取入
れる空気を1箇所から吸入すべく1個の空気取入
口47を有する環状の吸気管48を接続し、この
吸気管48は中心主軸9の先端に取付けられたフ
アン49を覆うように突出させ、しかもカウリン
グを形成してフアン49の送風効率を向上する。
また、排気管46は外側に配置されているので放
熱上好ましい。さらに、フアン49は装置の前端
中央に配置されているので装置全体の冷却が至極
容易である。
An annular exhaust pipe 46 having one exhaust port 45 is connected to the front of the operating gear case 7 so that the combustion gas is not exhausted from each exhaust hole 13 individually but from one location. Also, combustion block 1
An annular intake pipe 48 having one air intake port 47 is connected to the front of the main shaft 9 to take in air from the intake holes 15, 16, and 17 from one place. It protrudes to cover the fan 49 attached to the tip of the fan 49 and forms a cowling to improve the air blowing efficiency of the fan 49.
Further, since the exhaust pipe 46 is arranged on the outside, it is preferable for heat radiation. Furthermore, since the fan 49 is located at the center of the front end of the device, cooling of the entire device is extremely easy.

50,51は中心主軸9の軸受、52はリング
ギヤ、53はセルモータである。
50 and 51 are bearings of the central main shaft 9, 52 is a ring gear, and 53 is a starter motor.

上記の歯車内燃機関はセルモータ53を駆動す
るとリングギヤ52、主軸9の後端に取付けられ
たフライホイール66を介して中心主軸9が回転
し、大歯車10、小歯車8を経て作動歯車1,
2,3,4,5,6が回転し始動する。作動歯車
1,2,3,4,5,6の内向き噛合点GIの前
方の排気通路12、排気孔13、排気管46、排
出口45から燃焼ガスを排出し、内向き噛合点
GIの後方の吸気孔15,16,17に空気取入
口47、吸気管48を経て空気を取入れ、作動歯
車1,2,3,4,5,6の回転により空気は円
弧状壁面11Iを経て外向き噛合点GOの前方に流
れ込み作動歯車1,2,3,4,5,6の噛合う
歯と歯との間に閉じ込められ圧縮されて高圧とな
り圧縮空気通路23を経て予燃焼室19,20,
21に噴入し渦流となる。一方、ギヤポンプ24
により形成された空気と燃料との混合気は通路3
6を経て予燃焼室19,20,21内に噴入し前
記空気渦流と混合しグロープラグ38,39,4
0により着火し常時燃焼を継続し通路43を経て
燃焼ガスは燃焼室41に噴入し膨張し作動歯車
1,2,3,4,5,6を回転させ、さらに燃焼
ガスは流路44を通過するとき噴流により作動歯
車1,2,3,4,5,6を回転させ通路12に
至る。作動歯車1,2,3,4,5,6に発生し
た動力は小歯車8、大歯車10を経て中心主軸9
に伝達される。
In the gear internal combustion engine described above, when the starter motor 53 is driven, the central main shaft 9 rotates via the ring gear 52 and the flywheel 66 attached to the rear end of the main shaft 9.
2, 3, 4, 5, and 6 rotate and start. The combustion gas is discharged from the exhaust passage 12, exhaust hole 13, exhaust pipe 46, and exhaust port 45 in front of the inward meshing point G I of the operating gears 1, 2, 3, 4, 5, and 6, and the combustion gas is discharged from the inward meshing point G I.
G The air flows outward to the front of the meshing point G O , is trapped between the meshing teeth of the operating gears 1, 2, 3, 4, 5, and 6, is compressed, becomes high pressure, and passes through the compressed air passage 23, where it is pre-combusted. Room 19, 20,
21 and becomes a vortex. On the other hand, gear pump 24
The mixture of air and fuel formed by
6 and into the pre-combustion chambers 19, 20, 21 and mixes with the air vortex to form glow plugs 38, 39, 4.
The combustion gas is ignited by 0 and continues to burn constantly, and the combustion gas is injected into the combustion chamber 41 through the passage 43 and expands, rotating the operating gears 1, 2, 3, 4, 5, and 6. As it passes, the jet rotates the operating gears 1, 2, 3, 4, 5, 6 and reaches the passage 12. The power generated in the operating gears 1, 2, 3, 4, 5, and 6 passes through the small gear 8 and large gear 10 to the central main shaft 9.
is transmitted to.

冷却・潤滑のために、中心主軸9の作動歯車ケ
ース7部に内歯車ポンプの潤滑油ポンプ55を設
ける。この潤滑油ポンプ55は中心主軸9を駆動
軸とし中心主軸9にピニオン56が取付けられピ
ニオン56と偏心して内歯車57を噛合せピニオ
ン56と内歯車57との間に三日月状の隔金58
を設け吸油口59と吐出口60を形成する。作動
歯車1,2,3,4,5,6の軸61を中空62
に形成し、中空62内には潤滑油を作動歯車1,
2,3,4,5,6の一端側から他端側に導く導
管63を配置する。中空62は作動歯車1,2,
3,4,5,6の冷却に適するように歯部や軸6
1の大径部は大きく形成する。また、軸61には
前記中空62部と作動歯車1,2,3,4,5,
6の軸承部に通ずる油孔64および作動歯車ケー
ス7内に通ずる噴孔65を貫設する。作動歯車
1,2,3,4,5,6の軸61は本実施例では
一体に形成したものを示しているが、これに限ら
ず別体に形成することは自由である。また、作動
歯車1,2,3,4,5,6端面に燃焼ブロツク
14後壁面に対向する油孔(図示せず)を開口し
て前記中空62部と連通するように構成すること
もできる。中心主軸9の後端に取付けられたフラ
イホイール66を覆うフライホイールカバー67
肉厚内に穿設した油孔68、作動歯車ケース7の
肉厚内に穿設した油孔69および円周方向の油孔
70,71を介して潤滑油ポンプ55および油タ
ンク72に接続する。
For cooling and lubrication, a lubricating oil pump 55, which is an internal gear pump, is provided in the operating gear case 7 of the central main shaft 9. This lubricating oil pump 55 has a central main shaft 9 as a driving shaft, a pinion 56 is attached to the central main shaft 9, and an internal gear 57 meshes eccentrically with the pinion 56. A crescent-shaped spacer metal 58 is disposed between the pinion 56 and the internal gear 57.
are provided to form an oil intake port 59 and a discharge port 60. The shafts 61 of the operating gears 1, 2, 3, 4, 5, 6 are hollow 62
The hollow 62 is filled with lubricating oil.
2, 3, 4, 5, and 6, a conduit 63 leading from one end side to the other end side is arranged. The hollow 62 has operating gears 1, 2,
The teeth and shaft 6 are designed to be suitable for cooling parts 3, 4, 5, and 6.
The large diameter portion 1 is formed to be large. Further, the shaft 61 includes the hollow 62 portion and the operating gears 1, 2, 3, 4, 5,
An oil hole 64 communicating with the shaft bearing part 6 and a nozzle hole 65 communicating with the inside of the operating gear case 7 are provided. Although the shafts 61 of the operating gears 1, 2, 3, 4, 5, and 6 are shown integrally formed in this embodiment, they are not limited to this and may be formed separately. Alternatively, oil holes (not shown) facing the rear wall surface of the combustion block 14 may be opened in the end surfaces of the operating gears 1, 2, 3, 4, 5, and 6 so as to communicate with the hollow portion 62. . A flywheel cover 67 that covers the flywheel 66 attached to the rear end of the central main shaft 9
It is connected to the lubricating oil pump 55 and oil tank 72 through an oil hole 68 drilled in the wall thickness, an oil hole 69 drilled in the wall thickness of the operating gear case 7, and oil holes 70, 71 in the circumferential direction. .

中心主軸9が回転すると、潤滑油ポンプ55の
ピニオン56も内歯車57と噛合つて回転し潤滑
油を油タンク72より油孔71、吸油口59を経
て潤滑油ポンプ55に吸上げ、吐出口60、油孔
70、油孔69、油孔68、作動歯車1,2,
3,4,5,6の導管63を経て中空62部に供
給する。この潤滑油により作動歯車1,2,3,
4,5,6は冷却される。また、潤滑油は油孔6
4を経て作動歯車1,2,3,4,5,6軸承部
に至りそこを潤滑し、軸61の噴孔65から作動
歯車ケース7内に噴入した潤滑油はケース7内壁
に当つて潤滑油の冷却が促進される。これ等の潤
滑油は油タンク72に環流する(環流油路は図示
せず)。
When the central main shaft 9 rotates, the pinion 56 of the lubricating oil pump 55 also meshes with the internal gear 57 and rotates, sucking up lubricating oil from the oil tank 72 through the oil hole 71 and the oil inlet 59 to the lubricating oil pump 55, and then pumping it into the lubricating oil pump 55 through the oil outlet 60. , oil hole 70, oil hole 69, oil hole 68, operating gears 1, 2,
It is supplied to the hollow part 62 through conduits 63 3, 4, 5, and 6. With this lubricating oil, the operating gears 1, 2, 3,
4, 5, and 6 are cooled. Also, the lubricating oil is in the oil hole 6.
4, the lubricating oil reaches the shaft bearings of the operating gears 1, 2, 3, 4, 5, and 6 and lubricates them. Cooling of the lubricating oil is promoted. These lubricating oils flow back into the oil tank 72 (the circulation oil path is not shown).

さらに、潤滑油は作動歯車1,2,3,4,
5,6を燃焼ブロツク14の後壁面に向けて押圧
し、作動歯車1,2,3,4,5,6端面に油孔
を開口しておくと、潤滑油は燃焼ブロツク14後
端面と作動歯車1,2,3,4,5,6端面との
間に浸入して両者間の潤滑を図ると共に、吸気孔
15,16,17より吸入され作動歯車1,2,
3,4,5,6の歯と歯との間に閉じ込め圧縮さ
れた圧縮空気が圧縮空気通路23への噴入および
予燃焼室19,20,21での燃焼ガスが膨張し
て燃焼ガス通路43を経て燃焼室41への噴出の
際、燃焼ブロツク14後壁面と作動歯車1,2,
3,4,5,6端面とを密封する。
Furthermore, the lubricating oil is applied to the operating gears 1, 2, 3, 4,
5 and 6 toward the rear wall surface of the combustion block 14, and oil holes are opened in the end surfaces of the operating gears 1, 2, 3, 4, 5, and 6, the lubricating oil is brought into contact with the rear end surface of the combustion block 14. It enters between the end faces of the gears 1, 2, 3, 4, 5, and 6 to lubricate them, and is sucked in through the intake holes 15, 16, and 17 to actuate the operating gears 1, 2, and 6.
The compressed air trapped between the teeth 3, 4, 5, and 6 is injected into the compressed air passage 23, and the combustion gas in the pre-combustion chambers 19, 20, and 21 is expanded to form the combustion gas passage. 43 and into the combustion chamber 41, the rear wall of the combustion block 14 and the operating gears 1, 2,
3, 4, 5, and 6 end faces are sealed.

本考案は、叙上のように、4個以上の偶数個の
作動歯車を環状に配置して噛合わせ噛合部の歯と
歯との間で発生する閉じ込み現象を利用して高圧
ガスを発生させ、その上、作動歯車の軸には中空
部を形成して、そこに潤滑油を供給し作動歯車を
冷却できるので、高温・高圧ガスの使用が可能と
なり熱効率を可及的に高めることができ、燃費を
軽減できる。
As mentioned above, the present invention generates high-pressure gas by arranging an even number of operating gears (four or more) in a ring shape and utilizing the confinement phenomenon that occurs between the teeth of the meshing part. In addition, a hollow part is formed in the shaft of the operating gear, and lubricating oil can be supplied there to cool the operating gear, making it possible to use high-temperature, high-pressure gas and increasing thermal efficiency as much as possible. It is possible to reduce fuel consumption.

また、作動歯車の軸承部に連通する軸の油孔よ
り潤滑油が流入してその部分を十分に潤滑し、軸
の噴孔より噴出して作動歯車ケース内壁に当つた
潤滑油は内壁により吸熱され冷却され、作動歯車
の冷却をより一層効果的にする。さらに、作動歯
車の軸承部に連通する軸の油孔より潤滑油が流入
してその部分を十分に潤滑する。
In addition, lubricating oil flows in from the oil hole in the shaft that communicates with the shaft bearing of the operating gear and sufficiently lubricates that part, and the lubricating oil that is ejected from the nozzle hole in the shaft and hits the inner wall of the operating gear case absorbs heat from the inner wall. This makes the cooling of the operating gear even more effective. Furthermore, lubricating oil flows into the oil hole of the shaft that communicates with the shaft bearing of the operating gear to sufficiently lubricate that part.

本歯車内燃機関によると、往復動部分がなく高
速回転が可能となり無振動、軽量化、コンパクト
化ができ低コストの内燃機関の提供が可能とな
る。また、従来の往復機関のように排気に曝され
摺動する部分が少なく耐久性が向上する。さら
に、従来の内燃機関は間欠燃焼のためサイクルご
とに着火させ燃焼を継続さすことが必要で燃料を
多く要し燃料低減に限界があつたが本歯車内燃機
関は連続燃焼のため燃料供給低減が可能であり、
連続燃焼のため排気音も低くなり、燃料噴射ポン
プやノズル、マグネツト、コイル等が不要となり
構造が単純となつて低コストの内燃機関の提供が
可能となる。
This gear internal combustion engine has no reciprocating parts and can rotate at high speeds, and is vibration-free, lightweight, and compact, making it possible to provide a low-cost internal combustion engine. Additionally, unlike conventional reciprocating engines, there are fewer sliding parts that are exposed to exhaust gas, resulting in improved durability. Furthermore, conventional internal combustion engines require intermittent combustion, which requires ignition for each cycle to continue combustion, which requires a large amount of fuel, and there is a limit to how much fuel can be reduced.However, this gear internal combustion engine uses continuous combustion, so it is possible to reduce fuel supply. It is possible and
Continuous combustion reduces exhaust noise, eliminates the need for fuel injection pumps, nozzles, magnets, coils, etc., and simplifies the structure, making it possible to provide a low-cost internal combustion engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の具体的一実施例の正面図、第
2図は第1図の側断面図、第3図は第1図の要部
拡大正面図である。 1,2,3,4,5,6……作動歯車、GI
…内向き噛合点、GO……外向き噛合点、61…
…軸、62……中空、55……潤滑油ポンプ、6
4……油孔、7……ケース、65……噴孔。
FIG. 1 is a front view of a specific embodiment of the present invention, FIG. 2 is a side sectional view of FIG. 1, and FIG. 3 is an enlarged front view of the main part of FIG. 1. 1, 2, 3, 4, 5, 6... Operating gear, G I ...
...Inward meshing point, G O ...Outward meshing point, 61...
...shaft, 62 ... hollow, 55 ... lubricating oil pump, 6
4... Oil hole, 7... Case, 65... Nozzle hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 4個以上の偶数個の作動歯車を環状に配置して
互いに噛合せ、作動歯車が内向きに噛合う噛合部
において排気、吸気を行わしめ、作動歯車が外向
きに噛合う噛合部において、圧縮、爆発、膨張を
行わしむる歯車内燃機関において、作動歯車の軸
を中空に形成し、前記中空部と潤滑油ポンプと連
通させ、前記軸に中空部と作動歯車の軸承部に通
ずる油孔および収容ケース内に通ずる噴孔を貫設
した歯車内燃機関の冷却・潤滑装置。
An even number of four or more working gears are arranged in a ring and mesh with each other, and exhaust and intake air is performed at the meshing part where the working gears mesh inwardly, and compression is performed at the meshing part where the working gears mesh outwardly. In a gear internal combustion engine that performs explosion and expansion, the shaft of the working gear is formed hollow, the hollow part communicates with a lubricating oil pump, and the shaft has an oil hole and an oil hole communicating with the hollow part and the shaft bearing part of the working gear. A cooling and lubricating device for a gear internal combustion engine that has a nozzle hole that communicates with the housing case.
JP16979381U 1981-11-14 1981-11-14 Gear internal combustion engine cooling and lubrication system Granted JPS5873901U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16979381U JPS5873901U (en) 1981-11-14 1981-11-14 Gear internal combustion engine cooling and lubrication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16979381U JPS5873901U (en) 1981-11-14 1981-11-14 Gear internal combustion engine cooling and lubrication system

Publications (2)

Publication Number Publication Date
JPS5873901U JPS5873901U (en) 1983-05-19
JPS6343388Y2 true JPS6343388Y2 (en) 1988-11-11

Family

ID=29961766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16979381U Granted JPS5873901U (en) 1981-11-14 1981-11-14 Gear internal combustion engine cooling and lubrication system

Country Status (1)

Country Link
JP (1) JPS5873901U (en)

Also Published As

Publication number Publication date
JPS5873901U (en) 1983-05-19

Similar Documents

Publication Publication Date Title
CN1055517C (en) Vane rotor engine
KR101421074B1 (en) Rotary, internal combustion engine
CA2108108A1 (en) Rotary engine
CA2628714A1 (en) Improvements to wankel and similar rotary engines
US6539913B1 (en) Rotary internal combustion engine
US4064841A (en) Rotary engine
CN101363360A (en) Pneumatic air distributing engine
US20070131182A1 (en) Internal turbine-like toroidal combustion engine
CN106704036B (en) Rotation impulse detonation engine
US11970967B1 (en) Rotary engine
JPWO2002088529A1 (en) engine
JPS6343388Y2 (en)
RU2323356C1 (en) Rotary-vane engine
JPH1068301A (en) Vane rotation type volume changing device and internal combustion engine using the device
JPH0115686B2 (en)
JPH05195808A (en) Screw engine
JPS6339771B2 (en)
KR100298957B1 (en) Rotary engine of low p0llution and low speed
JPS6339773B2 (en)
JPS6339772B2 (en)
JPS6360213B2 (en)
JP4473853B2 (en) Rotary engine
KR100486969B1 (en) Reaction fly wheel engine
JP2922640B2 (en) Annular super-expansion rotary engine, compressor, expander, pump and method
CN2254483Y (en) Blade-rotor motor