JPH0115686B2 - - Google Patents

Info

Publication number
JPH0115686B2
JPH0115686B2 JP56182716A JP18271681A JPH0115686B2 JP H0115686 B2 JPH0115686 B2 JP H0115686B2 JP 56182716 A JP56182716 A JP 56182716A JP 18271681 A JP18271681 A JP 18271681A JP H0115686 B2 JPH0115686 B2 JP H0115686B2
Authority
JP
Japan
Prior art keywords
combustion
gear
outward
operating
meshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56182716A
Other languages
Japanese (ja)
Other versions
JPS5885303A (en
Inventor
Yoshinobu Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP18271681A priority Critical patent/JPS5885303A/en
Publication of JPS5885303A publication Critical patent/JPS5885303A/en
Publication of JPH0115686B2 publication Critical patent/JPH0115686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 本発明は回転運動から直接動力を取り出す全く
斬新な歯車内燃機関の冷却・潤滑装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a completely novel cooling and lubricating device for a gear internal combustion engine that extracts power directly from rotational motion.

従来の羽根車式のガスタービンでは、羽根の冷
却が困難でそのため作動ガスの温度に限界があ
り、また作動ガスの高圧縮も困難であつて、熱効
率を高めることができなかつた。そこで、本発明
は上記の問題点を解決すべく、4個以上の偶数個
の作動歯車を環状に配置して噛合せ噛合部の歯と
歯との間で発生する閉じ込み現象を利用して高圧
ガスを発生させると共に作動歯車の軸を中空に形
成して潤滑油ポンプに連通させたものである。
In conventional impeller-type gas turbines, it is difficult to cool the blades, which limits the temperature of the working gas, and it is also difficult to compress the working gas to a high degree, making it impossible to increase thermal efficiency. Therefore, in order to solve the above-mentioned problems, the present invention arranges an even number of operating gears, ie, four or more, in a ring shape, and utilizes the confinement phenomenon that occurs between the teeth of the meshing portions. In addition to generating high-pressure gas, the shaft of the operating gear is formed hollow and communicated with a lubricating oil pump.

以下、本発明を添付する図面に示す具体的な実
施例に基いて詳細に説明する。6個の作動歯車
1,2,3,4,5,6を環状に配置して互いに
噛合うようにし作動歯車ケース7にて支持する。
6個の作動歯車1,2,3,4,5,6は環状に
配置されて互いに噛合うため6箇所に噛合点があ
つて、内向きに噛合う噛合点GIが3箇所、外向
きに噛合う噛合点GOが3箇所で、内向き噛合点
GIと外向き噛合点GOとは交互にある。また、噛
合点は作動歯車間の中心O間を結ぶ直線と基準ピ
ツチ円PCとの交点である。一つ置きの作動歯車
1,3,5の軸端に小歯車8を刻設し、この小歯
車8を環状の作動歯車1,2,3,4,5,6の
中心に配置し作動歯車ケース7の中心を挿通する
中心主軸9の後部に固着した大歯車10と噛合せ
る。
Hereinafter, the present invention will be described in detail based on specific embodiments shown in the accompanying drawings. Six operating gears 1, 2, 3, 4, 5, and 6 are arranged in an annular manner so as to mesh with each other and are supported by an operating gear case 7.
The six operating gears 1, 2, 3, 4, 5, and 6 are arranged in a ring and mesh with each other, so there are six meshing points, three meshing points G I that mesh inward, and three meshing points G I that mesh outward. There are three meshing points G O that mesh with the inward meshing points.
G I and outward engagement point G O alternate. Further, the meshing point is the intersection of the straight line connecting the centers O between the operating gears and the reference pitch circle PC. A small gear 8 is carved on the shaft end of every other operating gear 1, 3, 5, and this small gear 8 is placed at the center of the annular operating gear 1, 2, 3, 4, 5, 6. It meshes with a large gear 10 fixed to the rear of a central main shaft 9 that passes through the center of the case 7.

作動歯車ケース7は環状に配置された作動歯車
1,2,3,4,5,6の外周および内周に歯部
先端に接触しない範囲で出来るだけ接近して円弧
状壁面11O,11Iを形成し、各内向き噛合点GI
の前方を放射状の排気通路12に形成し排気孔1
3と連通する。
The operating gear case 7 is arranged as close as possible to the outer and inner peripheries of the operating gears 1, 2, 3, 4, 5, and 6 arranged in an annular manner without coming into contact with the tips of the tooth parts, and has arcuate wall surfaces 11O , 11I. and each inward engagement point G I
A radial exhaust passage 12 is formed in front of the exhaust hole 1.
Connects with 3.

作動歯車ケース7の前方に燃焼ブロツク14を
配置し、燃焼ブロツク14の後壁面に吸気孔1
5,16,17を刻設し各内向き噛合点GIの後
方と作動歯車1,2,3,4,5,6の前端面側
から連通する。
A combustion block 14 is arranged in front of the operating gear case 7, and an intake hole 1 is provided on the rear wall of the combustion block 14.
5, 16, and 17 are carved to communicate with the rear of each inward meshing point G I and the front end surface side of the operating gears 1, 2, 3, 4, 5, and 6.

燃焼ブロツク14の後壁面の各外向き噛合点
GOに対向する部位に断熱性の特殊合金の口金1
8を埋設して燃焼ブロツク14との間に球状の予
燃焼室19,20,21を形成する。また、予燃
焼室19,20,21の燃焼ブロツク14側内面
には半球形の耐熱材を用いてもよい。吸気孔1
5,16,17から取り入れられた空気は作動歯
車1,2,3,4,5,6の回転により円弧状壁
面11Iを経て外向き噛合点GOの前方に流れ込み
作動歯車1,2,3,4,5,6の噛合う歯と歯
との間に閉じ込められ高圧に圧縮される。この圧
縮空気を予燃焼室19,20,21に導くために
外向き噛合点GOの前方例えば第3図図示の位置
の燃焼ブロツク14の後壁面に給気口22を開口
し圧縮空気通路23にて連通する。なお、第3図
には給気口22を2個示しているが、必要に応じ
て1個とすることもできる。
Each outward engagement point on the rear wall of the combustion block 14
Special alloy base 1 with heat insulation in the part facing G O
8 is buried to form spherical pre-combustion chambers 19, 20, 21 between the combustion block 14 and the combustion block 14. Further, a hemispherical heat-resistant material may be used for the inner surface of the pre-combustion chambers 19, 20, 21 on the combustion block 14 side. Intake hole 1
Due to the rotation of the operating gears 1, 2, 3, 4, 5, 6, the air taken in from the operating gears 1, 2, 3, 4, 5, and 6 flows through the arcuate wall surface 11I to the front of the outward meshing point GO , and the operating gears 1, 2, It is trapped between the meshing teeth of 3, 4, 5, and 6 and compressed to high pressure. In order to guide this compressed air to the pre-combustion chambers 19, 20, 21, an air supply port 22 is opened in the rear wall surface of the combustion block 14 at a position shown in FIG . We will communicate at In addition, although two air supply ports 22 are shown in FIG. 3, it may be one if necessary.

燃焼ブロツク14には中心主軸9の近傍に配置
され中心主軸9により駆動される混合気圧縮ギヤ
ポンプ24,25,26が設けられ、このギヤポ
ンプ24,25,26を燃焼ブロツク14の側方
に開口した空気取入口27と空気通路28にて連
通し、空気通路28の途中に針弁29で開閉され
る燃料通路30を開口する。中心主軸9の先端部
に嵌装されたガバナー31はコイルスプリング3
2により常時前方に付勢され、燃焼ブロツク14
の前方に配置されてガバナー31等を覆うガバナ
ーカバー33に基端を枢着したレバー34の中間
部に、コイルスプリング35により前方に付勢さ
れた針弁29の頭部を衝合させ、レバー34の先
端部をガバナー31の裏面に当接させる。中心主
軸9の回転が速くなれば回転数の増加に伴つてガ
バナー31は中心主軸9上を後方へ移動しレバー
34を介して針弁29を後方へ移動させ燃料通路
30の空気通路28での開口での燃料の流路を狭
くし燃料の供給が少なくなる。このように燃料の
空気に対する量を針弁29にて調整しつつギヤポ
ンプ24,25,26を駆動して空気と燃料との
混合気を形成し、圧縮混合気通路36を経て前記
予燃焼室19,20,21に供給する。圧縮混合
気通路36には予燃焼室19,20,21の近傍
に燃焼ガスをギヤポンプ24,25,26側へ逆
流させないための調圧弁37を設け、ギヤポンプ
24,25,26は調圧弁37の設定圧に抗して
圧送する。なお、ギヤポンプ24,25,26は
空気を圧縮しそれで燃料を搬送し、しかも定容量
であつて供給する燃料の量は針弁29で調整す
る。また、予燃焼室19,20,21内に噴入す
る圧縮混合気に着火するために圧縮混合気通路3
6の開口の直前に臨むようにしてグロープラグ3
8,39,40を配置する。ギヤポンプ24,2
5,26で調圧弁37の設定圧に抗して供給され
た圧縮混合気は常時予燃焼室19,20,21内
に噴入し、圧縮空気通路23より作動歯車1,
2,3,4,5,6の回転に伴つて噴入する圧縮
空気は予燃焼室19,20,21内で渦流とな
り、グロープラグ38,39,40により着火さ
れ、予燃焼室19,20,21内は常時燃焼が継
続している。噴入圧縮空気は作動歯車1,2,
3,4,5,6の1回転により歯数と同数回予燃
焼室19,20,21内に噴入するが圧縮混合気
は常時予燃焼室19,20,21に噴入しグロー
プラグ38,39,40で着火されているため予
燃焼室19,20,21内では燃焼が常時継続す
る。サイクルごとに着火し燃焼を継続するため余
分の燃料を供給する従来の内燃機関より燃焼効率
がよい。
The combustion block 14 is provided with air-fuel mixture compression gear pumps 24, 25, 26 arranged near the central main shaft 9 and driven by the central main shaft 9, and these gear pumps 24, 25, 26 are opened to the side of the combustion block 14. The air intake port 27 and the air passage 28 communicate with each other, and a fuel passage 30 that is opened and closed by a needle valve 29 is opened in the middle of the air passage 28. A governor 31 fitted to the tip of the central spindle 9 is a coil spring 3
2, the combustion block 14
The head of the needle valve 29, which is biased forward by a coil spring 35, is brought into contact with the middle part of the lever 34, whose base end is pivotally connected to the governor cover 33, which is placed in front of the lever and covers the governor 31, etc. 34 is brought into contact with the back surface of the governor 31. When the rotation of the central main shaft 9 becomes faster, the governor 31 moves backward on the central main shaft 9 as the rotational speed increases, moves the needle valve 29 backward via the lever 34, and causes the air passage 28 of the fuel passage 30 to move backward. The fuel flow path at the opening is narrowed, resulting in less fuel supply. In this way, the gear pumps 24, 25, and 26 are driven while adjusting the amount of fuel relative to the air with the needle valve 29 to form a mixture of air and fuel, which passes through the compressed mixture passage 36 to the pre-combustion chamber 19. , 20, 21. The compressed mixture passage 36 is provided with a pressure regulating valve 37 near the pre-combustion chambers 19, 20, 21 to prevent combustion gas from flowing back toward the gear pumps 24, 25, 26. Force feed against the set pressure. Note that the gear pumps 24, 25, and 26 compress air and convey fuel using it, and have a constant capacity, and the amount of fuel to be supplied is adjusted by a needle valve 29. In addition, the compressed mixture passage 3 is used to ignite the compressed mixture injected into the pre-combustion chambers 19, 20, 21.
Glow plug 3 facing directly in front of the opening in 6.
Place 8, 39, 40. Gear pump 24, 2
5, 26, the compressed air-fuel mixture supplied against the set pressure of the pressure regulating valve 37 is constantly injected into the pre-combustion chambers 19, 20, 21, and is passed through the compressed air passage 23 to the operating gears 1, 26.
The compressed air that is injected with the rotation of 2, 3, 4, 5, and 6 becomes a vortex in the pre-combustion chambers 19, 20, 21, is ignited by the glow plugs 38, 39, 40, and the pre-combustion chambers 19, 20 are ignited. , 21 continues to burn at all times. The compressed air is injected into operating gears 1, 2,
The compressed mixture is injected into the pre-combustion chambers 19, 20, 21 the same number of times as the number of teeth by one rotation of 3, 4, 5, 6, but the compressed air-fuel mixture is always injected into the pre-combustion chambers 19, 20, 21 and the glow plug 38 , 39, 40, combustion continues at all times in the pre-combustion chambers 19, 20, 21. Combustion is more efficient than conventional internal combustion engines, which ignite each cycle and provide extra fuel to continue combustion.

予燃焼室19,20,21内の燃焼ガスを外向
き噛合点GOの後方の作動歯車1,2,3,4,
5,6の歯面間に形成された燃焼室41に導く燃
焼ガス通路口42を外向き噛合点GOの後方例え
ば第3図に示すように口金18の端面に開口し燃
焼ガス通路43にて連通する。第3図では燃焼ガ
ス通路口42が2個示されているが必要に応じて
1個としてもよく、前記給気口22との位置関係
は第3図に示すように燃焼ガス通路口42が作動
歯車1,2,3,4,5,6の端面で閉じられた
後に給気口22が開くように配置する。ただ、若
干の間オーバラツプして燃焼ガス通路口42と給
気口22が同時に開くように設定することもあ
る。
The combustion gas in the pre-combustion chambers 19, 20, 21 is directed outward to the operating gears 1, 2, 3, 4, behind the meshing point GO .
A combustion gas passage port 42 leading to the combustion chamber 41 formed between the tooth surfaces 5 and 6 is opened in the end face of the mouthpiece 18 behind the outward engagement point GO , for example, as shown in FIG. to communicate. Although two combustion gas passage ports 42 are shown in FIG. 3, one may be provided if necessary, and the positional relationship with the air supply port 22 is such that the combustion gas passage port 42 is shown in FIG. The air supply port 22 is arranged so as to open after being closed by the end faces of the operating gears 1, 2, 3, 4, 5, and 6. However, the combustion gas passage port 42 and the air supply port 22 may be set to open at the same time with a slight overlap.

予燃焼室19,20,21から燃焼ガス通路4
3を経て燃焼室41に至つた燃焼ガスは膨張して
作動歯車1,2,3,4,5,6を回転させる。
膨張した燃焼ガスは作動歯車1,2,3,4,
5,6と円弧状壁面11Oとの間を経て排気通路
12に流出するが、円弧状壁面11Oは作動歯車
1,2,3,4,5,6の歯部先端が接触しない
範囲で接近して形成してあるので、排気通路12
に至るまで円弧状壁面11Oとすると膨張した燃
焼ガスは円弧状壁面11Oと作動歯車1,2,3,
4,5,6の歯との間に閉じ込められた有効なエ
ネルギーとして作動しないため膨張した燃焼ガス
を動エネルギーとして利用すべく作動歯車1,
2,3,4,5,6の歯部先端の外方に排気噴流
路44を下流側に設ける。
Combustion gas passage 4 from pre-combustion chambers 19, 20, 21
The combustion gas that has reached the combustion chamber 41 through the combustion chamber 3 expands and rotates the operating gears 1, 2, 3, 4, 5, and 6.
The expanded combustion gas is transferred to operating gears 1, 2, 3, 4,
5, 6 and the arcuate wall surface 11O to the exhaust passage 12, but the arcuate wall surface 11O is within the range where the tips of the teeth of the operating gears 1, 2, 3, 4, 5, and 6 do not come in contact with each other. Since they are formed close to each other, the exhaust passage 12
Assuming that the arc-shaped wall surface 11 O reaches the arc-shaped wall surface 11 O, the expanded combustion gas moves between the arc-shaped wall surface 11 O and the operating gears 1, 2, 3,
The operating gears 1 and 6 are operated in order to use the expanded combustion gas as dynamic energy because it does not operate as effective energy trapped between the gears 4, 5, and 6.
An exhaust jet flow path 44 is provided on the downstream side outside the tips of the teeth 2, 3, 4, 5, and 6.

本歯車内燃機関は機能部品を支持したり、構成
したり或は覆う枠体、ケース、カバーを製作容易
にするため作動歯車ケース7、燃焼ブロツク1
4、ガバナーカバー33およびフライホイールカ
バー65の4分割とし、ダイキヤスト製とし順に
重合可能なるように中心主軸9を挿通できそれぞ
れの接合面を中心主軸9に垂直な面に形成してあ
る。
This gear internal combustion engine has an operating gear case 7 and a combustion block 1 in order to facilitate the production of frames, cases, and covers that support, constitute, or cover functional parts.
4. The governor cover 33 and the flywheel cover 65 are divided into four parts, made of die cast, and the central main shaft 9 can be inserted therethrough so that they can be sequentially superimposed, and their joint surfaces are formed perpendicular to the central main shaft 9.

作動歯車ケース7の前方には各排気孔13から
それぞれ単独に燃焼ガスを排出するのでなく1箇
所から排出すべく1個の排出口45を有する環状
の排気管46を接続する。また、燃焼ブロツク1
4の前方には吸気孔15,16,17からの取入
れる空気を1箇所から吸入すべく1個の空気取入
口47を有する環状の吸気管48を接続し、この
吸気管48は中心主軸9の先端に取り付けられた
フアン49を覆うように突出させ、しかもカウリ
ングを形成してフアン49の送風効率を向上す
る。また、排気管46は外側に配置されているの
で放熱上好ましい。さらに、フアン49は装置の
前端中央に配置されているので装置全体の冷却が
至極容易である。
An annular exhaust pipe 46 having one exhaust port 45 is connected to the front of the operating gear case 7 so that the combustion gas is not exhausted from each exhaust hole 13 individually but from one location. Also, combustion block 1
An annular intake pipe 48 having one air intake port 47 is connected to the front of the main shaft 9 to take in air from the intake holes 15, 16, and 17 from one place. The air blowing efficiency of the fan 49 is improved by protruding so as to cover the fan 49 attached to the tip of the fan 49 and forming a cowling. Further, since the exhaust pipe 46 is arranged on the outside, it is preferable for heat radiation. Furthermore, since the fan 49 is located at the center of the front end of the device, cooling of the entire device is extremely easy.

50,51は中心主軸9の軸受、52はリング
ギヤ、53はセルモータである。
50 and 51 are bearings of the central main shaft 9, 52 is a ring gear, and 53 is a starter motor.

上記の歯車内燃機関はセルモータ53を駆動す
るとリングギヤ52、主軸9の後端に取り付けら
れたフライホイール54を介して中心主軸9が回
転し、大歯車10、小歯車8を経て作動歯車1,
2,3,4,5,6が回転し始動する。作動歯車
1,2,3,4,5,6の内向き噛合点GIの前
方の排気通路12、排気孔13、排気管46、排
出口45から燃焼ガスを排出し、内向き噛合点
GIの後方の吸気孔15,16,17に空気取入
口47,吸気管48を経て空気を取り入れ、作動
歯車1,2,3,4,5,6の回転により空気は
円弧状壁面11Iを経て外向き噛合点GOの前方に
流れ込み作動歯車1,2,3,4,5,6の噛合
う歯と歯との間に閉じ込められ圧縮されて高圧と
なり圧縮空気通路23を経て予燃焼室19,2
0,21に噴入し渦流となる。一方、ギヤポンプ
24により形成された空気と燃料との混合気は通
路36を経て予燃焼室19,20,21内に噴入
し前記空気渦流と混合しグロープラグ38,3
9,40により着火し常時燃焼を継続し通路43
を経て燃焼ガスは燃焼室41に噴入し膨張し作動
歯車1,2,3,4,5,6を回転させ、さらに
燃焼ガスは流路44を通過するとき噴流により作
動歯車1,2,3,4,5,6を回転させ通路1
2に至る。作動歯車1,2,3,4,5,6に発
生した動力は小歯車8、大歯車10を経て中心主
軸9に伝達される。
In the gear internal combustion engine described above, when the starter motor 53 is driven, the central main shaft 9 rotates via the ring gear 52 and the flywheel 54 attached to the rear end of the main shaft 9.
2, 3, 4, 5, and 6 rotate and start. The combustion gas is discharged from the exhaust passage 12, exhaust hole 13, exhaust pipe 46, and exhaust port 45 in front of the inward meshing point G I of the operating gears 1, 2, 3, 4, 5, and 6, and the combustion gas is discharged from the inward meshing point G I.
G _ The air flows outward to the front of the meshing point G O , is trapped between the meshing teeth of the operating gears 1, 2, 3, 4, 5, and 6, is compressed, becomes high pressure, and passes through the compressed air passage 23, where it is pre-combusted. Room 19,2
0,21 and becomes a vortex. On the other hand, the mixture of air and fuel formed by the gear pump 24 is injected into the pre-combustion chambers 19, 20, 21 through the passage 36, mixed with the air vortex, and is mixed with the glow plugs 38, 3.
9 and 40, and the combustion continues constantly, and the passage 43
The combustion gas injects into the combustion chamber 41 and expands, rotating the operating gears 1, 2, 3, 4, 5, and 6. Furthermore, when the combustion gas passes through the flow path 44, the jet flow causes the operating gears 1, 2, Rotate 3, 4, 5, and 6 to reach passage 1
2. The power generated in the operating gears 1, 2, 3, 4, 5, and 6 is transmitted to the central main shaft 9 via a small gear 8 and a large gear 10.

冷却・潤滑のために、中心主軸9の作動歯車ケ
ース7部に内歯車ポンプの潤滑油ポンプ55を設
ける。この潤滑油ポンプ55は中心主軸9を駆動
軸とし中心主軸9にピニオン56が取り付けられ
ピニオン56と偏心して内歯車57を噛合せピニ
オン56と内歯車57との間に三日月状の隔金5
8を設け吸油口59と吐出口60を形成する。作
動歯車1,2,3,4,5,6の軸61を中空6
2に形成し作動歯車1,2,3,4,5,6端面
側に小径の油孔63を開口し、軸61に前記中空
62部と作動歯車1,2,3,4,5,6の軸承
部に通ずる油孔64を貫設する。中空62は作動
歯車1,2,3,4,5,6の冷却に適するよう
に歯部や軸61の大径部は大きくし、且つ潤滑油
ポンプ55からの油圧により作動歯車1,2,
3,4,5,6端面を対向する燃焼ブロツク14
後壁面への押圧に適した形状に形成する。また、
この中空62にはその内部に潤滑油を導く導管
(図示せず)を配置したものも含まれる。作動歯
車1,2,3,4,5,6の軸61は本実施例で
は一体に形成したものを示しているが、これに限
らず別体に形成することは自由である。中心主軸
9の後端に取付けられたフライホイール54を覆
うフライホイールカバー65の肉厚内に穿設した
油孔66、作動歯車ケース7の肉厚内の軸方向の
油孔67および円周方向の油孔68,69を介し
て潤滑油ポンプ55および油タンク70に接続す
る。
For cooling and lubrication, a lubricating oil pump 55, which is an internal gear pump, is provided in the operating gear case 7 of the central main shaft 9. This lubricating oil pump 55 has a central main shaft 9 as a driving shaft, a pinion 56 is attached to the central main shaft 9, and an internal gear 57 is engaged with the pinion 56 eccentrically.
8 to form an oil suction port 59 and a discharge port 60. The shafts 61 of the operating gears 1, 2, 3, 4, 5, 6 are connected to the hollow 6
2, a small diameter oil hole 63 is opened on the end face side of the operating gears 1, 2, 3, 4, 5, 6, and the hollow 62 part and the operating gears 1, 2, 3, 4, 5, 6 are formed in the shaft 61. An oil hole 64 communicating with the shaft bearing part is provided through the shaft. In the hollow 62, the teeth and the large diameter part of the shaft 61 are made large so as to be suitable for cooling the operating gears 1, 2, 3, 4, 5, 6, and the operating gears 1, 2, 6 are cooled by hydraulic pressure from the lubricating oil pump 55.
Combustion block 14 with 3, 4, 5, 6 end faces facing each other
Form into a shape suitable for pressing against the rear wall surface. Also,
The hollow 62 also includes a conduit (not shown) disposed therein for guiding lubricating oil. Although the shafts 61 of the operating gears 1, 2, 3, 4, 5, and 6 are shown integrally formed in this embodiment, they are not limited to this and may be formed separately. An oil hole 66 drilled in the thickness of a flywheel cover 65 that covers the flywheel 54 attached to the rear end of the central main shaft 9, an axial oil hole 67 in the thickness of the operating gear case 7, and an oil hole 67 in the circumferential direction. It is connected to a lubricating oil pump 55 and an oil tank 70 through oil holes 68 and 69.

中心主軸9が回転すると、潤滑油ポンプ55の
ピニオン56も内歯車57と噛合つて回転し潤滑
油を油タンク70より油孔69、吸油口59を経
て潤滑油ポンプ55に吸上げ、吐出口60、油孔
68、油孔67、油孔66を経て作動歯車1,
2,3,4,5,6の中空62部に供給する。こ
の潤滑油により作動歯車1,2,3,4,5,6
は冷却される。また、潤滑油は作動歯車1,2,
3,4,5,6を燃焼ブロツク14の後壁面に向
けて押圧し、且つ潤滑油は燃焼ブロツク14後壁
面と作動歯車1,2,3,4,5,6端面との間
に浸入して両者間の潤滑を図ると共に、吸気孔1
5,16,17より吸入され作動歯車1,2,
3,4,5,6の歯と歯との間に閉じ込め圧縮さ
れた圧縮空気が圧縮空気通路23への噴入および
予燃焼室19,20,21での燃焼ガスが膨張し
て燃焼ガス通路43を経て燃焼室41への噴出の
際、燃焼ブロツク14後壁面と作動歯車1,2,
3,4,5,6端面とを密封する。さらに、潤滑
油は油孔64を経て作動歯車1,2,3,4,
5,6の軸承部に至りそこを潤滑し、その潤滑油
は油タンク70に環流する(環流油路図示せず)。
When the central main shaft 9 rotates, the pinion 56 of the lubricating oil pump 55 also meshes with the internal gear 57 and rotates, sucking up lubricating oil from the oil tank 70 through the oil hole 69 and the oil suction port 59 to the lubricating oil pump 55, and pumping it into the lubricating oil pump 55 through the oil outlet 60. , oil hole 68 , oil hole 67 , oil hole 66 , operating gear 1 ,
It is supplied to 62 hollow parts of 2, 3, 4, 5, and 6. With this lubricating oil, the operating gears 1, 2, 3, 4, 5, 6
is cooled. In addition, the lubricating oil is applied to the operating gears 1, 2,
3, 4, 5, and 6 are pressed toward the rear wall surface of the combustion block 14, and the lubricating oil enters between the rear wall surface of the combustion block 14 and the end surfaces of the operating gears 1, 2, 3, 4, 5, and 6. to ensure lubrication between the two, as well as the intake hole 1.
5, 16, 17 and actuating gears 1, 2,
The compressed air trapped between the teeth 3, 4, 5, and 6 is injected into the compressed air passage 23, and the combustion gas in the pre-combustion chambers 19, 20, and 21 is expanded to form the combustion gas passage. 43 and into the combustion chamber 41, the rear wall of the combustion block 14 and the operating gears 1, 2,
3, 4, 5, and 6 end faces are sealed. Furthermore, the lubricating oil passes through the oil hole 64 to the operating gears 1, 2, 3, 4,
The lubricating oil reaches the bearing portions 5 and 6 and lubricates them, and the lubricating oil flows back into the oil tank 70 (recirculation oil path not shown).

以上は同径の6個の作動歯車が環状に配置され
互いに噛合う実施例について述べたが、4個以上
の偶数個の作動歯車であればよく、また、同径で
なくても本発明は成立し、さらに動力の取り出し
は中央に配置した中心主軸だけでなく作動歯車を
内接させる内歯車等から取り出すことも可能であ
る。さらに、作動歯車の内向き噛合点の後方を空
気と連通させるものばかりでなく空気と燃料との
混合気発生装置に連通させることもできる。
The above description has been about an embodiment in which six working gears with the same diameter are arranged in an annular manner and mesh with each other, but the present invention can be applied as long as the working gears are an even number of four or more, and even if they are not the same diameter. Furthermore, power can be extracted not only from the central main shaft disposed at the center but also from an internal gear or the like in which the operating gear is inscribed. Furthermore, the rear of the inward meshing point of the operating gear can be communicated not only with air but also with an air/fuel mixture generating device.

本発明は、叙上のように、4個以上の偶数個の
作動歯車を環状に配置して噛合せ噛合部の歯と歯
との間で発生する閉じ込み現象を利用して高圧ガ
スを発生させ、その上、作動歯車の軸には中空部
を形成して、そこに潤滑油を供給し作動歯車を冷
却できるので、高温・高圧ガスの使用が可能とな
り熱効率を可及的に高めることができ、燃費を軽
減できる。また、作動歯車端面には中空部と連通
する油孔を開口し潤滑油を供給するので作動歯車
端面を対向する壁面に押圧し作動歯車端面と壁面
との間を潤滑し密封する。潤滑油により作動歯車
は冷却される。また、潤滑油は作動歯車を燃焼ブ
ロツクの後壁面に向けて押圧し、且つ潤滑油は燃
焼ブロツク後壁面と作動歯車端面との間に浸入し
て両者間の潤滑を図ると共に、吸気孔より吸入さ
れ作業歯車の歯と歯の間に閉じこめ圧縮された圧
縮空気が圧縮空気通路への噴入および予燃焼室で
の燃焼ガスが膨張して燃焼ガス通路を経て燃焼室
への噴出の際、燃焼ブロツク後壁面と作動歯車端
面とを密封する。潤滑油で圧縮空気および燃焼ガ
スの流入を遮断できるので、それに応じた設計が
可能となり、エンジンのコンパクトができる。さ
らに、作動歯車の軸承部に連通する軸の油孔より
潤滑油が流入してその部分を十分に潤滑する。
As described above, the present invention generates high-pressure gas by arranging an even number of operating gears of four or more in a ring shape and utilizing the confinement phenomenon that occurs between the teeth of the meshing part. In addition, a hollow part is formed in the shaft of the operating gear, and lubricating oil can be supplied there to cool the operating gear, making it possible to use high-temperature, high-pressure gas and increasing thermal efficiency as much as possible. It is possible to reduce fuel consumption. Further, an oil hole communicating with the hollow portion is opened in the end face of the operating gear to supply lubricating oil, so that the end face of the operating gear is pressed against the opposing wall surface to lubricate and seal the gap between the end face of the operating gear and the wall surface. The operating gears are cooled by the lubricating oil. In addition, the lubricating oil presses the operating gear toward the rear wall of the combustion block, and the lubricating oil enters between the rear wall of the combustion block and the end of the operating gear to lubricate the two, and is sucked in through the intake hole. The compressed air trapped between the teeth of the working gear is injected into the compressed air passage, and the combustion gas in the pre-combustion chamber is expanded and ejected into the combustion chamber via the combustion gas passage, causing combustion. The rear wall of the block and the end of the operating gear are sealed. Since the inflow of compressed air and combustion gas can be blocked with lubricating oil, it is possible to design the engine accordingly, making the engine more compact. Furthermore, lubricating oil flows into the oil hole of the shaft that communicates with the shaft bearing of the operating gear to sufficiently lubricate that part.

本歯車内燃機関によると、往復動部分がなく高
速回転が可能となり無振動、軽量化、コンパクト
化ができ低コストの内燃機関の提供が可能とな
る。また、従来の往復機関のように排気に曝され
摺動する部分が少なく耐久性が向上する。さら
に、従来の内燃機関は間欠燃焼のためサイクルご
とに着火させ燃焼を継続さすことが必要で燃料を
多く要し燃料低減に限界があつたが本発明は連続
燃焼のため燃料供給低減が可能であり、連続燃焼
のため排気音も低くなり、燃料噴射ポンプやノズ
ル、マグネツト、コイル等が不要となり構造が単
純となつて低コストの内燃機関の提供が可能とな
る。
This gear internal combustion engine has no reciprocating parts and can rotate at high speeds, and is vibration-free, lightweight, and compact, making it possible to provide a low-cost internal combustion engine. Additionally, unlike conventional reciprocating engines, there are fewer sliding parts that are exposed to exhaust gas, resulting in improved durability. Furthermore, since conventional internal combustion engines have intermittent combustion, it is necessary to ignite each cycle to continue combustion, which requires a large amount of fuel, and there is a limit to how much fuel can be reduced.However, the present invention uses continuous combustion, which makes it possible to reduce fuel supply. The continuous combustion reduces exhaust noise, eliminates the need for fuel injection pumps, nozzles, magnets, coils, etc., and simplifies the structure, making it possible to provide a low-cost internal combustion engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体的一実施例の正面図、第
2図は第1図の側断面図、第3図は第1図の要部
拡大正面図である。 1,2,3,4,5,6…作動歯車、GI…内
向き噛合点、GO…外向き噛合点、61…軸、6
2…中空、63…油孔、55…潤滑油ポンプ。
1 is a front view of a specific embodiment of the present invention, FIG. 2 is a side sectional view of FIG. 1, and FIG. 3 is an enlarged front view of the main part of FIG. 1. 1, 2, 3, 4, 5, 6... Operating gear, G I ... Inward meshing point, G O ... Outward meshing point, 61... Shaft, 6
2...Hollow, 63...Oil hole, 55...Lubricating oil pump.

Claims (1)

【特許請求の範囲】[Claims] 1 4個以上の偶数個の作動歯車を環状に配置し
て互いに噛合せ、作動歯車が内向きに噛合う噛合
部において排気、吸気を行わしめ、外向きの噛合
点の前方の適宜位置まで歯部先端に接触しない範
囲で可及的に接近した封止するための円弧状壁面
を形成し、外向き噛合点の前方で外向き噛合点近
傍に噛合う歯と歯との間に閉じ込められた圧縮気
体を導く給気口を開口し、給気口と予燃焼室とを
連通させ、外向き噛合点の後方で外向き噛合点近
傍に燃焼ガス通路口を開口し、燃焼ガス通路口と
予燃焼室とを連通し、作動歯車が外向きに噛合う
噛合部において、圧縮、爆発、膨張を行わしむる
歯車内燃機関において、作動歯車の軸を中空に形
成して作動歯車端面に油孔を開口し、中空部を潤
滑油ポンプと連通させ潤滑油の油圧により作動歯
車端面を対向する前記給気口および燃焼ガス通路
口を開口した壁面に衝合するようにし作動歯車端
面と壁面との間を潤滑し密封するようにした歯車
内燃機関の冷却・潤滑装置。
1 An even number of 4 or more working gears are arranged in a ring and mesh with each other, and exhaust and intake air is performed at the meshing part where the working gears mesh inwardly, and the teeth are moved to an appropriate position in front of the outward meshing point. Forms an arcuate wall surface for sealing as close as possible without contacting the tip of the part, and is trapped between the teeth meshing near the outward meshing point in front of the outward meshing point. An air supply port for guiding compressed gas is opened, the air supply port and the pre-combustion chamber are communicated with each other, and a combustion gas passage port is opened behind the outward meshing point and near the outward meshing point, so that the combustion gas passage port and the pre-combustion chamber communicate with each other. In a gear internal combustion engine that communicates with the combustion chamber and performs compression, explosion, and expansion at the meshing part where the operating gear meshes outward, the shaft of the operating gear is formed hollow and an oil hole is formed on the end face of the operating gear. The hollow portion is opened and communicated with the lubricating oil pump, and the end face of the operating gear is brought into contact with the wall face in which the opposing air supply port and the combustion gas passage opening are opened by the hydraulic pressure of the lubricating oil, between the end face of the operating gear and the wall face. A cooling and lubricating device for geared internal combustion engines that lubricates and seals the engine.
JP18271681A 1981-11-14 1981-11-14 Cooling and lubricating device of geared internal- combustion engine Granted JPS5885303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18271681A JPS5885303A (en) 1981-11-14 1981-11-14 Cooling and lubricating device of geared internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18271681A JPS5885303A (en) 1981-11-14 1981-11-14 Cooling and lubricating device of geared internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS5885303A JPS5885303A (en) 1983-05-21
JPH0115686B2 true JPH0115686B2 (en) 1989-03-20

Family

ID=16123183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18271681A Granted JPS5885303A (en) 1981-11-14 1981-11-14 Cooling and lubricating device of geared internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS5885303A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336780A (en) * 1989-07-04 1991-02-18 Ibiden Co Ltd Electronic circuit device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015911A (en) * 1973-06-17 1975-02-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015911A (en) * 1973-06-17 1975-02-20

Also Published As

Publication number Publication date
JPS5885303A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
JP2000507661A (en) Vane type rotary engine
CA2108108A1 (en) Rotary engine
CA2628714A1 (en) Improvements to wankel and similar rotary engines
US4236496A (en) Rotary engine
RU2387851C2 (en) Prechamber rotary ice
JPH01315621A (en) Rotary cylinder block-piston cylinder-engine
CA2133878A1 (en) Gas compressor/expander
US3971346A (en) Rotary internal combustion engine
US4064841A (en) Rotary engine
US4028885A (en) Rotary engine
CN106704036B (en) Rotation impulse detonation engine
JPWO2002088529A1 (en) engine
JPS6343388Y2 (en)
JPH0115686B2 (en)
JPH1068301A (en) Vane rotation type volume changing device and internal combustion engine using the device
US6250278B1 (en) Rotary machine
JPH05195808A (en) Screw engine
JPS6339771B2 (en)
JPS6339773B2 (en)
KR100298957B1 (en) Rotary engine of low p0llution and low speed
US4633829A (en) Rotary internal combustion engine
JPS6339772B2 (en)
KR100486969B1 (en) Reaction fly wheel engine
JP2922640B2 (en) Annular super-expansion rotary engine, compressor, expander, pump and method
US20020014218A1 (en) Multiple cylinder rotary motor and method of operation