JPS6343183B2 - - Google Patents

Info

Publication number
JPS6343183B2
JPS6343183B2 JP54142276A JP14227679A JPS6343183B2 JP S6343183 B2 JPS6343183 B2 JP S6343183B2 JP 54142276 A JP54142276 A JP 54142276A JP 14227679 A JP14227679 A JP 14227679A JP S6343183 B2 JPS6343183 B2 JP S6343183B2
Authority
JP
Japan
Prior art keywords
additive
surface layer
agglomeration
melting
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54142276A
Other languages
Japanese (ja)
Other versions
JPS5666362A (en
Inventor
Yasushi Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SAAMO KEMIKARU KK
Original Assignee
NIPPON SAAMO KEMIKARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SAAMO KEMIKARU KK filed Critical NIPPON SAAMO KEMIKARU KK
Priority to JP14227679A priority Critical patent/JPS5666362A/en
Publication of JPS5666362A publication Critical patent/JPS5666362A/en
Publication of JPS6343183B2 publication Critical patent/JPS6343183B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鋼の鋳造時に鋳型内に添加される造塊
用添加剤の溶融試験方法に関するものである。 造塊用添加剤は鋼の鋳造時に鋳型内の溶鋼湯面
に添加され、鋳型壁と鋳型内鋳片との間の潤滑作
用や、鋳型内溶鋼表面の酸化防止作用及び該溶鋼
表面の保温作用、並びに溶鋼表面に浮上してくる
金属酸化物の吸収作用等を行なうものであり、そ
れによつて鋳片の表面欠陥をなくして美麗な鋳肌
を形成できる効果があり、特に連続鋳造操業の鋳
込作業の安定性確保と製鋼鋳造歩留の向上を図る
ために必要不可欠なものとなつている。 この造塊用添加剤は、一般に、SiO2−CaO−
Al2O3三元系を基本とし、これにいわゆるフラツ
クスとして、アルカリ金属化合物、ハロゲン元素
化合物を加えてなるものであり、溶融温度、粘度
等を調整し、更に炭素の添加によつて溶融速度を
調整して実際に使用されるのが通常である。 ここにおいて、造塊用添加剤の粒度分布、嵩比
重等の粉末または顆粒状態における特性や、粘
度、溶融挙動(いかなる状態で溶融が行なわれて
いくか、溶融過程における挙動のこと。)、特に鋳
造時に溶鋼と接する、造塊用添加剤の表面層の溶
融初期における溶融パターン、即ち表面層の溶融
初期において溶融部分と未溶融部分との占める割
合、溶融部分に対して非溶融部分とがどのような
パターンで存在するか(非溶融部分がどのような
過程で溶融して行くか)、これらが結晶質か非晶
質か等という表面層の溶融過程における挙動等の
特性が鋳片の表面性状の良否に影響を及ぼすもの
である。従つて、実際の使用に当つては、前記各
特性を測定してその正確な把握を行なつておく必
要がある。 前記各特性のうち、粉末または顆粒状態におけ
る粒度分布や嵩比重は容易に測定でき、また溶融
状態における重要な物性である粘度の測定も比較
的容易に行なえる。一方、溶融過程における挙動
をチエツクする方法としては未だ適確な方法が確
立されておらず、従来においては造塊用添加剤の
粉末を三角錐形状または円柱状に成型し、これを
加熱炉内で加熱して溶融状況を観察するという方
法が採られていた。しかしながら、かかる方法で
は溶融速度や溶融量を測定し得ても、造塊用添加
剤の表面層の溶融パターンの正確な把握は困難で
あつた。それは、第1には、検体である試料の量
がせいぜい5g以下という少量であるため、造塊
用添加剤の粒子径の試料量に対する割合が大きく
なり、且つ炉容に対する量が僅少となる結果、実
際の操業時に鋳型内に添加される場合とでその状
況にかなりの相違が生じ、そのため造塊用添加剤
の表面層の微妙な溶融パターンの違いを見い出す
ことが困難であるためである。第2には、試料が
三角錐形状または円柱状という立体的形態となつ
ているため平面的に広い視野での観察が不可能で
あるためである。また造塊用添加剤をルツボ内に
入れて一方向より所定時間加熱して冷却した後ル
ツボを縦に切断して添加剤の溶融状態を観察する
方法も知られている(特開昭52−88223号、特開
昭53−70040号)。しかしながらこの方法では造塊
用添加剤の表面層が完全に溶融した後に、表面層
よりも内層に位置し、表面層よりも熱エネルギー
の供給量の少ない(同一時間において)内層に位
置する造塊用添加剤に表面層から熱エネルギーが
伝達されて、層に位置する造塊用添加剤が順次均
一に溶融するか否かを測定することはできても、
同一の熱エネルギーが均一に供給される表面層に
おいて、該表面層の溶融初期の段階で表面層に溶
融部分と未溶融部分とがどのような割合、分布パ
ターンをもつて存在するか、またこれらが結晶質
であるか非晶質であるかを測定し、表面層がどの
ような過程で溶融して行くかという表面層の溶融
過程における挙動に対する知見を得ることは不可
能であつた。 このように従来法では造塊用添加剤の表面層の
溶融パターンの正確な観察ができなかつたから、
当該表面層の溶融パターンの観察結果と鋳片の表
面性状の良否の結果との相関関係を見い出すには
至つていない。一般に造塊用添加剤の化学組成や
粘度が同等であつても鋳片の表面性状の良否に及
ぼす影響には違いがあり、これは造塊用添加剤の
表面層の溶融パターンに起因しているものと考え
られており、従つて具体的にどのような挙動が最
適であるかについて適正な知見を得るために、前
記表面層の溶融パターンを観察するための造塊用
添加剤の溶融試験方法の確立が望まれるところで
ある。 本発明は叙上の点に鑑みなされたもので、簡便
な方法にして、しかも造塊用添加剤の表面層の溶
融パターンを正確に観察することができる造塊用
添加剤の溶融試験方法を提供することを目的とす
るものである。 即ち本発明は上面が80cm2以上の面積を有して開
口した平底状の容器内に造塊用添加剤を、該容器
内一面に平面状に均一厚さに敷き詰め、これを加
熱炉内で所定温度に所定時間加熱し、造塊用添加
剤の表面層の全部が溶融しない段階で前記容器を
加熱炉より取り出し、冷却後造塊用添加剤の表面
層の溶融部分と未溶融部分の溶融パターンを観察
することを特徴とする造塊用添加剤の溶融試験方
法を要旨とする。 本発明において、上面が80cm2以上の面積を有し
て開口した平底状の容器が用いられる。この容器
は一定の深さを有している箱形状のものであれば
よく、形状は任意に選択でき、例えば平面形状が
正方形でも長方形でも或いは円形状、楕円形状で
もよい。容器の素材としては、鉄等の金属製でも
或いは陶器、磁器製のものでもよい。 前記容器内に粉末状または顆粒状の造塊用添加
剤をその厚みが均等となるように平面状に敷きつ
める。試料量は5g以上が好ましい。 この造塊用添加剤を敷きつめた容器を加熱炉に
入れて加熱する。前記添加剤の組成にもよるが、
通常、加熱温度は1250〜1500℃で、加熱時間は10
秒〜15分である。この加熱時間は前記添加剤の表
面層の1部が溶融するまでに要する時間である。
即ち、前記添加剤の表面層の全部が溶融しない段
階で前記容器を加熱炉より取り出す必要がある。
前記添加剤の表面層の全部が溶融したのでは、表
面層の溶融パターンの実態を観察できないからで
ある。つまり後述するように、溶融部分と未溶融
部分とがあつてこそはじめて表面層の溶融パター
ンの観察が可能となるのである。 容器を加熱炉より取り出した後、冷却を行なう
が、この冷却は通常、大気中で放冷することによ
つて行なわれる。 冷却後、前記添加剤の表面層の溶融パターンを
観察する。添加剤の粒度や結晶形等の相違により
表面層の溶融パターンも区々である。全体的に溶
融部分がどの程度の割合を占めているか、どのよ
うなパターンで溶融部分と未溶融部分とが存在す
るか個々の未溶融部分の大きさがどの程度である
か、これらが結晶質であるか非晶質であるか等の
見地から表面層の溶融パターンの観察が行なわれ
る。表面層の溶融パターンの好ましくない造塊用
添加剤を用いると、鋳片に“割れ”や“噛み込
み”等の表面欠陥が発生する。 本発明によれば、上面が80cm2以上の面積を有し
て開口した平底状の容器内に造塊用添加剤を敷き
つめるものであるから、従来法に比べて試料量を
多くすることが可能となる。即ち、従来法では三
角錐形状または円柱状に成型するから用いる試料
量にも自と限度があるが、本発明によれば容器の
大きさを任意に選択することにより大量の試料量
とすることができ、例えば試料量100g若しくは
それ以上の量とすることも可能である。このよう
に試料量を多量とすることができるので、前記添
加剤の粒子径の試料全体量に占める割合が従来法
に比べて小さくなり、且つ炉容に対する量が従来
法に比べて多くなり、以て実際の操業時に鋳型内
に添加される場合の状況により近くなり、その結
果、微妙な表面層の溶融パターンの差異を適確に
観察することができるものである。 更に本発明は上面が80cm2以上の面積を有して開
口した平底状の容器内一面に造塊用添加剤を平面
状に敷きつめるものであるから、前記添加剤は広
い表面積を有して平面状に敷きつめられることと
なり、その結果、平面的に広い視野での観察が可
能となり、表面層の溶融パターンの正確な把握が
可能となるものである。 しかして本発明によれば、簡便な方法にして、
しかも造塊用添加剤の表面層の溶融パターンの正
確な観察を行なうことができる効果がある。そし
て、かゝる表面層の溶融パターンの正確な観察が
可能となることによつて、前記表面層の溶融パタ
ーンの観察結果と鋳片の表面性状の良否の結果と
の相関関係を見い出すことができるものであり、
平滑美麗な鋳肌を有する品質良好な鋳片の製造に
貢献するところ大なるものである。 次に、本発明の実施例を示す。 実施例 0.5mm厚の鉄板(SS41)を用いて、縦90mm、横
160mm、深さ20mmの上面が開口した平底状の箱形
の容器1(第1図)を作成した。第1図、第2図
に示すように、この容器1内に第1表に示す組成
の各造塊用添加剤2を各々100g入れ、その厚み
が均等となるように平面状に敷きつめた。SiCを
発熱体とする容量の大きい箱形のマツフル炉を
1300℃に保持し、このマツフル炉に前記添加剤2
の入つた容器1を入れて加熱した。1分間加熱し
た後、前記容器1をマツフル炉より取り出し、大
気中で放冷し、しかる後、前記添加剤2の表面層
の溶融パターンを観察した。溶融部分と未溶融部
分とが明確に識別でき、それらの割合やパターン
等から表面層の溶融パターンの正確な把握を行な
うことができた。試料No.1−A、2−A、3−
A、4−A、5−A、6−Aは第4図に示す溶融
パターンを有し、試験No.1−B、2−B、3−
B、4−B、5−B、6−Bは第3図に示す溶融
パターンを有していた。尚、図中3は溶融した部
分を、4は溶融しなかつた部分を示す。またこれ
らの造塊用添加剤の鋳造用としての良否を、鋳造
を行つた時のスラブベアの生成により判定した結
果を第1表にあわせて示す。
The present invention relates to a method for testing the melting of an additive for ingot-forming that is added into a mold during casting of steel. Additives for ingot making are added to the molten steel surface in the mold during steel casting, and have a lubricating effect between the mold wall and the slab in the mold, an oxidation prevention effect on the molten steel surface in the mold, and a heat retention effect on the molten steel surface. It also absorbs metal oxides that float to the surface of the molten steel, thereby eliminating surface defects in the slab and forming a beautiful casting surface.It is particularly useful for continuous casting operations. This is indispensable for ensuring the stability of the casting process and improving the steelmaking casting yield. This additive for agglomeration is generally SiO 2 −CaO−
It is based on the Al 2 O 3 ternary system, and to this is added an alkali metal compound and a halogen element compound as a so-called flux.The melting temperature, viscosity, etc. are adjusted, and the melting rate can be adjusted by adding carbon. It is usually used after adjusting the Here, the characteristics of the additive for agglomeration in the powder or granule state such as particle size distribution and bulk specific gravity, viscosity, melting behavior (in what state melting takes place, behavior during the melting process), especially The melting pattern at the early stage of melting of the surface layer of the ingot-forming additive that comes into contact with molten steel during casting, that is, the ratio of the molten part to the unmelted part at the early stage of melting of the surface layer, and the proportion of the unmelted part to the molten part. The behavior of the surface layer during the melting process, such as whether the surface layer exists in a similar pattern (in what process the unmelted portion melts) and whether it is crystalline or amorphous, determines the surface layer of the slab. It affects the quality of properties. Therefore, in actual use, it is necessary to measure each of the above-mentioned characteristics and accurately understand them. Among the above properties, particle size distribution and bulk specific gravity in a powder or granule state can be easily measured, and viscosity, which is an important physical property in a molten state, can also be measured relatively easily. On the other hand, an appropriate method for checking the behavior during the melting process has not yet been established, and in the past, the powder of additives for agglomeration was formed into a triangular pyramid shape or a cylinder shape, and this was placed in a heating furnace. The method used was to heat it with water and observe the melting state. However, even though it is possible to measure the melting rate and melting amount using this method, it is difficult to accurately grasp the melting pattern of the surface layer of the additive for agglomeration. Firstly, since the amount of the sample to be tested is small, at most 5 g or less, the ratio of the particle size of the additive for agglomeration to the sample amount is large, and the amount relative to the furnace volume is small. This is because there is a considerable difference in the situation when it is added into the mold during actual operation, and it is therefore difficult to detect subtle differences in the melting pattern of the surface layer of the additive for agglomeration. The second reason is that since the sample has a three-dimensional shape such as a triangular pyramid shape or a columnar shape, it is impossible to observe it in a wide two-dimensional field of view. There is also a known method in which additives for agglomeration are placed in a crucible, heated from one direction for a predetermined period of time, cooled, and then the crucible is cut lengthwise to observe the molten state of the additives (Japanese Patent Application Laid-Open No. 1983-1992-1). No. 88223, Japanese Patent Publication No. 53-70040). However, in this method, after the surface layer of the additive for agglomeration is completely melted, the agglomeration agent located in the inner layer than the surface layer and where the amount of thermal energy supplied (at the same time) is smaller than the surface layer. Although it is possible to measure whether thermal energy is transferred from the surface layer to the additive for agglomeration and the additive for agglomeration located in the layer is sequentially and uniformly melted,
In a surface layer to which the same thermal energy is uniformly supplied, what ratio and distribution pattern of melted portions and unmelted portions are present in the surface layer at the initial stage of melting of the surface layer, and what is the distribution pattern of these portions? It has been impossible to measure whether the surface layer is crystalline or amorphous and to obtain knowledge about the behavior of the surface layer during the melting process, such as the process by which the surface layer melts. In this way, with the conventional method, it was not possible to accurately observe the melting pattern of the surface layer of the additive for agglomeration.
It has not yet been found that there is a correlation between the observation results of the melting pattern of the surface layer and the quality of the surface quality of the slab. In general, even if the chemical composition and viscosity of the additives for ingot making are the same, there are differences in their effects on the quality of the surface quality of the slab, and this is due to the melting pattern of the surface layer of the additive for ingot making. Therefore, in order to obtain appropriate knowledge about the specific optimal behavior, melting tests of additives for agglomeration were conducted to observe the melting pattern of the surface layer. It is desired that a method be established. The present invention has been made in view of the above points, and provides a method for testing the melting of additives for agglomeration, which is a simple method and allows accurate observation of the melting pattern of the surface layer of additives for agglomeration. The purpose is to provide That is, in the present invention, the additive for agglomeration is placed in a flat-bottomed container with an open top surface area of 80 cm 2 or more, spread over the entire surface of the container to a uniform thickness, and then placed in a heating furnace. The container is heated to a predetermined temperature for a predetermined time, and when the entire surface layer of the additive for agglomeration is not melted, the container is taken out from the heating furnace, and after cooling, the melted portion and unmelted portion of the surface layer of the additive for agglomeration are melted. The gist of this article is a melting test method for additives for agglomeration, which is characterized by observing patterns. In the present invention, a flat-bottomed container with an open top surface having an area of 80 cm 2 or more is used. This container may be box-shaped with a certain depth, and its shape can be arbitrarily selected, for example, the planar shape may be square, rectangular, circular, or elliptical. The material of the container may be metal such as iron, or ceramic or porcelain. Powdered or granular additives for agglomeration are spread in a flat shape in the container so that the thickness thereof is uniform. The sample amount is preferably 5 g or more. The container filled with this additive for agglomeration is placed in a heating furnace and heated. Depending on the composition of the additive,
Usually, the heating temperature is 1250-1500℃, and the heating time is 10
It is from seconds to 15 minutes. This heating time is the time required until part of the surface layer of the additive melts.
That is, it is necessary to take out the container from the heating furnace before the entire surface layer of the additive is melted.
This is because if the entire surface layer of the additive is melted, the actual melting pattern of the surface layer cannot be observed. In other words, as will be described later, it is only when there is a melted part and an unmelted part that it becomes possible to observe the melted pattern of the surface layer. After the container is removed from the heating furnace, it is cooled, and this cooling is usually performed by leaving it to cool in the atmosphere. After cooling, observe the melting pattern of the surface layer of the additive. The melting pattern of the surface layer also varies depending on the particle size and crystal shape of the additive. How much of the molten part accounts for the whole, what pattern do the molten parts and unmelted parts exist, and how large are the individual unmelted parts? The melting pattern of the surface layer is observed from the viewpoint of whether it is solid or amorphous. If an ingot-forming additive with an unfavorable surface layer melting pattern is used, surface defects such as "cracking" and "biting" will occur in the slab. According to the present invention, since the additive for agglomeration is spread inside a flat-bottomed container with an open top surface area of 80 cm 2 or more, it is possible to increase the amount of sample compared to the conventional method. It becomes possible. That is, in the conventional method, there is a limit to the amount of sample that can be used because it is molded into a triangular pyramid shape or a cylindrical shape, but according to the present invention, a large amount of sample can be obtained by arbitrarily selecting the size of the container. For example, the sample amount can be 100 g or more. Since the sample amount can be increased in this way, the ratio of the particle size of the additive to the total sample amount is smaller than in the conventional method, and the amount relative to the furnace volume is larger than in the conventional method. This makes it possible to more closely resemble the situation when it is added into a mold during actual operation, and as a result, it is possible to accurately observe subtle differences in the melting pattern of the surface layer. Further, in the present invention, since the additive for agglomeration is spread in a flat shape over the entire surface of the open flat-bottomed container having an area of 80 cm 2 or more on the upper surface, the additive has a large surface area. As a result, it is possible to observe a wide two-dimensional field of view, and it is possible to accurately grasp the melting pattern of the surface layer. However, according to the present invention, in a simple method,
Moreover, it is possible to accurately observe the melting pattern of the surface layer of the additive for agglomeration. By making it possible to accurately observe the melting pattern of the surface layer, it is possible to find a correlation between the observation results of the melting pattern of the surface layer and the quality of the surface quality of the slab. It is possible,
This greatly contributes to the production of high-quality slabs with smooth and beautiful casting surfaces. Next, examples of the present invention will be shown. Example Using a 0.5mm thick iron plate (SS41), the height is 90mm and the width is 90mm.
A flat-bottomed box-shaped container 1 (Fig. 1) with an open top and a length of 160 mm and a depth of 20 mm was prepared. As shown in FIGS. 1 and 2, 100 g of each of the additives 2 for agglomeration having the compositions shown in Table 1 were placed in the container 1, and the additives were laid out in a flat shape so that the thickness was uniform. A box-shaped Matsufuru furnace with a large capacity uses SiC as a heating element.
Additive 2 was added to this Matsufuru furnace while maintaining the temperature at 1300°C.
Container 1 containing 1 was placed and heated. After heating for 1 minute, the container 1 was taken out of the Matsufuru furnace and allowed to cool in the atmosphere, and then the melting pattern of the surface layer of the additive 2 was observed. The melted portion and the unmelted portion could be clearly distinguished, and the melting pattern of the surface layer could be accurately determined from their proportions and patterns. Sample No. 1-A, 2-A, 3-
Test Nos. A, 4-A, 5-A, and 6-A have the melting pattern shown in Figure 4, and Test Nos. 1-B, 2-B, and 3-
B, 4-B, 5-B, and 6-B had the melting pattern shown in FIG. In the figure, 3 indicates a melted portion, and 4 indicates an unmelted portion. Table 1 also shows the results of determining the suitability of these ingot-forming additives for casting based on the formation of slab bears during casting.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法において用いる容器の構成
例を示す斜視図、第2図は容器内に造塊用添加剤
を入れた状態を示す断面図、第3図、第4図は本
発明方法により造塊用添加剤を試験した際の表面
層の溶融パターンを示し、第3図は好ましい添加
剤の溶融パターンを示す平面図、第4図は好まし
くない添加剤の溶融パターンを示す平面図であ
る。
Fig. 1 is a perspective view showing an example of the structure of a container used in the method of the present invention, Fig. 2 is a sectional view showing the state in which the additive for agglomeration is placed in the container, and Figs. 3 and 4 are the method of the present invention. Fig. 3 is a plan view showing the melting pattern of a preferable additive, and Fig. 4 is a plan view showing the melting pattern of an undesirable additive. be.

Claims (1)

【特許請求の範囲】[Claims] 1 上面が80cm2以上の面積を有して開口した平底
状の容器内に造塊用添加剤を、該容器内一面に平
面状に均一厚さに敷き詰め、これを加熱炉内で所
定温度に所定時間加熱し、造塊用添加剤の表面層
の全部が溶融しない段階で前記容器を加熱炉より
取り出し、冷却後造塊用添加剤の表面層の溶融部
分と未溶融部分の溶融パターンを観察することを
特徴とする造塊用添加剤の溶融試験方法。
1. In a flat-bottomed container with an open top surface area of 80 cm 2 or more, the additive for agglomeration is spread evenly and to a uniform thickness over the entire surface of the container, and this is heated to a predetermined temperature in a heating furnace. After heating for a predetermined period of time, when the entire surface layer of the agglomeration additive has not melted, the container is removed from the heating furnace, and after cooling, the melting pattern of the melted portion and unmelted portion of the surface layer of the agglomeration additive is observed. A melting test method for an additive for agglomeration, characterized by:
JP14227679A 1979-11-02 1979-11-02 Testing method of melting of additive for ingotting Granted JPS5666362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14227679A JPS5666362A (en) 1979-11-02 1979-11-02 Testing method of melting of additive for ingotting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14227679A JPS5666362A (en) 1979-11-02 1979-11-02 Testing method of melting of additive for ingotting

Publications (2)

Publication Number Publication Date
JPS5666362A JPS5666362A (en) 1981-06-04
JPS6343183B2 true JPS6343183B2 (en) 1988-08-29

Family

ID=15311585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14227679A Granted JPS5666362A (en) 1979-11-02 1979-11-02 Testing method of melting of additive for ingotting

Country Status (1)

Country Link
JP (1) JPS5666362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413986U (en) * 1990-05-24 1992-02-04

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370040A (en) * 1976-12-03 1978-06-22 Kawasaki Steel Co Granular rectifier molten flux used in casting of steel and casted ingot with redused surface defficiency

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288223U (en) * 1975-12-23 1977-07-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370040A (en) * 1976-12-03 1978-06-22 Kawasaki Steel Co Granular rectifier molten flux used in casting of steel and casted ingot with redused surface defficiency

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413986U (en) * 1990-05-24 1992-02-04

Also Published As

Publication number Publication date
JPS5666362A (en) 1981-06-04

Similar Documents

Publication Publication Date Title
ES2342734T3 (en) MOLDING MATERIAL, MIXING OF MOLDING MATERIALS FOR FOUNDRY AND PROCEDURE FOR THE MANUFACTURE OF A MOLD OR A MOLDED MOLDED PART.
GB2283325A (en) Thermal analysis of molten cast iron
JP5774400B2 (en) Method for evaluating silica powder, silica glass crucible, method for producing silica glass crucible
WO2011136062A1 (en) Container for thermal analysis of cast iron
JPS6343183B2 (en)
CN114216754A (en) Gradient component amorphous alloy sample and high-flux preparation method thereof
KR20010058258A (en) Apparatus for evaluating the crystallization characteristics of mold flux
KR102176221B1 (en) A composition for coating of a surface, and a coating
JP3256146B2 (en) Melting test method of mold flux and mold for observation sample collection
CA1230952A (en) Paste composition and its use in lost-wax casting processes particularly in dental technology
US5236033A (en) Method for producing a body from a material susceptible to thermal cracking and casting mold for executing the method
RU2785101C1 (en) Method for determining the melting point of a powder mixture
JP2021164931A (en) Metal molded product manufacturing method
Tobo et al. Solidification conditions to reduce porosity of air-cooled blast furnace slag for coarse aggregate
CN111044563A (en) Method for rapidly testing heat transfer performance of high-temperature inorganic nonmetallic material based on hot wire method
JP2004001017A (en) Mold powder for continuous casting of steel
JP5992572B2 (en) Method for evaluating silica powder, silica glass crucible, method for producing silica glass crucible
US661250A (en) Process of manufacturing thin homogeneous plates.
CN115974364A (en) Heat preservation weighing method for molten blast furnace slag in microcrystalline glass preparation process
Fraś et al. The transition from gray to white cast iron during solidification: Part II. Experimental verification
US1951911A (en) Mold for castings of iron and nonferrous metals
Chapman et al. PAMRIC: Properties of Alloys and Moulds Relevant to Investment Casting.
Sighinolfi et al. Study of the behaviour of mould powders for continuous casting by using the heating microscope
Yang et al. Mass-transport processes at the steel-enamel interface
SU1544573A1 (en) Method of producing articles from molten material