JPS6342931B2 - - Google Patents

Info

Publication number
JPS6342931B2
JPS6342931B2 JP7103081A JP7103081A JPS6342931B2 JP S6342931 B2 JPS6342931 B2 JP S6342931B2 JP 7103081 A JP7103081 A JP 7103081A JP 7103081 A JP7103081 A JP 7103081A JP S6342931 B2 JPS6342931 B2 JP S6342931B2
Authority
JP
Japan
Prior art keywords
weight
parts
impact strength
present
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7103081A
Other languages
Japanese (ja)
Other versions
JPS57187338A (en
Inventor
Hisashi Yamada
Hidekazu Hirota
Susumu Tomidokoro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP7103081A priority Critical patent/JPS57187338A/en
Publication of JPS57187338A publication Critical patent/JPS57187338A/en
Publication of JPS6342931B2 publication Critical patent/JPS6342931B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐衝撃性が改良された無機物充填ポリ
プロピレン系樹脂組成物に関するものである。 剛性、耐熱性(熱変形温度)および寸法安定性
を向上させる目的で、ポリプロピレンにタルク、
アスベスト、炭酸カルシウムなどの無機物を充填
することが広く行なわれている。たしかに無機物
を充填するとポリスチレンに近い剛性が得られる
し、耐熱性や寸法安定性も格段に向上するが、そ
の反面衝撃強度が著しく低下するという欠点があ
る。ポリプロピレンはそれ自体衝撃強度が低いも
のであるために、さらに衝撃強度が低下すること
は使用面で大きなマイナスとなり、無機物充填ポ
リプロピレンの用途が限られたものとなつてしま
う。 これらの欠点を解決するために、ホモポリプロ
ピレンの代りに、エチレンを共重合させたブロツ
クポリプロピレンやランダムポリプロピレンなど
の改質ポリプロピレンを用いても衝撃強度を十分
向上させることはできない。またポリイソブチレ
ンやジエンラバーといつたゴムを添加する方法も
行なわれているが、この方法ではゴムを均一に分
散させることが困難なうえに、無機物充填ポリプ
ロピレンの剛性と耐熱性とが低下するという欠点
がある。フタル酸エステルやアジピン酸エステル
などの可塑剤を添加する方法もあるが、この方法
では耐衝撃性を十分向上させることができない。 本発明者らは上記問題点を解決し、無機物充填
ポリプロピレンのすぐれた剛性、耐熱性および寸
法安定性を低下させることなく、耐衝撃性を向上
させることを目的として鋭意研究した結果、ポリ
プロピレンとしてエチレンとの共重合体であるい
わゆるブロツクポリプロピレンを用い、繊維状の
ポリテトラフルオロエチレンを添加することによ
つて所期の目的を達しうることを見出し、本発明
をなすに至つた。 すなわち、本発明は、(A)メルトインデツクスが
2.5g/10min。以上のエチレンプロピレンブロ
ツク共重合体40〜85重量部、(B)平均粒径が0.1〜
20μの範囲内にある無機充填材60〜15重量部およ
び(C)繊維状ポリテトラフルオロエチレン0.03〜10
重量部を含有してなる無機物充填ポリプロピレン
系樹脂組成物である。 本発明において用いられる成分(A)のエチレンプ
ロピレンブロツク共重合体は、メルトインデツク
ス(以下、MIという)が2.5g/10min.以上のも
のである。ここでいうMIはJISK6758に基づいて
測定したものである。本発明においてはMIが重
要であり、MI2.5g/10min。未満のものを用い
た場合には、衝撃強度向上効果が得られない。
MI5g/10min。以上のものが特に好ましい。ま
た、本発明においてはエチレンプロピレンブロツ
ク共重合体を用いることが重要であり、ランダム
共重合体やホモプロピレンを用いたのでは本発明
の目的を達成することはできない。ここでエチレ
ンプロピレンブロツク共重合体とはいわゆるブロ
ツクポリプロピレンの意であり、エチレン含量が
3〜15重量%のものが好ましい。エチレンプロピ
レンブロツク共重合体の配合量は、40〜85重量部
である。 本発明において用いられる成分(B)の無機充填材
は平均粒径が0.1〜20μの範囲内にあるものであ
る。この範囲をはずれたものを用いても剛性の向
上が図れないからである。成分(B)としては、タル
ク、炭酸カルシウム、炭酸マグネシウム、マイ
カ、カオリン、ホワイトカーボン、硫酸カルシウ
ムなどが例示されるが、このうちタルクと炭酸カ
ルシウムが好ましい。無機充填材の添加量はエチ
レンプロピレンブロツク共重合体40〜85重量部に
対して、60〜15重量部である。この添加量が1.5
重量部未満では、無機物を充填した明確な効果が
得られず、60重量部を越えて添加すると衝撃強度
の低下が著しく、回復が困難だからである。 本発明において用いられる成分(C)は繊維状のポ
リテトラフルオロエチレンである。ポリテトラフ
ルオロエチレンは重合方法により繊維状となるも
のとそうでないものとがあるが、繊維状とならな
いポリテトラフルオロエチレンでは本発明の目的
を達しえない。繊維状のポリテトラフルオロエチ
レンとは、テトラフルオロエチレンの乳化重合に
より得られるデイスパージヨン又はこれを分離造
粒して得られるフアインパウダーなどに圧縮、せ
ん断力を加えて繊維化したものである。本発明に
おいては、前記デイスパージヨン又はフアインパ
ウダーにあらかじめ圧縮、せん断力を加えて繊維
化、し、これをエチレンプロピレンブロツク共重
合体、無機物と混合した後、押出機などの成形機
やバンバリーミキサーの様な混練機を用いて無機
物充填ポリプロピレン系樹脂組成物を得ても良い
し、エチレンプロピレンブロツク共重合体と無機
物とからなる樹脂ペレツトに繊維状ポリテトラフ
ルオロエチレンを混合した後、混練、成形などに
より樹脂組成物を得ても良い。これらのほかに前
記デイスパージヨン又はフアインパウダーを樹
脂、無機物と混合した後、バンバリーミキサーの
様な混練機に供し、混練時にポリテトラフルオロ
エチレンを繊維化させても良い。いずれにしても
無機物充填ポリプロピレン系樹脂組成物中におい
てポリテトラフルオロエチレンが繊維状となつて
いるかぎり、その手段のいかんにかかわらず本発
明に含まれるものである。 本発明における繊維状ポリテトラフルオロエチ
レンを得るための原料としては、例えば三井フロ
ケミカル社製のテフロン6J、テフロン6JC、ダイ
キン工業社製のポリフロンF103、ポリフロンD
―1などの市販品が好ましい。これらの繊維状ポ
リテトラフルオロエチレンは、エチレンプロピレ
ンブロツク共重合体と無機物100重量部に対して、
0.03〜10重量部の範囲で添加される。0.03重量部
未満の添加量では衝撃強度の向上が認められず、
10重量部を越えると剛性が低下するからである。
このうち好ましい添加量は、0.15〜2重量部であ
る。また、無機充填材の量が多くなるに従い、繊
維状ポリテトラフルオロエチレンの添加量を多く
するのが好ましい。本発明における繊維状ポリテ
トラフルオロエチレンは、長さ対直径の比が100
以上のものと定義づけられる。 本発明の実施に際しては、前記成分に加えて、
ガラス繊維や顔料、帯電防止剤、滑剤、酸化防止
剤、紫外線吸収剤、カツプリング剤を添加するこ
ともできる。また性能を低下させない範囲でホモ
ポリプロピレンやランダムポリプロピレンを添加
しても良い。 本発明によれば、すぐれた剛性、耐熱性および
寸法安定性を保持しつつ、衝撃強度が向上するた
めに、ABS樹脂の代替等として自動車部品等用
途が拡大されるものである。 次に実施例により本発明をさらに詳しく説明す
る。 実施例 1 ポリプロピレン樹脂(以下、PPという)70重
量部、平均粒径8μのタルク30重量部およびポリ
テトラフルオロエチレン(以下、PTFEという)
として三井フロロケミカル社製のフアインパウダ
ー、テフロン6Jを0.15重量部配合し、これを内容
積20の混合機(スーパーミキサー)に入れ、ジ
ヤケツト温度150℃、ブレード回転数2300rpmの
条件で5分間加熱混合してPTFEを繊維化した。
次に、この混合物を直径40mmのベントタイプの単
軸押出機(L/D=28、フルフライトタイプスク
リユー、圧縮比3.5、スクリユー回転数80rpm)
に供給してストランドペレツトを製造した。この
ペレツトを射出成形機(日精樹脂工業社製のTS
―150、射出量5オンス)を用いて、アイゾツト
衝撃用試験片(JISK7110)を作成し、衝撃強度
を測定した。また、PTFEを添加しない組成物を
バンバリーミキサーを用いて混練し、ロールでシ
ート状に成形した後、ペレタイザーを用いてペレ
ツトを得た。これを前記射出成形機に供給してア
イゾツト衝撃用試験片を作成した。 PP樹脂の種類をかえて前記操作を行なうとと
もに、比較のためにPTFEとして繊維化しない
PTFE(三井フロロケミカル社製テフロン7AJ)
を用いたほかは前記条件と同一条件でアイゾツト
衝撃用試験片を作成した。衝撃強度の測定結果を
まとめて表―1に示すが、衝撃強度向上率とし
て、(PTFE添加物の衝撃強度―PTFE未添加物
の衝撃強度)/PTFE未添加物の衝撃強度を百分
率で表わした値を用いた。
The present invention relates to mineral-filled polypropylene resin compositions with improved impact resistance. Talc is added to polypropylene to improve rigidity, heat resistance (heat distortion temperature), and dimensional stability.
Filling with inorganic materials such as asbestos and calcium carbonate is widely practiced. It is true that when filled with inorganic materials, a rigidity close to that of polystyrene can be obtained, and heat resistance and dimensional stability are greatly improved, but on the other hand, there is a drawback that impact strength is significantly reduced. Since polypropylene itself has low impact strength, a further decrease in impact strength would be a major disadvantage in terms of use, and the uses of inorganic-filled polypropylene would be limited. Even if modified polypropylene such as block polypropylene copolymerized with ethylene or random polypropylene is used instead of homopolypropylene to solve these drawbacks, the impact strength cannot be sufficiently improved. Methods of adding rubber such as polyisobutylene or diene rubber have also been used, but this method has the disadvantage that it is difficult to uniformly disperse the rubber and that the rigidity and heat resistance of the inorganic-filled polypropylene are reduced. There is. There is also a method of adding a plasticizer such as phthalate ester or adipate ester, but this method cannot sufficiently improve impact resistance. The inventors of the present invention solved the above problems and conducted extensive research aimed at improving the impact resistance of inorganic-filled polypropylene without reducing its excellent rigidity, heat resistance, and dimensional stability. The inventors have discovered that the desired objective can be achieved by using so-called block polypropylene, which is a copolymer of polypropylene, and adding fibrous polytetrafluoroethylene, and have accomplished the present invention. That is, the present invention provides that (A) the melt index is
2.5g/10min. 40-85 parts by weight of the above ethylene propylene block copolymer, (B) average particle size of 0.1-85 parts by weight
60 to 15 parts by weight of inorganic filler within the range of 20μ and (C) 0.03 to 10 parts of fibrous polytetrafluoroethylene
This is an inorganic-filled polypropylene resin composition containing parts by weight. The ethylene propylene block copolymer as component (A) used in the present invention has a melt index (hereinafter referred to as MI) of 2.5 g/10 min. or more. MI here is measured based on JISK6758. MI is important in the present invention, and MI is 2.5g/10min. If less than that is used, the effect of improving impact strength cannot be obtained.
MI5g/10min. The above are particularly preferred. Further, in the present invention, it is important to use an ethylene propylene block copolymer, and the purpose of the present invention cannot be achieved if a random copolymer or homopropylene is used. The ethylene propylene block copolymer herein refers to so-called block polypropylene, and preferably has an ethylene content of 3 to 15% by weight. The blending amount of the ethylene propylene block copolymer is 40 to 85 parts by weight. The inorganic filler as component (B) used in the present invention has an average particle size within the range of 0.1 to 20μ. This is because even if a material outside this range is used, the rigidity cannot be improved. Examples of component (B) include talc, calcium carbonate, magnesium carbonate, mica, kaolin, white carbon, and calcium sulfate, among which talc and calcium carbonate are preferred. The amount of the inorganic filler added is 60 to 15 parts by weight based on 40 to 85 parts by weight of the ethylene propylene block copolymer. This addition amount is 1.5
This is because if the amount is less than 60 parts by weight, the clear effect of filling the inorganic substance cannot be obtained, and if it is added in excess of 60 parts by weight, the impact strength will drop significantly and recovery will be difficult. Component (C) used in the present invention is fibrous polytetrafluoroethylene. Depending on the polymerization method, polytetrafluoroethylene may become fibrous or not, but polytetrafluoroethylene that does not become fibrous cannot achieve the object of the present invention. Fibrous polytetrafluoroethylene is a dispersion obtained by emulsion polymerization of tetrafluoroethylene, or a fine powder obtained by separating and granulating it, and is made into fibers by applying compression and shearing force. . In the present invention, the dispersion or fine powder is compressed and sheared in advance to form fibers, mixed with an ethylene propylene block copolymer and an inorganic material, and then processed into a molding machine such as an extruder or Banbury. An inorganic substance-filled polypropylene resin composition may be obtained using a kneader such as a mixer, or by mixing fibrous polytetrafluoroethylene with resin pellets made of an ethylene propylene block copolymer and an inorganic substance, and then kneading the composition. The resin composition may be obtained by molding or the like. In addition to these methods, the dispersion or fine powder may be mixed with a resin and an inorganic substance, and then subjected to a kneading machine such as a Banbury mixer, and the polytetrafluoroethylene may be made into fibers during kneading. In any case, as long as polytetrafluoroethylene is in the form of fibers in the mineral-filled polypropylene resin composition, it is included in the present invention regardless of the means used. Examples of raw materials for obtaining fibrous polytetrafluoroethylene in the present invention include Teflon 6J and Teflon 6JC manufactured by Mitsui Flochemical Co., Ltd., Polyflon F103 and Polyflon D manufactured by Daikin Industries, Ltd.
Commercially available products such as -1 are preferred. These fibrous polytetrafluoroethylenes contain 100 parts by weight of ethylene propylene block copolymer and inorganic material.
It is added in a range of 0.03 to 10 parts by weight. No improvement in impact strength was observed when the amount added was less than 0.03 parts by weight.
This is because if it exceeds 10 parts by weight, the rigidity will decrease.
Among these, the preferred amount added is 0.15 to 2 parts by weight. Further, as the amount of inorganic filler increases, it is preferable to increase the amount of fibrous polytetrafluoroethylene added. The fibrous polytetrafluoroethylene in the present invention has a length to diameter ratio of 100.
It is defined as the above. In carrying out the present invention, in addition to the above components,
Glass fibers, pigments, antistatic agents, lubricants, antioxidants, ultraviolet absorbers, and coupling agents can also be added. Further, homopolypropylene or random polypropylene may be added as long as the performance is not deteriorated. According to the present invention, the impact strength is improved while maintaining excellent rigidity, heat resistance, and dimensional stability, so that the present invention can be used as a substitute for ABS resin, etc., and its applications are expanded to include automobile parts. Next, the present invention will be explained in more detail with reference to Examples. Example 1 70 parts by weight of polypropylene resin (hereinafter referred to as PP), 30 parts by weight of talc with an average particle size of 8μ, and polytetrafluoroethylene (hereinafter referred to as PTFE)
0.15 parts by weight of Fine Powder and Teflon 6J manufactured by Mitsui Fluorochemical Co., Ltd. were mixed together, and this was placed in a mixer (super mixer) with an internal volume of 20, and heated for 5 minutes at a jacket temperature of 150°C and a blade rotation speed of 2300 rpm. The mixture was mixed to form PTFE into fibers.
Next, this mixture was transferred to a vent type single screw extruder with a diameter of 40 mm (L/D = 28, full flight type screw, compression ratio 3.5, screw rotation speed 80 rpm).
was supplied to produce strand pellets. The pellets were molded into an injection molding machine (TS manufactured by Nissei Jushi Kogyo Co., Ltd.).
-150, injection amount 5 ounces) to prepare Izotsu impact test pieces (JISK7110) and measure impact strength. Further, a composition to which PTFE was not added was kneaded using a Banbury mixer, formed into a sheet with rolls, and then pellets were obtained using a pelletizer. This was supplied to the injection molding machine to prepare an Izotz impact test piece. The above operation was carried out by changing the type of PP resin, and for comparison, PTFE was used without fiberization.
PTFE (Teflon 7AJ manufactured by Mitsui Fluorochemical Co., Ltd.)
Izot impact test specimens were prepared under the same conditions as above, except that . The impact strength measurement results are summarized in Table 1, and the impact strength improvement rate is expressed as a percentage of (impact strength with PTFE additive - impact strength without PTFE additive)/impact strength without PTFE additive. The value was used.

【表】 表―1よりエチレンプロピレンブロツク共重合
体(ブロツクPP)に繊維状PTFEを組合せると、
他の組合せでは衝撃強度が向上しないのに反し、
本発明品では衝撃強度が著しく向上することがわ
かる。なお、本発明品の剛性、耐熱性、寸法安定
性は、PTFE未添加品と同等である。 実施例 2 MI9g/10min.のブロツクPP70重量部、平均
粒径8μのタルク30重量%にPTFE(テフロン6J)
の添加量をかえて配合し、実施例1と同一の条件
でアイゾツト衝撃用試験片を作成し、衝撃強度を
測定した。 PTFEの添加量が0.015重量部の場合、衝撃強
度向上率は4%と低いが、PTFEの添加量を0.03
重量部、0.15重量部、0.3重量とすると衝撃強度
向上率は、それぞれ13%、33%、33%と上昇し、
繊維状PTFEを0.03%以上添加すると本発明の目
的を達しうることがわかる。 実施例 3 ブロツクPPの種類をかえたほかは実施例1と
同一条件で衝撃強度を測定した。 MI1.0g/10min.のブロツクPPを用いた場合
には、衝撃強度向上率は5%であるが、MI2.5
g/10min.のものを用いると衝撃強度向上率は
11%となる。さらにMIが5.0g/10min.、7.0g/
10min.、12g/10min.、18g/10min.のものを
用いると、衝撃強度向上率は、それぞれ20%、27
%、40%、57%と上昇する。これらの結果から本
発明の目的を達するためには、MIが2.5g/
10min.以上のブロツクPPを用いることが必要で
あり、MI5.0g/10min以上のものが特に好まし
い。 実施例 4 MI9.0g/10min.のブロツクPP、平均粒径8μ
のタルク又は平均粒径4μの炭酸カルシウム、繊
維化するPTFE(ダイキン工業社製ポリフロンF
―103)および安定剤(チバガイギー社製のイル
ガノツクス1010)0.3重量部を配合した組成を、
バンバリーミキサーを用いて混練と同時にPTFE
を繊維状とし、ロールでシート状に成形した後、
ペレタイザーを用いてペレツトを得た。また
PTFEを除いた組成物についても同一の条件で混
練し、ペレツトを得た。これらを実施例1の射出
成形機を用い、同一条件でアイゾツト衝撃用試験
片を作成し、衝撃強度向上率を測定した。結果を
表―2に示す。
[Table] From Table 1, when fibrous PTFE is combined with ethylene propylene block copolymer (block PP),
While other combinations do not improve impact strength,
It can be seen that the impact strength of the product of the present invention is significantly improved. Note that the rigidity, heat resistance, and dimensional stability of the product of the present invention are equivalent to products without PTFE. Example 2 70 parts by weight of block PP of MI9g/10min., 30% by weight of talc with an average particle size of 8μ, and PTFE (Teflon 6J)
Izot impact test specimens were prepared under the same conditions as in Example 1 by varying the amount of addition of , and the impact strength was measured. When the amount of PTFE added is 0.015 parts by weight, the impact strength improvement rate is as low as 4%.
When using parts by weight, 0.15 parts by weight, and 0.3 parts by weight, the impact strength improvement rate increases to 13%, 33%, and 33%, respectively.
It can be seen that the object of the present invention can be achieved by adding 0.03% or more of fibrous PTFE. Example 3 Impact strength was measured under the same conditions as Example 1 except that the type of block PP was changed. When block PP with MI1.0g/10min. is used, the impact strength improvement rate is 5%, but MI2.5
g/10 min., the impact strength improvement rate is
It will be 11%. Furthermore, MI is 5.0g/10min., 7.0g/
When using 10min., 12g/10min., and 18g/10min., the impact strength improvement rate is 20% and 27%, respectively.
%, 40%, and 57%. From these results, in order to achieve the purpose of the present invention, MI should be 2.5g/
It is necessary to use a block PP of 10 min. or more, and one with an MI of 5.0 g/10 min or more is particularly preferred. Example 4 Block PP of MI9.0g/10min. Average particle size 8μ
talc or calcium carbonate with an average particle size of 4 μm, fibrous PTFE (Polyflon F manufactured by Daikin Industries, Ltd.)
-103) and 0.3 parts by weight of a stabilizer (Irganox 1010 manufactured by Ciba Geigy).
PTFE at the same time as kneading using a Banbury mixer
After making it into a fiber and forming it into a sheet shape with a roll,
Pellets were obtained using a pelletizer. Also
The composition excluding PTFE was also kneaded under the same conditions to obtain pellets. Using the injection molding machine of Example 1, Izot impact test pieces were prepared from these under the same conditions, and the impact strength improvement rate was measured. The results are shown in Table-2.

【表】 *1:重量部
本発明品によると衝撃強度が著しく向上するこ
とがわかる。なお、剛性、耐熱性、寸法安定性は
PTFE未添加品と同等である。
[Table] *1: Part by weight It can be seen that the impact strength of the product of the present invention is significantly improved. In addition, the rigidity, heat resistance, and dimensional stability are
Equivalent to products without PTFE added.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)メルトインデツクスが2.5g/10min。以
上のエチレンプロピレンブロツク共重合体40〜85
重量部、(B)平均粒径が0.1〜20μの範囲内にある無
機充填材60〜15重量部および(C)繊維状ポリテトラ
フルオロエチレン0.03〜10重量部を含有してなる
無機物充填ポリプロピレン系樹脂組成物。
1 (A) Melt index is 2.5g/10min. Ethylene propylene block copolymer of 40~85 or more
parts by weight, (B) 60 to 15 parts by weight of an inorganic filler having an average particle size within the range of 0.1 to 20μ, and (C) 0.03 to 10 parts by weight of fibrous polytetrafluoroethylene. Resin composition.
JP7103081A 1981-05-12 1981-05-12 Inorganic filler-containing polypropylene resin composition Granted JPS57187338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7103081A JPS57187338A (en) 1981-05-12 1981-05-12 Inorganic filler-containing polypropylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7103081A JPS57187338A (en) 1981-05-12 1981-05-12 Inorganic filler-containing polypropylene resin composition

Publications (2)

Publication Number Publication Date
JPS57187338A JPS57187338A (en) 1982-11-18
JPS6342931B2 true JPS6342931B2 (en) 1988-08-26

Family

ID=13448714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7103081A Granted JPS57187338A (en) 1981-05-12 1981-05-12 Inorganic filler-containing polypropylene resin composition

Country Status (1)

Country Link
JP (1) JPS57187338A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2534592B1 (en) * 1982-10-14 1986-01-24 Charbonnages Ste Chimique PROCESS FOR MANUFACTURING MATRIX THERMOPLASTIC COMPOSITES WITH MATRIX AND POLYMERIC FIBRILLARY REINFORCING PHASE
DE4430474C1 (en) * 1994-08-27 1996-03-28 Glyco Metall Werke Plain bearing material and its use for the production of a composite layer material
US8236874B2 (en) 2003-06-11 2012-08-07 3M Innovative Properties Company Compositions and method for improving the processing of polymer composites
US7402625B2 (en) 2003-06-11 2008-07-22 3M Innovative Properties Company Compositions and method for improving the processing of polymer composites

Also Published As

Publication number Publication date
JPS57187338A (en) 1982-11-18

Similar Documents

Publication Publication Date Title
KR100466355B1 (en) Polytetrafluoroethylene-containing powder mixture, thermoplastic resin compositions including same and molded articles made therefrom
US7884148B2 (en) Resin composition, method of producing same, and foam-insulated electric wire
JP3272985B2 (en) Method for producing mixed powder containing polytetrafluoroethylene
CN109503954B (en) Polypropylene composite material and preparation method and application thereof
US4925880A (en) Composition and process for making porous articles from ultra high molecular weight polyethylene
KR20030074306A (en) Compositions comprising elastomers and high-molecular-weight polyethylenes with irregular particle shape, process for their preparation, and their use
WO1999010431A1 (en) Melt tension improver for polyolefin resins and process for producing the same
CN111607236A (en) High-fluidity low-gloss styrene-based thermoplastic elastomer material and preparation method thereof
US4423192A (en) Lubricated thermoplastic compositions of polyvinylidene fluoride
DE69528238T2 (en) Thermoplastic elastomer powder, powder molding method using the same and molded article containing the same
DE60103408T2 (en) PROCESS FOR IMPLEMENTING POLYVINYLBUTYRAL (PVB) WASTE FOR PROCESSABLE GRANULES
JP6992695B2 (en) Rigid polyvinyl chloride-based molded products and their manufacturing methods
JPS6342931B2 (en)
JPH06182756A (en) Melting and mixing method for ethylene polymers having different molecular weights
CN107964173A (en) A kind of EPDM sulfuration thermoplastic elastomers of ultra-low-smell and preparation method thereof
CN114573929A (en) Auxiliary agent composition for polyolefin
Torres et al. Effects of the blending sequence and interfacial agent on the morphology and mechanical properties of injection molded PC/PP Blends
CN113583377A (en) Elastomer composition for improving performance of copolymer and preparation method thereof
JP4049566B2 (en) Polyolefin resin composition for foaming
CN111875893A (en) Processing modification method for improving performance of polyolefin thermoplastic vulcanizate
CN107686598B (en) Low-shrinkage low-specific-gravity modified polypropylene material and preparation method thereof
JPH06339920A (en) Production of polyolefin with little content of fish eyes
JPH07330935A (en) Crystalline polyolefin foam
CN113831614B (en) Low-temperature-resistant low-hardness thermoplastic elastomer and preparation method thereof
CN109161091B (en) High-flame-retardancy EVA (ethylene-vinyl acetate) foam material and preparation method thereof