JPS6342379B2 - - Google Patents
Info
- Publication number
- JPS6342379B2 JPS6342379B2 JP54051844A JP5184479A JPS6342379B2 JP S6342379 B2 JPS6342379 B2 JP S6342379B2 JP 54051844 A JP54051844 A JP 54051844A JP 5184479 A JP5184479 A JP 5184479A JP S6342379 B2 JPS6342379 B2 JP S6342379B2
- Authority
- JP
- Japan
- Prior art keywords
- terminal
- temperature
- glass
- hole
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 24
- 238000000465 moulding Methods 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 239000010445 mica Substances 0.000 claims description 18
- 229910052618 mica group Inorganic materials 0.000 claims description 18
- 239000012212 insulator Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 230000005405 multipole Effects 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 10
- 239000004033 plastic Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 14
- 239000000843 powder Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 229910052573 porcelain Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- KZKGLGIVGQYOTG-UHFFFAOYSA-N [F].[Au] Chemical compound [F].[Au] KZKGLGIVGQYOTG-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 210000003298 dental enamel Anatomy 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- RJDOZRNNYVAULJ-UHFFFAOYSA-L [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] RJDOZRNNYVAULJ-UHFFFAOYSA-L 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 239000012812 sealant material Substances 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- -1 stainless steel Chemical compound 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
- Connections Arranged To Contact A Plurality Of Conductors (AREA)
Description
【発明の詳細な説明】
この発明は、たとえば金属製気密容器内に収容
された電気機器と外部との電気的接続を行なう場
合などに用いられる気密絶縁端子及びその製造方
法に関し、とくに気密容器内にフロンなどの液体
化合物を冷却媒体として充填し、その中に発熱を
ともなう例えば大電流用の半導体からなる整流素
子を浸漬した強制冷却方式の整流装置などに好適
に用いられ、その他制御あるいは測定装置などに
一般的に使用し得る複数の通電用端子導体を有す
る気密絶縁端子(以下「多極端子」と呼称する)
および、その製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an airtight insulated terminal used, for example, when making an electrical connection between an electrical device housed in a metal airtight container and the outside, and a method for manufacturing the same. It is suitable for use in forced cooling type rectifiers in which a liquid compound such as fluorocarbon is filled as a cooling medium and a rectifying element that generates heat, for example made of a semiconductor for large currents, is immersed in the liquid compound, and other control or measurement equipment. Hermetically insulated terminals with multiple current-carrying terminal conductors that can be generally used for applications such as terminals (hereinafter referred to as "multi-pole terminals")
and its manufacturing method.
従来、多極端子として一般に使用されているも
のは気密封着剤および電気絶縁物としてゴム、ガ
ラス、あるいは磁器質を用いたものがあるが、ゴ
ムを使用したものは耐熱特性が乏しく経年変化が
あり、あるいは冷却媒体に対する耐食性などに問
題があり、ガラスあるいは磁器質を用いたもの
は、熱および機械衝撃性に乏しく、とくに車輛な
どに塔載される整流装置などに使用した場合、振
動により破損するという致命的な欠陥があり、こ
れらを使用することは不可能である。 Conventionally, multi-pole terminals commonly used have used rubber, glass, or porcelain as airtight sealants and electrical insulators, but those using rubber have poor heat resistance and deteriorate over time. Products made of glass or porcelain have poor thermal and mechanical shock resistance, and may be damaged by vibration, especially when used in rectifiers mounted on vehicles. They have a fatal flaw that makes it impossible to use them.
上記の致命的な欠陥即ち冷媒に対する耐食性、
経年変化および衝撃特性について満足な特性を保
持する多極端子が得られないために通電用の端子
導体(以下、単に「通電極」という)が1本の気
密絶縁端子、(以下単極端子と呼称する。)のもの
で、前記特性を完全に満足させる以下に詳記する
ものを必要な極数使用していた。この場合、使用
数が増加するため取付手段を要することは勿論、
取付面積が増加し、装置自体の大きさが必要以上
に大きくなり必然的に製造費用が高くなるという
避け難い条件下にあつた。上記特性の安定した単
極端子とは、ガラス質粉末とマイカ粉末の混合粉
末を気密封着剤兼絶縁物原料とし、この原料中の
ガラス質が軟化する温度に原料混合物を加熱し、
気密封着剤兼絶縁物を構成することにより得た単
極端子である。この単極端子は端子に要求される
特性、即ち冷媒に対する耐食性、耐熱および機械
的衝撃性はもちろん、経年変化をも含め極めて優
れた特性を保持するものである。ところでこの優
れた単極端子の構成から派生させた多極端子に第
1図に示すものがある。第1図においてaは横断
面図、bは縦断面図である。 The above fatal flaw is corrosion resistance to refrigerants;
Because it is not possible to obtain a multi-pole terminal that maintains satisfactory aging and impact characteristics, the current-carrying terminal conductor (hereinafter simply referred to as the "carrying electrode") is replaced by a single airtight insulated terminal (hereinafter referred to as a single-pole terminal). ), which fully satisfies the above characteristics and is described in detail below, was used in the required number of poles. In this case, as the number of uses increases, it goes without saying that a mounting means is required.
The installation area was increased, the size of the device itself became larger than necessary, and manufacturing costs inevitably increased, which were unavoidable conditions. A single-electrode terminal with the above-mentioned stable characteristics is made by using a mixed powder of vitreous powder and mica powder as an airtight sealant and insulating material, and heating the raw material mixture to a temperature at which the vitreous material in this raw material softens.
This is a single-electrode terminal obtained by forming an airtight sealant and insulator. This single-electrode terminal maintains the properties required of a terminal, namely, corrosion resistance against refrigerant, heat resistance, and mechanical shock resistance, as well as extremely excellent properties including aging. By the way, there is a multi-electrode terminal derived from this excellent single-electrode terminal configuration as shown in FIG. In FIG. 1, a is a cross-sectional view, and b is a vertical cross-sectional view.
以下第1図に従いその構造を説明する。1は基
体を構成する外周金具であり、例えば鉄、ステン
レスなど600℃程度の加熱に耐える金属であり溶
接ネジ止その他の方法で器壁など必要な部分に取
付けられる。2aは外周金具の中央の貫通孔1a
の中心部に位置する通電極、2bは貫通孔1aの
中心部以外に位置する通電極、3は絶縁物で、単
極端子と同様ガラス質粉末とマイカ粉末の混合粉
末を原料とし、この原料をガラス質が軟化し、加
圧により流動する温度に加熱し、加熱状態で加圧
成形したガラス、マイカ塑造体である。図におい
て通電極2a,2bは合計7本図示してあるが数
については関係なく要は通電極の存在する位置で
ある。第1図は多極端子の構造を示しているが通
電極2bを除き通電極2aのみにすると単極端子
である。 The structure will be explained below with reference to FIG. Reference numeral 1 denotes a peripheral metal fitting constituting the base body, which is made of a metal such as iron or stainless steel that can withstand heating of about 600°C, and is attached to a necessary part such as the vessel wall by welding screws or other methods. 2a is the through hole 1a in the center of the outer peripheral fitting.
2b is a conducting electrode located outside the center of the through hole 1a, 3 is an insulating material, and like the single-electrode terminal, the raw material is a mixed powder of glassy powder and mica powder. These are glass and mica plastic bodies that are heated to a temperature at which the glassy substance softens and flows under pressure, and then pressure-formed in the heated state. In the figure, a total of seven conducting electrodes 2a and 2b are shown, but the number does not matter; the important point is the position where the conducting electrodes are present. Although FIG. 1 shows the structure of a multi-electrode terminal, if the conducting electrode 2b is removed and only the conducting electrode 2a is used, it becomes a single-electrode terminal.
単極端子の場合は前記のように優れた特性を完
全に保持するが、多極端子になると温度の上昇下
降を反覆すると通電極2bの外周部の気密保持特
性が劣化するという致命的な欠陥が現れるように
なる。そのため沸騰冷却装置用の気密絶縁端子な
どの用途には使用不可能である。 In the case of a single-pole terminal, the excellent characteristics described above are completely maintained, but in the case of a multi-pole terminal, the airtightness of the outer periphery of the conducting electrode 2b deteriorates when the temperature rises and falls repeatedly, which is a fatal flaw. begins to appear. Therefore, it cannot be used for applications such as airtight insulated terminals for boiling cooling devices.
この理由につき説明する。この種構造の単極端
子が優れた気密特性を保持する基本原理は外周金
具1、通電極2aおよび絶縁物3の熱膨張率(但
しこの場合は熱収縮率になる)の差により、外周
外具1は絶縁物3を強力に締付け、また通電極2
aは絶縁物3により強力に締付られるという現象
が具現されているためである。言い換えると、外
周金具1により絶縁物3と通電極2aが強力に焼
バメされていることである。通電極2aが外周金
具1の中央の貫通孔1aの中心に存在している場
合には、通電極2aの外周面は外周金具1の内壁
4と等距離にあり全面均等な圧力により締付けら
れているため、気密特性に関しては極めて安定し
たものになる。 The reason for this will be explained. The basic principle behind how a single-electrode terminal with this type of structure maintains excellent airtightness is that the outer periphery is The tool 1 strongly tightens the insulator 3 and also connects the conductive electrode 2
This is because the phenomenon that a is strongly tightened by the insulator 3 is realized. In other words, the insulator 3 and the conducting electrode 2a are strongly shrink-fitted by the outer peripheral fitting 1. When the conducting electrode 2a is located at the center of the through hole 1a in the center of the outer fitting 1, the outer circumferential surface of the conducting electrode 2a is equidistant from the inner wall 4 of the outer fitting 1 and is tightened with uniform pressure over the entire surface. Therefore, the airtightness is extremely stable.
第1図に示す多極端子の場合は貫通孔1aの中
心に存在する通電極2aの他に等円周上に6本の
通電極2bを配しているが、中心部の通電極2a
以外の通電極2bはその外周面と外周外具1の内
壁4との距離は総べて異なる。即ち、内壁4に近
く位置している通電極2bの外周面は、外周金具
1の収縮による圧縮を直接受けるがその反対側の
面は内壁4からの距離が長くなつており、かつ、
その間に他の通電極が存在しているため受けてい
る圧縮力が少なくなつている。このように通電極
2bの外周面が受けている圧縮力、言いかえると
締付力が不均一な状態になつている。成形後の常
温時においては十分に気密特性を保持するが温度
の上昇下降の反覆を受けると圧縮力の弱い面が漏
洩現象を来すようになる。上記説明で明らかなよ
うに、この構造の多極端子は気密特性が劣化する
という致命的な欠陥を有しており、気密特性を必
要とする装置には使用不可能である。但し、水密
特性程度の要求特性の用途に関して使用可能であ
る。 In the case of the multi-pole terminal shown in FIG. 1, in addition to the conducting electrode 2a located at the center of the through hole 1a, six conducting electrodes 2b are arranged on an equal circumference.
The distances between the outer peripheral surface and the inner wall 4 of the outer peripheral outer member 1 of the other conductive electrodes 2b are all different. That is, the outer circumferential surface of the conducting electrode 2b located close to the inner wall 4 is directly compressed by the contraction of the outer circumferential metal fitting 1, but the surface on the opposite side is located at a longer distance from the inner wall 4, and
Since there is another current-carrying electrode between them, the compressive force received is reduced. In this way, the compressive force, or in other words, the tightening force, applied to the outer circumferential surface of the conducting electrode 2b is non-uniform. At room temperature after molding, it maintains sufficient airtightness, but when subjected to repeated rises and falls in temperature, the surface with weak compressive force begins to leak. As is clear from the above description, the multi-pole terminal of this structure has a fatal defect in that its airtightness deteriorates, and it cannot be used in devices that require airtightness. However, it can be used for applications that require characteristics such as watertightness.
この発明は多極気密絶縁端子において気密特性
に優れたものの構造および、そのものを得るため
の製造法に関するものである。 The present invention relates to a structure of a multi-polar hermetically insulated terminal with excellent hermetic properties and a manufacturing method for obtaining the same.
第2図に本発明の一実施例になる気密絶縁端子
の構造を示す。図中2aの端子の中心部に存在す
る通電極、2bは中心以外に位置する通電極、3
はガラス、マイカ塑造体よりなる絶縁物、5は基
体で通電極2a,2bと同数の貫通孔6を有して
おり、孔径は通電極の径より太くなつている。更
に詳細に説明すると通電極2a,2bは貫通孔6
の中心部に位置し、絶縁物3は貫通孔6と通電極
2a,2bの間の空隙部をそれぞれ充満し、基体
5の上面で通電極2a,2bを取りかこんで連結
して構成されている。次に通電極2a,2bおよ
び基体5の構成金属材料であるが600℃の加熱に
耐え機械強度を保持することが前提となる。なお
熱膨脹係数に関しては、ガラス、マイカ塑造体の
転位温度までの熱膨脹係数が基準になる。このガ
ラス、マイカ塑造体の転位温度は原料ガラスの転
位温度と同等であると考えて差支えない。またそ
の熱膨脹係数は原料ガラスに大きく支配されるも
のであり、その値は8〜12×10-6程度のものが得
られる。基体5の熱膨脹係数は、ガラス、マイカ
塑造体のそれより大きいものを使用する。また通
電極2a,2bの熱膨脹係数はガラス、マイカ塑
造体のそれより小さいことが理想的であるが、同
等あるいはある程度大きくても支障ない。この関
係に関しては製造方法と密接に関係するので別に
説明するとし、先に構造自体との関係を説明す
る。本発明になる多極端子の特徴は、基体5に通
電極と同数の貫通孔6が設けてあり、通電極2
a,2bは各貫通孔6の中心部に位置しているた
め通電極2a,2bの外周面と貫通孔6の内壁と
の距離は全面等距離にある。そのため基体5の収
縮により、通電極2a,2bは、貫通孔6の内壁
と通電極2a,2bの外周面の空間に存在するガ
ラス、マイカ塑造体により全面均等な圧力で加圧
されることになり、通電極2bは基体5の中心部
に存在しないに拘らず単極端子の場合に単独でそ
の中心部に存在する通電極2aに現出した加圧状
態がそれぞれに現出するようになる。そのためそ
の特性は単極端子と同等の値を保持し、温度の上
昇下降の反覆に合つても気密特性が劣化すること
がなく、第1図に示した従来品の致命的欠陥は完
全に除去された。 FIG. 2 shows the structure of a hermetically insulated terminal according to an embodiment of the present invention. In the figure, 2a is a conducting electrode located at the center of the terminal, 2b is a conducting electrode located other than the center, and 3
5 is an insulator made of glass or mica plastic, and 5 is a base body having the same number of through holes 6 as the conducting electrodes 2a and 2b, and the hole diameter is larger than the diameter of the conducting electrodes. To explain in more detail, the conducting electrodes 2a and 2b are connected to the through hole 6.
The insulator 3 fills the gaps between the through hole 6 and the conductive electrodes 2a, 2b, and surrounds and connects the conductive electrodes 2a, 2b on the upper surface of the base 5. There is. Next, the metal materials of the conductive electrodes 2a, 2b and the base body 5 are required to withstand heating at 600°C and maintain mechanical strength. Regarding the coefficient of thermal expansion, the coefficient of thermal expansion up to the transposition temperature of glass and mica plastic bodies is used as a standard. It is safe to assume that the transition temperature of this glass or mica plastic body is equivalent to that of the raw material glass. Further, the coefficient of thermal expansion is largely controlled by the raw material glass, and its value is about 8 to 12×10 −6 . The thermal expansion coefficient of the base body 5 is larger than that of glass or mica plastic material. Ideally, the coefficient of thermal expansion of the conductive electrodes 2a, 2b is smaller than that of the glass or mica plastic body, but there is no problem if it is equal to or larger to some extent. Since this relationship is closely related to the manufacturing method, it will be explained separately, and the relationship with the structure itself will be explained first. The feature of the multi-electrode terminal according to the present invention is that the base body 5 is provided with the same number of through holes 6 as the carrying electrodes.
Since electrodes a and 2b are located at the center of each through hole 6, the distances between the outer circumferential surfaces of the conductive electrodes 2a and 2b and the inner wall of the through hole 6 are equal over the entire surface. Therefore, due to the contraction of the base body 5, the conductive electrodes 2a, 2b are pressurized with uniform pressure over the entire surface by the glass or mica plastic body existing in the space between the inner wall of the through hole 6 and the outer peripheral surface of the conductive electrodes 2a, 2b. Therefore, regardless of whether or not the conducting electrode 2b is located at the center of the base 5, the pressurized state that appears in the conducting electrode 2a that is present at the center of the single-electrode terminal will appear in each case. . Therefore, its characteristics maintain the same value as a single-pole terminal, and the airtightness does not deteriorate even when the temperature rises and falls repeatedly, completely eliminating the fatal flaw of the conventional product shown in Figure 1. It was done.
次に第3図に従い代表的な製造方法を説明す
る。図において、7は成形枠は、8は受金具で通
電極2a,2bを直立して保持し得る保持穴8a
を有する。9は加圧金で通電極2a,2bを貫通
し得る貫通穴9aを有する。以上の3部品で成形
型が構成されている。なお上記成形型構成部品に
はそれぞれ加熱装置(図示せず)が附設されてお
り所望の温度に加熱できるようになつている。 Next, a typical manufacturing method will be explained with reference to FIG. In the figure, 7 is a molding frame, 8 is a receiving metal fitting, and holding hole 8a can hold the conducting electrodes 2a, 2b upright.
has. Reference numeral 9 has a through hole 9a through which the conductive electrodes 2a and 2b can be penetrated with pressurized metal. The mold is made up of the above three parts. It should be noted that each of the mold component parts is provided with a heating device (not shown) so that it can be heated to a desired temperature.
製造には中央部に固定盤10を有し、下部に上
下に駆動する駆動部11と、上部に上下に駆動す
る駆動部12を有する加圧成形機を使用する。枠
7は固定盤10に治具(図示せず)を介して固定
する。受金具8は下部駆動部11に加圧金9は上
部駆動部12にそれぞれ治具(図示せず)によつ
て固定する。 For manufacturing, a pressure molding machine is used which has a fixed platen 10 in the center, a drive section 11 at the bottom that drives up and down, and a drive section 12 at the top that drives up and down. The frame 7 is fixed to a fixed platen 10 via a jig (not shown). The receiving fitting 8 is fixed to the lower drive part 11, and the pressurizing metal 9 is fixed to the upper drive part 12 by jigs (not shown), respectively.
基体5を準備する。これらの金具の材料はガラ
ス、マイカ塑造体のガラス質の転位温度以下の熱
膨脹係数より大きいものを使用する。具体的に
は、鉄およびその合金例えばステンレスなどが好
適に使用可能で高温強度が鉄程度のものが一般的
に好ましい。 A base 5 is prepared. The material used for these metal fittings is one that has a thermal expansion coefficient lower than the transition temperature of glass or mica plastic material. Specifically, iron and its alloys, such as stainless steel, can be suitably used, and those with high-temperature strength comparable to iron are generally preferred.
次に予備成形体13を準備する。この予備成形
体13は、ガラス質の粉末とマイカ粉末の混合粉
末を別の押型(図示せず)を使用して常温で加圧
して一定形状に成形する。次に通電極であるが材
料は特に限定されず、鉄、チタン、銅合金例えば
銅クロームなどが使用可能である。熱膨脹係数に
関しては一般に小さい方が望ましいが、成形条件
方法により大幅に拡大することができる。 Next, a preformed body 13 is prepared. This preformed body 13 is formed by pressing a mixed powder of glassy powder and mica powder into a certain shape using another press die (not shown) at room temperature. Next, the material of the conductive electrode is not particularly limited, and iron, titanium, copper alloys, such as copper chrome, etc. can be used. Although a smaller coefficient of thermal expansion is generally desirable, it can be greatly increased by changing the molding conditions.
実際の多極端子の製造例を工程に従い詳細に説
明する。先ず予備成形体13の作成であるがガラ
ス質にはpbo−1.0、B2O3−0.4、SiO2−0.4、
AlF3−0.2のモル比組成品を200メツシユに粉砕し
た粉末55w%、合成金弗素マイカの粉末60〜100
メツシユ品45w%を混合し、水5w%を加え湿潤
状態にしたものを原料とし、320グラムを秤取し、
別の成形型(図示せず)を使用し、冷間加圧成形
により、外径37φ、高サ15mmで中心部および26φ
の円周上に等距離に位置する5φの貫通孔6ケを
有する円板を作成し、120℃の乾燥器に2時間保
持し、水分を除去し作成を完了した。 An example of actual production of a multi-electrode terminal will be explained in detail according to the steps. First, the preform 13 is prepared, and the glass materials include pbo-1.0, B 2 O 3 -0.4, SiO 2 -0.4,
55w% powder obtained by grinding a molar ratio composition of AlF 3 -0.2 into 200 meshes, 60-100% synthetic gold fluorine mica powder
Mix 45w% of mesh products, add 5w% of water to make it wet, and weigh out 320 grams.
Using another mold (not shown), by cold pressing, the outer diameter is 37φ, the height is 15mm, and the center and 26φ
A disk having six through holes of 5φ located at equal distances on the circumference was prepared, and the disk was kept in a dryer at 120° C. for 2 hours to remove moisture and complete the preparation.
次に基体5についてはステンレス材質で外径40
mmφ高サ20mmで中心部および26φの円周上に等距
離に位置する7mmφの貫通孔6ケを有する円板を
使用した。また通電極には鉄材で外径2.6φのもの
で長サを最短55mmから各1.5mmづつ長くし最長64
mmにし、各々長サの異なるもの7本で、その一端
を1mmRに仕上げたものを用意した。成形型は受
金具8を第3図Aに示す位置に加圧金9は枠7に
内包する位置に保持して、各加熱装置を使用して
300℃に加熱する。基体5は550℃に、また予備成
形体13は600℃に別の電気炉(図示せず)を使
用して加熱する。それぞれの加熱が完了すると先
ず加圧金9を第3図Aに示すように上昇させ枠7
との間に空間部を設け、次に受金具8をその上面
が枠7の上面と同位置になるまで上昇させ、通電
極2a,2bを受金具8の保持穴8aに挿填す
る。次に基体5をその貫通孔6に通電極2a,2
bを貫入させて、受金具8上に挿填し、引続き予
備成形体13を同じ要領で基体5上に挿填する。
挿填が完了すると受金具8を元の位置まで下降さ
せ、引続き加圧金9を下降させ、貫通穴9aに通
電極2a,2bが進入するようにして予備成形体
13を全圧力20tonで加圧し、第3図Bに示す状
態にする。成形品全体を320℃まで冷却し、加圧
金9を上昇させた後受金具8を上昇させ成形品を
取り出し成形を完了する。 Next, the base 5 is made of stainless steel with an outer diameter of 40 mm.
A disk with a mmφ height of 20 mm and six through holes of 7 mmφ located equidistantly on the center and the 26φ circumference was used. In addition, the conducting electrode is made of iron and has an outer diameter of 2.6φ, and the length is increased from a minimum of 55 mm to a maximum of 64 mm.
7 mm, each with a different length, and one end of which was finished with a radius of 1 mm was prepared. The mold is held with the receiving metal fitting 8 in the position shown in Figure 3A and the pressurizing metal 9 in the position enclosed in the frame 7, using each heating device
Heat to 300℃. The substrate 5 is heated to 550°C, and the preform 13 is heated to 600°C using a separate electric furnace (not shown). When each heating is completed, the pressurized metal 9 is first raised as shown in FIG. 3A, and the frame 7
A space is provided between them, and then the receiving metal fitting 8 is raised until its upper surface is at the same position as the upper surface of the frame 7, and the conducting electrodes 2a, 2b are inserted into the holding holes 8a of the receiving metal fitting 8. Next, the base body 5 is inserted into the through hole 6 through the conductive electrodes 2a, 2.
b is penetrated and inserted onto the receiving metal fitting 8, and subsequently the preform 13 is inserted onto the base body 5 in the same manner.
When the insertion is completed, the receiving metal fitting 8 is lowered to its original position, and the pressurizing metal fitting 9 is subsequently lowered to apply the preformed body 13 with a total pressure of 20 tons so that the conductive electrodes 2a and 2b enter the through hole 9a. Press down to obtain the condition shown in Figure 3B. The entire molded product is cooled to 320° C., and after the pressurizing metal 9 is raised, the receiving metal fitting 8 is raised to take out the molded product and the molding is completed.
上記の製造例において成形に直接関係する事項
について説明する。受金具8の保持穴8aは通電
極2a,2bを直立してその上端が等距離を保持
し、加圧金9の下降時に貫通穴9aをスムースに
通電極2a,2bが貫入し得る機能を保有するよ
うにしておくことが肝要である。また通電極2
a,2bの長サに差を設け、その上端部を曲面に
したことは挿入を容易かつ確実にするための手段
である。 Matters directly related to molding in the above manufacturing example will be explained. The holding hole 8a of the receiving bracket 8 has the function of holding the conducting electrodes 2a, 2b upright with their upper ends equidistant from each other, and allowing the conducting electrodes 2a, 2b to smoothly penetrate the through hole 9a when the pressurizing metal 9 is lowered. It is important that you keep it. Also, the conducting electrode 2
Providing a difference in the lengths of a and 2b and making the upper end curved is a means to facilitate and ensure insertion.
次に予備成形体13の形状であるが、成形時予
備成形体を挿填してから加圧工程に到る間に温度
下降が大きいと均一な成形が困難になる。この現
象を避けるため挿填時枠7の内壁および通電極2
a,2bに接触しないようにすることが必要条件
で、そのためにはその外径寸法を枠7の内径より
小さく、また孔の内径を通電極2a,2bの外径
より大きくしておくことが重要である。またこの
製造例においては予備成形体13を構成するガラ
ス質に酸化鉛を含有する所謂鉛系ガラスを用いた
ものについて説明したが、成分的には何らこれに
限定されるものではなく例えば市販の無鉛系琺瑯
用釉薬を使用してもよい。また使用マイカ粉末に
ついてはガラス質と混合共存して600℃程度以上
に加熱するので、この温度で分解するものは使用
出来ない。即ち天然マイカは使用不可能で合成マ
イカに限定され、合成金弗素マイカは最適なもの
の例である。次に加熱加圧により成形した絶縁物
3についてであるが、構成するガラス質の転位温
度以下の熱膨脹系数(この場合には熱収縮係数に
なるが同等に考えられる)が基体5に使用する金
属材料のそれにより小さいことが必須条件であ
る。この発明になる多極端子の最大の特徴は完全
な気密特性を保持することであり、それは外周に
存在する基体5が内包する通電極2a,2bをそ
の間に介在させた絶縁物を介して強力に締付ける
ことにより達成されている。従つてその熱膨脹係
数の差は重要な要因である。なお通電極2a,2
bとの熱膨脹係数の関係であるが上記理由と同様
に、絶縁物3より通電極2a,2bが小さいこと
が理想的であるが、等程度かあるいは幾分大きい
ものであつてもその効果が得られる。その理由は
成形時、通電極2a,2bは常温で成形型内に挿
填されるため、上昇温度が低い条件下で外周部に
絶縁物3が充填され、収縮量の絶対量が小さいこ
とにある。 Next, regarding the shape of the preformed body 13, uniform molding becomes difficult if there is a large temperature drop between the insertion of the preformed body and the pressurization process during molding. In order to avoid this phenomenon, the inner wall of the frame 7 and the conductive electrode 2 are
The necessary condition is to avoid contact with the electrodes 2a and 2b, and for this purpose, the outer diameter of the hole should be smaller than the inner diameter of the frame 7, and the inner diameter of the hole should be larger than the outer diameter of the conductive electrodes 2a and 2b. is important. In addition, in this manufacturing example, a so-called lead-based glass containing lead oxide is used as the glass material constituting the preform 13, but the composition is not limited to this in any way, and for example, commercially available Lead-free enamel glazes may be used. Furthermore, since the mica powder used is mixed with glass and heated to about 600°C or higher, it cannot be used if it decomposes at this temperature. That is, natural mica cannot be used and is limited to synthetic mica, and synthetic gold fluorine mica is an optimal example. Next, regarding the insulator 3 formed by heating and pressurizing, the thermal expansion coefficient (in this case, it becomes the thermal contraction coefficient, but it can be considered equivalent) is lower than the transition temperature of the vitreous material used for the base material 5. It is a prerequisite that the material be smaller than that of the material. The greatest feature of the multi-electrode terminal of this invention is that it maintains a complete airtight property, which is achieved through the conductive electrodes 2a and 2b contained in the base 5 existing on the outer periphery and the insulating material interposed between them. This is achieved by tightening the Therefore, the difference in thermal expansion coefficient is an important factor. Note that the conducting electrodes 2a, 2
Regarding the relationship between the coefficient of thermal expansion and b, it is ideal that the conductive electrodes 2a and 2b are smaller than the insulator 3 for the same reason as above, but even if they are the same or somewhat larger, the effect will be can get. The reason for this is that during molding, the conducting electrodes 2a and 2b are inserted into the mold at room temperature, so the outer periphery is filled with the insulating material 3 under conditions of low temperature rise, and the absolute amount of shrinkage is small. be.
次に成形型、基体5、通電極2a,2bおよび
予備成形体13の加熱温度の関係であるが、成形
型の温度は原料ガラスの転位温度に密接に関係す
る。即ち転位温度より高過ぎる場合には加圧成形
時に絶縁物3が成形型に密着し、離型が困難にな
る恐れがあり、低く過ぎると低密度部分を形成す
る恐れがあり転位温度より僅かに低く保持するこ
とが望ましい。なお脱圧分解時の温度は転位温度
より低いことが必須条件になるので、この点も考
慮して温度設定をすることが肝要である。基体5
の温度であるが後述する予備成形体13の加熱温
度と密接に関係する。製造工程において、この基
体5の上面上に予備成形体13が挿填され面接触
をするためその温度が低いと予備成形体13を冷
却し、その粘性を上昇させ、加圧成形時の流動性
を悪化させるので高い方が望ましいが余り高過ぎ
るとその機械的強度が低下し、変形の危険性が現
われるので好ましくなく実際には予備成形体の加
熱温度より幾分低くすることが望ましい。 Next, regarding the relationship between the heating temperatures of the mold, the base 5, the conductive electrodes 2a and 2b, and the preform 13, the temperature of the mold is closely related to the transition temperature of the raw glass. In other words, if it is too high than the transposition temperature, the insulator 3 may stick to the mold during pressure molding, making it difficult to release from the mold.If it is too low, there is a risk of forming a low-density part, It is desirable to keep it low. Note that it is essential that the temperature during depressurization decomposition be lower than the rearrangement temperature, so it is important to take this point into consideration when setting the temperature. Base body 5
This temperature is closely related to the heating temperature of the preformed body 13, which will be described later. In the manufacturing process, the preform 13 is inserted onto the top surface of the base 5 and makes surface contact, so if the temperature is low, the preform 13 is cooled, increasing its viscosity, and improving its fluidity during pressure molding. However, if it is too high, its mechanical strength will decrease and there will be a risk of deformation, so it is not preferable, and in fact, it is desirable to set the temperature to be somewhat lower than the heating temperature of the preform.
次に通電極2a,2bの加熱温度であるが成形
の挿填工程において予備成形体13と直接接する
ことがなく、絶縁物3が外周部に圧入されるのは
極めて短時間であり、その熱容量も極めて少ない
ので、予備成形体13の温度を低下させ流動性を
を低下させることは殆んどないため加熱を要しな
いものであり、むしろ前記のように収縮の絶対量
にも関係するので気密特性確保の面からも低い方
が望ましくかつ操作的にも容易であるため製造例
のように加熱せずに使用するのが得策である。但
し、通電極が太い場合には必要に応じ適宜加熱す
ることが望ましい。 Next, regarding the heating temperature of the conductive electrodes 2a and 2b, they do not come into direct contact with the preform 13 during the insertion process of molding, and the insulator 3 is press-fitted into the outer periphery for an extremely short time, and its heat capacity Since the temperature of the preform 13 is extremely small, there is almost no reduction in the temperature of the preform 13 and its fluidity, so there is no need for heating. From the viewpoint of ensuring properties, it is desirable that the temperature be lower, and since it is easier to operate, it is best to use it without heating as in the production example. However, if the conducting electrode is thick, it is desirable to heat it appropriately as necessary.
次に予備成形体13の加熱温度であるが使用す
るガラス質の軟化温度に直接関係し、琺瑯釉薬を
使用する場合には800℃〜850℃になることもあ
る。 Next, the heating temperature of the preform 13 is directly related to the softening temperature of the glass used, and may be 800°C to 850°C when enamel glaze is used.
次にガラス質粉末とマイカ粉末の配合比率であ
るが特性および成形条件に関係し重要な要因であ
る。ガラス質の配合比率が増加すると加圧成形時
の流動性が良好になり成形が容易になるが、反面
特性中機械的強度が低下したり罅烈を生じるなど
の欠陥が現われ少な過ぎると成形が困難になるな
どの傾向が現われ実際には容量比率にしてガラス
質が30〜50%の範囲が好適である。 Next, the blending ratio of glassy powder and mica powder is an important factor as it relates to the properties and molding conditions. If the blending ratio of glass increases, the fluidity during pressure molding will improve and molding will become easier, but on the other hand, defects such as a decrease in mechanical strength and generation of harshness will appear, and if there is too little, molding will become difficult. In reality, it is preferable for the glass content to be in the range of 30 to 50% in terms of capacity ratio.
次に貫通孔6の孔径の関係であるが、通電極2
a,2bの外径との関係で、この場合は沿面絶縁
抵抗との関係が主体でその直径の差は気密特性に
殆んど影響しない。むしろ影響の大きいのは、隣
接する貫通孔6との距離関係である。即ちその距
離が短いと締付力に関係するもので気密特性が悪
くなることがある。実際には、隣接する貫通孔と
の最短距離は貫通孔6の直径と同程度あればその
気密特性は完全に確保される。 Next, regarding the hole diameter of the through hole 6, the conducting electrode 2
In this case, the relationship with the outer diameters of a and 2b is mainly related to the creeping insulation resistance, and the difference in diameter has almost no effect on the airtightness. Rather, what has a large influence is the distance relationship between adjacent through holes 6. That is, if the distance is short, the airtightness may deteriorate due to factors related to the tightening force. In fact, if the shortest distance between adjacent through holes is about the same as the diameter of the through hole 6, its airtightness can be completely ensured.
上記のようにして成形を完了したものは、必要
に応じ機械加工を施すことが可能で、その工程を
経て製造を完了する。 The product that has been molded as described above can be machined if necessary, and manufacturing is completed through this process.
本発明になる多極端子は、従来使用されていた
ゴム、ガラス、あるいは磁器質を用いたものと異
なり、耐食性、気密特性熱および機械的衝撃強度
を完全に保持し、従来品の欠陥を完全に除去でき
たもので、単極端子と同等の特性を保持するた
め、従来この系統の単極端子を複数個並列に使用
していたのが、単数使用で目的を達することが可
能になつたため、装置自体が小形、軽量化が出来
ることは勿論製造手数も大きく簡易化されその効
果は極めて大きい。 The multi-pole terminal of the present invention, unlike conventionally used rubber, glass, or porcelain terminals, completely maintains corrosion resistance, airtightness, thermal and mechanical impact strength, and completely eliminates the defects of conventional products. In order to maintain the same characteristics as a single-pole terminal, multiple single-pole terminals of this type were used in parallel, but now it is possible to achieve the purpose by using a single terminal. Not only can the device itself be made smaller and lighter, but the manufacturing process can also be greatly simplified, and the effects are extremely large.
なお、基体5に関しても、必要な数の貫通孔を
設けるだけの加工で、その寸法に関しては殆んど
精度を必要とせず、その費用も安価なもので、そ
の副次的効果も大きい。 The base body 5 can also be processed by simply providing the required number of through holes, requiring almost no precision in its dimensions, being inexpensive, and having great secondary effects.
またこの発明の説明にあたつては、液体を媒体
とする整流装置用の気密絶縁端子を対象にした
が、用途はこの面に限定されるものでなく、水を
充満した金属容器の防食用あるいは、高圧ガスを
充填した金属容器などにも使用可能でその用途も
極めて広範である。 In addition, in explaining the present invention, the subject matter is an airtight insulated terminal for a rectifier that uses liquid as a medium, but the application is not limited to this aspect, and can be used for corrosion protection of metal containers filled with water. Alternatively, it can be used for metal containers filled with high-pressure gas, and its uses are extremely wide.
上記のように本発明による多極端子は高性能で
かつ安価に生産されるものでその効果は極めて大
きい。 As described above, the multi-electrode terminal according to the present invention has high performance and can be produced at low cost, and its effects are extremely large.
第1図は従来の多極端子の構造を示す断面図で
aは横断面図、bは縦断面である。第2図は本発
明になる多極端子の構造を示す断面図で、aは横
断面図、bは縦断面図である。第3図は本発明に
なる多極端子の製造方法の一例を示す断面図でA
は加圧成形直前の状態を、Bは加圧成形完了後の
状態を示す。
図中、2a,2bは通電極、3は絶縁物、5は
基体、6は貫通孔、7は成形枠、8は受金具、9
は加圧金、10は加圧成形機の固定盤、11は同
じく下部駆動部、12は同じく上部駆動部、13
は予備成形体である。なお図中同一符号は同一も
しくは相当部分を示す。
FIG. 1 is a cross-sectional view showing the structure of a conventional multi-electrode terminal, in which a is a cross-sectional view and b is a vertical cross-section. FIG. 2 is a cross-sectional view showing the structure of a multi-pole terminal according to the present invention, in which a is a cross-sectional view and b is a vertical cross-sectional view. FIG. 3 is a cross-sectional view showing an example of the method for manufacturing a multi-pole terminal according to the present invention.
B shows the state immediately before pressure molding, and B shows the state after pressure molding is completed. In the figure, 2a and 2b are conductive electrodes, 3 is an insulator, 5 is a base, 6 is a through hole, 7 is a molding frame, 8 is a receiving metal fitting, 9
10 is the pressure molding machine fixed plate, 11 is the lower drive part, 12 is the upper drive part, 13
is a preform. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
孔に各別に貫通して設けられた複数の端子導体、
上記貫通孔と上記端子導体とを密封固着するガラ
ス・マイカ塑造体からなる絶縁物を備え、上記絶
縁物の熱膨脹率は、該絶縁物に含有されたガラス
質の転位温度以下の温度において基体の熱膨脹率
よりも小であることを特徴とする多極絶縁端子。 2 成形枠内に複数の端子導体を保持する工程、
上記複数の端子導体を各別に間〓を残して貫通し
得るように形成された貫通孔を有し、かつ所定温
度に加熱された基体を上記成形枠内に収容する工
程、上記複数の端子導体を各別に貫通し得るよう
に形成された貫通孔を有し、かつ所定温度に加熱
されたガラス質とマイカからなる予備成形体を上
記成枠内に収容された基体の上に上記成形枠およ
び端子導体に接触しないように載置すく工程、上
記予備成形体を加圧し、上記基体に設けられた貫
通孔と上記端子導体との間〓部に充填することに
よりこれら貫通孔と端子導体とを密封固着する工
程を備えたことを特徴とする多極絶縁端子の製造
方法。 3 成形枠の温度をガラス質の転位温度よりも低
くし、基本の温度を上記ガラス質の転位温度より
も高くして成形することを特徴とする特許請求の
範囲第2項に記載の多極絶縁端子の製造方法。 4 複数の端子導体としてそれぞれ長さの異なる
ものを用い、かつ上端部を曲面としたことを特徴
とする特許請求の範囲第2項または第3項に記載
の多極絶縁端子の製造方法。[Scope of Claims] 1. A base body having a plurality of through holes, a plurality of terminal conductors respectively penetrating through the plurality of through holes,
An insulator made of a glass-mica plastic body is provided which seals and fixes the through hole and the terminal conductor, and the coefficient of thermal expansion of the insulator is equal to or lower than that of the base material at a temperature below the transition temperature of the glass contained in the insulator. A multi-pole insulated terminal characterized by a coefficient of thermal expansion smaller than that of the thermal expansion coefficient. 2. A step of holding a plurality of terminal conductors within the molding frame,
accommodating a base body heated to a predetermined temperature in the molding frame, the base body having a through hole formed so as to be able to pass through each of the plurality of terminal conductors with a gap left between each; A preformed body made of vitreous material and mica, which has through-holes formed so as to be able to pass through each separately, and is heated to a predetermined temperature, is placed on the base body housed in the molded frame and the molded frame. In the step of placing the preform so as not to contact the terminal conductor, pressurize the preform and fill the space between the through hole provided in the base and the terminal conductor to connect the through hole and the terminal conductor. A method for manufacturing a multi-pole insulated terminal, characterized by comprising a step of sealing and fixing. 3. The multipole according to claim 2, characterized in that the molding is performed with the temperature of the molding frame lower than the transition temperature of the glass and the base temperature higher than the transition temperature of the glass. Method of manufacturing insulated terminals. 4. The method of manufacturing a multi-polar insulated terminal according to claim 2 or 3, characterized in that a plurality of terminal conductors having different lengths are used, and the upper end portions are curved.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5184479A JPS55143783A (en) | 1979-04-25 | 1979-04-25 | Multipolar insulating terminal and method of manufacturing same |
AU57144/80A AU534270B2 (en) | 1979-04-25 | 1980-04-03 | Multielectrode insulating terminal and its manufacturing method |
ZA00802182A ZA802182B (en) | 1979-04-25 | 1980-04-11 | Multielectrode insulating terminal and its manufacturing method |
ES490868A ES490868A0 (en) | 1979-04-25 | 1980-04-24 | ISOLATED TERMINAL OF MULTIPLE ELECTRODES |
ES497725A ES8106986A1 (en) | 1979-04-25 | 1980-12-12 | Method of manufacturing an isolated terminal of multiple electrodes (Machine-translation by Google Translate, not legally binding) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5184479A JPS55143783A (en) | 1979-04-25 | 1979-04-25 | Multipolar insulating terminal and method of manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55143783A JPS55143783A (en) | 1980-11-10 |
JPS6342379B2 true JPS6342379B2 (en) | 1988-08-23 |
Family
ID=12898152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5184479A Granted JPS55143783A (en) | 1979-04-25 | 1979-04-25 | Multipolar insulating terminal and method of manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS55143783A (en) |
ZA (1) | ZA802182B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240182A (en) * | 1985-08-16 | 1987-02-21 | 三菱電機株式会社 | Airtight insulation terminal |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5059790A (en) * | 1973-09-26 | 1975-05-23 |
-
1979
- 1979-04-25 JP JP5184479A patent/JPS55143783A/en active Granted
-
1980
- 1980-04-11 ZA ZA00802182A patent/ZA802182B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5059790A (en) * | 1973-09-26 | 1975-05-23 |
Also Published As
Publication number | Publication date |
---|---|
JPS55143783A (en) | 1980-11-10 |
ZA802182B (en) | 1981-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0091909B1 (en) | Lower temperature glass and hermetic seal means and method | |
US2210699A (en) | Vacuum-tight insulated lead-in structure | |
US1456110A (en) | Seal for electric devices | |
JPS6342379B2 (en) | ||
CN1040108A (en) | Lightening arrestor insulator and manufacture method thereof | |
US2292863A (en) | Lead-in arrangement | |
US4349692A (en) | Glass hermetic seal | |
US4309507A (en) | Glass and hermetic seal | |
KR830000495B1 (en) | Manufacturing method of multi-pole insulated terminal | |
JPS6346539B2 (en) | ||
US4574299A (en) | Thyristor packaging system | |
KR830000685Y1 (en) | Multi-pole Insulated Terminal | |
JPS6331903B2 (en) | ||
JPH0254861A (en) | Hermetical forming method for storage battery terminal section | |
US2147417A (en) | E bahls | |
JPS5914868B2 (en) | Airtight insulated terminal and its manufacturing method | |
JPH0124858Y2 (en) | ||
US3562605A (en) | Void-free pressure electrical contact for semiconductor devices and method of making the same | |
CN1032471A (en) | Power semiconductor component | |
JPS6220267A (en) | Airtight insulated terminal | |
US4466793A (en) | Heat treatment jig for use in the manufacture of cathode-ray tubes | |
JPS59877A (en) | Multipolar insulated terminal | |
JPS6240182A (en) | Airtight insulation terminal | |
JP3283692B2 (en) | Airtight insulation terminal | |
US4161746A (en) | Glass sealed diode |