JPS6331903B2 - - Google Patents

Info

Publication number
JPS6331903B2
JPS6331903B2 JP11012382A JP11012382A JPS6331903B2 JP S6331903 B2 JPS6331903 B2 JP S6331903B2 JP 11012382 A JP11012382 A JP 11012382A JP 11012382 A JP11012382 A JP 11012382A JP S6331903 B2 JPS6331903 B2 JP S6331903B2
Authority
JP
Japan
Prior art keywords
thermal expansion
coefficient
insulator
terminal
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11012382A
Other languages
Japanese (ja)
Other versions
JPS59878A (en
Inventor
So Shirasawa
Takeo Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11012382A priority Critical patent/JPS59878A/en
Publication of JPS59878A publication Critical patent/JPS59878A/en
Publication of JPS6331903B2 publication Critical patent/JPS6331903B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Connections Arranged To Contact A Plurality Of Conductors (AREA)

Description

【発明の詳細な説明】 この発明は、たとえば金属製気密容器内に収容
された電気機器と外部との電気的接続を行なう場
合などに用いられる気密絶縁端子に関するもの
で、とくに気密容器内にフロンなどの液体化合物
を冷却媒体として充填し、その中に発熱をともな
う例えば大電流用の半導体整流素子を浸漬した強
制冷却方式の整流装置などに用いられ、その他の
制御あるいは測定装置などに一般的に使用し得る
複数の通電用端子導体を有する気密絶縁端子(以
下「多極端子」と呼称する)に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an airtight insulated terminal used, for example, when electrically connecting an electrical device housed in a metal airtight container to the outside. It is used in forced cooling type rectifiers, etc., in which a liquid compound, such as The present invention relates to an airtight insulated terminal (hereinafter referred to as a "multi-electrode terminal") having a plurality of usable terminal conductors for current-carrying.

この種の多極端子に要求される特性は、耐熱特
性に富み経年変化がなく、極めて高度の気密(水
密)特性を保持すること、冷却媒体に対する耐食
特性に富むこと、冷熱および機械的衝撃強度が高
いこと、容器などに取付けるための基体と通電用
の端子導体(以下単に「通電極」という)との絶
縁特性が高いことは勿論、通電極相互間の絶縁特
性が高いこと等で、とくにこの通電極相互間の絶
縁特性は使用中の汚染による絶縁特性の低下があ
り得るため、高い沿面絶縁特性が強く要求され
る。このことは長い沿面絶縁長さが要求されるも
のである。このほか、機器等への取付けが容易で
あること、および価格が低廉であることは当然の
ことである。
The characteristics required for this type of multi-pole terminal are that it has excellent heat resistance, does not deteriorate over time, maintains extremely high airtightness (watertightness), has excellent corrosion resistance against cooling media, and has high thermal and mechanical impact strength. In particular, it has high insulation properties between the base for mounting on a container etc. and the current-carrying terminal conductor (hereinafter simply referred to as the "carrying electrode"), as well as high insulation properties between the conducting electrodes. Since the insulation properties between the conductive electrodes may deteriorate due to contamination during use, high creeping insulation properties are strongly required. This requires long creepage insulation lengths. In addition, it goes without saying that it is easy to attach to equipment, etc., and that it is inexpensive.

従来、多極端子として知られているものに、電
気絶縁物および気密封着剤として、合成樹脂・ゴ
ム・ガラスあるいは磁器質を用いたものがある
が、合成樹脂やゴムを使用したものは耐熱特性が
乏しく、経年変化があり、気密保持特性に信頼性
が得られず、かつ冷却媒体に対する耐食性の面に
も多くの問題があり、ガラス質あるいは磁器質を
用いたものは、気密特性・耐食性に関しては完全
な性能を保持するが、熱および機械的衝撃性に乏
しく、そのため車両などに搭載される整流装置な
どに使用した場合、振動により破損するという致
命的欠陥があり、これらを使用することは不可能
である。その点に関し、本発明者は、先に第1図
および第2図に示す多極絶縁端子を提案してい
る。この多極絶縁端子は、通電極の直径寸法に関
しては制約があるがその他の必要特性を兼備する
ものである。以下、その図面により、その構造を
説明する。図中、1は基体、2は通電極、3は絶
縁物であり、2aは端子の中心部に配設された通
電極、2bは中心部以外に配設された通電極であ
り、これらの通電極2は基体1の貫通孔101の
中心部にそれぞれ位置し、絶縁物3は貫通孔10
1と通電極2との間の空間部をそれぞれ充満する
とともに、基体1の上面103および下面104
を連結部32により覆い、さらに通電極2の貫通
孔101からの突出部21の周面を各別々に包囲
する沿面絶縁部31を形成している。
Traditionally known multi-pole terminals include those that use synthetic resin, rubber, glass, or porcelain as electrical insulators and airtight sealants, but those that use synthetic resin or rubber are heat-resistant. The properties are poor, they deteriorate over time, the airtightness is not reliable, and there are many problems in terms of corrosion resistance against cooling media. Although it maintains perfect performance, it has poor thermal and mechanical shock resistance, so when used in rectifiers installed in vehicles etc., it has a fatal flaw of being damaged by vibration, so its use is prohibited. is impossible. In this regard, the present inventor has previously proposed a multipolar insulated terminal shown in FIGS. 1 and 2. This multi-pole insulated terminal is limited in terms of the diameter of the conducting electrode, but has other required characteristics. The structure will be explained below with reference to the drawings. In the figure, 1 is a base, 2 is a conductive electrode, 3 is an insulator, 2a is a conductive electrode disposed at the center of the terminal, and 2b is a conductive electrode disposed outside the center. The conducting electrodes 2 are located at the center of the through holes 101 of the base 1, and the insulators 3 are located at the centers of the through holes 101 of the base body 1.
1 and the conducting electrode 2, and fills the upper surface 103 and lower surface 104 of the base 1.
are covered by a connecting portion 32, and creeping insulation portions 31 are formed which separately surround the peripheral surfaces of the protruding portions 21 from the through holes 101 of the conducting electrodes 2.

前記各部材のうち、絶縁物3は、ガラス質粉末
とマイカ粉末との混合粉末を原料とし、その原料
をガラス質が軟化し、加圧により流動する温度に
加熱し、加熱状態で加圧成形して得られるガラ
ス・マイカ塑造体で、専用の成形用金型を使用し
て、基体1の貫通孔101と通電極2の間隙部、
基体1の上面103および下面104ならびに通
電極2の貫通孔101からの突出部21の周面を
各別々に包囲するように一体物として構成され
る。
Among the above-mentioned members, the insulator 3 is made from a mixed powder of vitreous powder and mica powder, heated to a temperature at which the vitreous material softens and flows under pressure, and then pressure-molded in the heated state. The gap between the through hole 101 of the base body 1 and the conducting electrode 2 is
It is constructed as an integral body so as to separately surround the upper surface 103 and lower surface 104 of the base 1 and the peripheral surface of the protrusion 21 from the through hole 101 of the conducting electrode 2.

基体1は、600℃の加熱に耐え機械的強度を保
持することが前提でなお熱膨係数に関しては、ガ
ラス・マイカ塑造体の転位温度までの熱膨腸係数
が基準になる。このガラス・マイカ塑造体の転位
温度は原料ガラスの転位温度と同等であると考え
て差支えない。また、その熱膨脹係数は原料ガラ
スに大きく支配されるものであり、その値は8−
12×10-6/℃程度のものが得られる。基体1には
その熱膨脹係数がガラス・マイカ塑造体のそれよ
り大きいものを使用する。具体的にはステンレス
などが使用されている。また通電極2は熱膨脹係
数がガラス・マイカ塑造体のそれより小さいもの
例えばチタン、コバール等が使用されている。
The base body 1 is supposed to withstand heating at 600° C. and maintain mechanical strength, and the thermal expansion coefficient up to the transition temperature of the glass-mica plastic body is the standard for the thermal expansion coefficient. It can be safely assumed that the transition temperature of this glass-mica plastic body is equivalent to that of the raw material glass. In addition, its coefficient of thermal expansion is largely controlled by the raw material glass, and its value is 8-
A value of about 12×10 -6 /°C can be obtained. The base 1 is made of a material whose coefficient of thermal expansion is larger than that of the glass/mica plastic body. Specifically, stainless steel is used. Further, the conductive electrode 2 is made of a material having a coefficient of thermal expansion smaller than that of the glass/mica plastic body, such as titanium or Kovar.

上記のように、基体1および通電極2の材料選
択に絶縁物3の熱膨脹係数を含め、その熱膨脹係
数を重視するのは、最重要特性である気密特性を
確保するためである。以下、その理由を説明す
る。これは製造方法と密接に関連するので製造方
法から先に説明する。専用の成形用金型を350℃
〜450℃の温度に加熱しておき、その内部に600℃
〜650℃に加熱した基体1、100℃〜300℃に加熱
した通電極2および予め必要な形状に形成した原
料分粉末の予備成形体を加熱により流動可能な温
度、例えば650℃〜700℃に加熱して挿填し、加圧
成形により絶縁物3を構成して製造される。この
絶縁物3は、原料ガラスの転位温度以上の温度で
は加圧により流動が可能であるが転位温度以下の
温度になると固化して流動が出来なくなる。この
時から基体1の貫通孔101と通電極2の間隙部
に存在する絶縁物3は、熱膨脹係数が大きい基体
1の収縮により、中心部に向つて大きな圧縮力を
受けるようになり、同時にこの絶縁物3は中央部
にある熱膨脹係数の小さい通電極2を強力に圧縮
するようになる、この絶縁物3の内外周面、すな
わち基体1と通電極2との接触面に発生する圧縮
力により高度の気密特性が確保される。
As mentioned above, the reason why the coefficient of thermal expansion of the insulator 3 is included in the selection of materials for the base body 1 and the conducting electrode 2, and importance is placed on the coefficient of thermal expansion is to ensure the airtight property, which is the most important property. The reason for this will be explained below. Since this is closely related to the manufacturing method, the manufacturing method will be explained first. Dedicated molding mold at 350℃
It is heated to a temperature of ~450℃, and inside it is heated to 600℃.
The base 1 heated to ~650°C, the conductive electrode 2 heated to 100°C to 300°C, and the preformed raw material powder preformed into the required shape are heated to a flowable temperature, for example, 650°C to 700°C. The insulator 3 is manufactured by heating, inserting, and press-molding the insulator 3. This insulator 3 can flow when pressurized at a temperature above the transposition temperature of the raw glass, but solidifies and becomes unable to flow when the temperature falls below the transposition temperature. From this point on, the insulator 3 existing in the gap between the through hole 101 of the base body 1 and the conducting electrode 2 begins to receive a large compressive force toward the center due to the contraction of the base body 1, which has a large coefficient of thermal expansion. The insulator 3 strongly compresses the conducting electrode 2 which has a small coefficient of thermal expansion in the center, due to the compressive force generated on the inner and outer peripheral surfaces of the insulating material 3, that is, the contact surface between the base body 1 and the conducting electrode 2. A high degree of airtightness is ensured.

上記の多極絶縁端子において、通電極2の直径
が1〜2mmφと細い場合には、連結部32を根元
部として、通電極2の突出部21の周囲にそれぞ
れ独立して包囲する沿面絶縁物31が構成されて
いるので沿面絶縁特性を保持し、かつ振動衝撃に
対しても完全な特性を有するものであり、従来品
の致命的な欠陥の総べてが除去された優れたもの
である。
In the multi-pole insulated terminal described above, when the diameter of the carrying electrode 2 is as small as 1 to 2 mmφ, a creeping insulator is provided that independently surrounds the protrusion 21 of the carrying electrode 2 with the connecting portion 32 as the root. 31, it maintains creeping insulation properties and has perfect characteristics against vibration and shock, making it an excellent product that has all of the fatal flaws of conventional products removed. .

しかし通電極2の直径が太くなり例えば3mm以
上になると沿面絶縁部31に亀裂が発生するよう
になる。とくに直径が5〜6mm程度以上になると
脱落に発展し、形状を整えること事態が不可能に
なる。この現象は沿面絶縁抵抗の低下に直結する
ため、必要な鉛面絶縁抵抗特性の確保ができなく
なり、この種の多極絶縁端子にとつて、この現象
は致命的な欠陥である。
However, if the diameter of the conducting electrode 2 becomes large, for example, 3 mm or more, cracks will occur in the creeping insulation portion 31. In particular, if the diameter exceeds about 5 to 6 mm, it will develop into falling off, making it impossible to adjust the shape. Since this phenomenon is directly linked to a decrease in creeping insulation resistance, it becomes impossible to ensure the necessary vertical insulation resistance characteristics, and this phenomenon is a fatal defect for this type of multi-pole insulated terminal.

次に上記の亀裂あるいは脱落の理由について説
明する。この種構造の多極端子においては、前記
のように気密特性を確保するために、絶縁物3を
構成するガラス質の転位温度以下における絶縁物
3の熱膨脹係数を基準にし、基体1の熱膨脹係数
は絶縁物3のそれより大きく、また通電極2の熱
膨脹係数は絶縁物3のそれより小さくなつてい
る。高温状態においては、通電極2の周辺部に加
圧状態で成形された沿面絶縁部31は完全な形状
を保持しており、ガラス質の転位温度以上の温度
領域では、熱膨脹係数が極めて大きいので、その
収縮量も極めて大きいが、加圧を受けているた
め、流動により収縮量が補填されるので、成形直
後の形状が維持される。転位温度より低い温度領
域になると熱膨脹係数は急激に小さくなるが、そ
の熱膨脹係数は通電極2のそれよりは大きい。し
かも材料自体の流動は全くなくなる。転位温度か
ら常温までの沿面絶縁部31の収縮量は、中心部
に位置する通電極2のそれより大きいものとな
る。この収縮量の差は沿面絶縁部31に引張りの
応力として現われる。この応力は通電極2の直
径、と沿面絶縁部31の肉厚およびその長さによ
り決まる。この応力が沿面絶縁部31の機械的強
度より小さい場合には、何の現象も顕われない
が、応力の方が大きくなると軸方向の応力は輪状
の亀裂となり、円周方向の応力は縦方向の亀裂と
なる。この亀裂が大きい場合には脱落に発展す
る。前記のように通電極2の直径が1〜2mmと細
い場合には発生応力が沿面絶縁部31の機械的強
度の範囲内に収まるので、亀裂現象が発生せず、
完全な沿面絶縁特性を保持する多極端子が得られ
るが、通電極2の直径が太くなるにしたがい、上
記の応力が大きくなり、亀裂の発生も多くなる。
一般に通電極の直径が3mmφ程度になると必然的
に亀裂が発生するようになり、5〜6mmφになる
と脱落現象に発展するものである。
Next, the reason for the above-mentioned cracking or falling off will be explained. In a multi-electrode terminal having this type of structure, in order to ensure airtightness as described above, the coefficient of thermal expansion of the base 1 is based on the coefficient of thermal expansion of the insulator 3 below the transition temperature of the glass that constitutes the insulator 3. is larger than that of the insulator 3, and the coefficient of thermal expansion of the conducting electrode 2 is smaller than that of the insulator 3. In a high temperature state, the creeping insulation part 31 formed under pressure around the carrying electrode 2 maintains its perfect shape, and in the temperature range above the transition temperature of glass, the coefficient of thermal expansion is extremely large. The amount of shrinkage is also extremely large, but since it is under pressure, the amount of shrinkage is compensated for by flow, so the shape immediately after molding is maintained. The coefficient of thermal expansion decreases rapidly in a temperature range lower than the transposition temperature, but the coefficient of thermal expansion is larger than that of the conducting electrode 2. Moreover, the flow of the material itself is completely eliminated. The amount of contraction of the creeping insulation portion 31 from the transposition temperature to room temperature is greater than that of the carrying electrode 2 located at the center. This difference in the amount of shrinkage appears in the creeping insulation portion 31 as a tensile stress. This stress is determined by the diameter of the carrying electrode 2, and the thickness and length of the creeping insulation portion 31. If this stress is smaller than the mechanical strength of the creeping insulation part 31, no phenomenon will occur; however, if the stress is larger, the axial stress will cause a ring-shaped crack, and the circumferential stress will become a longitudinal crack. It becomes a crack. If this crack is large, it will develop into falling off. As mentioned above, when the diameter of the conducting electrode 2 is as small as 1 to 2 mm, the generated stress falls within the mechanical strength of the creeping insulation part 31, so no cracking phenomenon occurs.
Although a multi-pole terminal that maintains perfect creeping insulation properties is obtained, as the diameter of the conducting electrode 2 increases, the above-mentioned stress increases and cracks occur more frequently.
Generally, when the diameter of the conducting electrode becomes about 3 mmφ, cracks inevitably occur, and when the diameter becomes 5 to 6 mmφ, the phenomenon develops into falling off.

このことは、この種構造の多極端子にとつて不
可避の物理現象である。
This is an inevitable physical phenomenon for multipolar terminals of this type of structure.

本発明者らは、従来のマイカ・ガラス塑造体を
絶縁物兼気密封着剤とし、通電極径の細い多極端
子が保持する高い気密特性、耐衝撃振動および機
械的強度ならびに十分な沿面絶縁特性を兼備する
と共に、従来品では得られなかつた通電極径の太
いものを得るべく、多くの研究実験を行つた結
果、この発明を完成したものである。
The present inventors used a conventional mica glass plastic body as an insulator and hermetic sealant to achieve high airtightness, shock vibration resistance, mechanical strength, and sufficient creepage insulation maintained by a multi-pole terminal with a small diameter conductor. This invention was completed as a result of many research experiments in order to obtain a device with both characteristics and a large diameter conductor that could not be obtained with conventional products.

この発明による多極絶縁端子は、前述した従来
の多極絶縁端子において、ガラス・マイカ塑造体
からなる絶縁物を構成するガラス質の転位温度以
下における該絶縁物の熱膨脹率を基準にして、基
体の熱膨脹率を該基準熱膨脹率より大きくし、端
子導体の基体の貫通孔内に位置する部分の熱膨脹
率を基準熱膨脹率より小さくし、かつ端子導体の
その他の部分の熱膨脹率を基準熱膨脹率と同等も
しくは大きくすると共に前記貫通孔内に位置する
端子導体とその他の部分の端子導体とを一体物に
構成していることに特徴を有するものである。
In the multi-pole insulated terminal according to the present invention, in the conventional multi-pole insulated terminal described above, the base material is The coefficient of thermal expansion of the terminal conductor located in the through hole of the base body is made smaller than the standard coefficient of thermal expansion, and the coefficient of thermal expansion of the other parts of the terminal conductor is set to be the standard coefficient of thermal expansion. It is characterized in that the terminal conductor located in the through hole and the terminal conductor in other portions are made of the same or larger size and are integrally formed.

以下、この発明をその実施の一例を示した図面
に基づいて詳細に説明する。第3図および第4図
に通電極径の太い多極絶縁端子の一実施例を示し
てある。図面中、1,3,31,32,101,
103、および104は第1図および第2図と同
様である。
EMBODIMENT OF THE INVENTION Hereinafter, this invention will be explained in detail based on the drawing which showed an example of its implementation. FIGS. 3 and 4 show an embodiment of a multi-pole insulated terminal with a large diameter conductive electrode. In the drawing, 1, 3, 31, 32, 101,
103 and 104 are the same as in FIGS. 1 and 2.

通電極2は、基体1の貫通孔101内に位置す
る通電極部分201、その他の部分すなわち連結
部分32および鉛面絶縁部31に包囲される通電
極202で構成されており、これらは接続部分2
03により接続され、一体物に仕上げられてい
る。接続については抵抗溶接、冷間圧接溶接等何
れの方法でもよく、要は完全に接合されていれば
よい。通電極2のうち、通電極部分201はその
熱膨脹係数が絶縁物3であるガラス・マイカ塑造
体を構成するガラス質の転位温度以下におけるガ
ラス・マイカ塑造体の熱膨脹係数よりより小さ
く、600゜〜650℃の温度条件下で機械的強度を保
持するものであればよい。通電極部分202はそ
の熱膨脹係数が、絶縁物であるガラス・マイカ塑
造体を構成するガラス質の転位温度以下における
ガラス・マイカ塑造体の熱膨脹係数と同等もしく
は大きいもので、600゜〜650℃の温度条件下で機
械的強度を保持するものであればよく、その成形
は、第1図および第2図に示す通電極2の直径の
細いものの場合と同工程により行う。
The conducting electrode 2 is composed of a conducting electrode portion 201 located in the through hole 101 of the base 1, other portions, that is, a connecting portion 32, and a conducting electrode 202 surrounded by a lead insulating portion 31, and these are the connecting portions. 2
03 and are finished as a single piece. For connection, any method such as resistance welding or cold pressure welding may be used, as long as the connection is complete. Among the conducting electrodes 2, the conducting electrode portion 201 has a coefficient of thermal expansion smaller than that of the glass-mica plastic body constituting the glass-mica plastic body, which is the insulator 3, at a temperature below the transition temperature of the glass-mica plastic body, and is 600° to 600°. Any material may be used as long as it maintains mechanical strength under a temperature condition of 650°C. The conductive electrode portion 202 has a coefficient of thermal expansion equal to or greater than the coefficient of thermal expansion of the glass-mica plastic body at temperatures below the transition temperature of the glass-mica plastic body constituting the glass-mica plastic body, which is an insulator. Any material may be used as long as it maintains mechanical strength under temperature conditions, and its molding is carried out by the same process as in the case of the narrow diameter conducting electrode 2 shown in FIGS. 1 and 2.

次にこの発明の実施例として、具体的に前記各
部材の材料構成と、その効果について説明する。
前記絶縁物3には、ガラス質にPb0.10、
B2O30.4、SiO20.4、AlF30.2のモル比組成品を200
メツシユに粉砕した粉末55W%と、合成含弗素金
マイカの60〜100メツシユの粉末45W%との混合
粉末を使用した。この粉末原料を加熱状態で加圧
成形して得たガラス・マイカ塑造体のガラスの転
位温度である360℃以下の熱膨脹係数は10.5×
10-6である。
Next, as an example of the present invention, the material structure of each member and its effects will be specifically described.
The insulator 3 includes glassy Pb0.10,
The molar ratio composition of B 2 O 3 0.4, SiO 2 0.4, AlF 3 0.2 is 200
A mixed powder of 55W% of a mesh-pulverized powder and 45W% of a synthetic fluorine-containing gold mica powder of 60 to 100 meshes was used. The thermal expansion coefficient of the glass/mica plastic body obtained by press-molding this powder raw material under heating is 10.5× below 360℃, which is the transition temperature of glass.
10 -6 .

前記基体1には、熱膨脹係数18×10-6のステン
レスを、通電極2には、通電極部分201に熱膨
脹係数4.5×10-6の径5mmφのコバール棒を、通
電極部分202に熱膨脹係数11.3×10-6の径5mm
φの鋼材を溶接により接合して一体物としたもの
を使用した。
The base body 1 is made of stainless steel with a coefficient of thermal expansion of 18×10 -6 , the conductive electrode 2 is made of Kovar rod with a diameter of 5 mm and a coefficient of thermal expansion of 4.5×10 −6 in the conductive electrode portion 201 , and the conductive electrode portion 202 is made of Kovar rod with a diameter of 5 mmφ. 11.3×10 -6 diameter 5mm
A piece of steel material having a diameter of φ joined by welding to form an integral body was used.

上記材料構成で、第3図および第4図に示す構
造に成形した多極絶縁端子にあつては、基体1の
貫通孔101内にある通電極部分201は、絶縁
物3のガラス転位温度以下において、両者の熱膨
脹係数の差を圧縮応力としてみると絶縁物3の半
径方向に収縮する量と、通電極部分201の半径
方向に収縮する量との差分が、通電極部分201
の外周面、すなわち、通電極部分201と絶縁物
3の界面部に圧縮応力として加わる。これと同様
に、絶縁物3においても、基体1の半径方向に収
縮する量と、絶縁物3の半径方向に収縮する量と
の差分が、絶縁物3の外周面に、すなわち、両者
の界面部に圧縮応力として加わる。更に、通電極
部分201の外周面をみると、絶縁物3の半径方
向の圧縮応力のみならず、基体1の半径方向の圧
縮応力も加わり、これらはあたかも焼嵌と同じ現
象が現出しており、通電極部分201と絶縁物3
との界面、また、絶縁物3と基体1との界面の気
密性は非常に高いものを保持している。
In the case of a multi-polar insulated terminal molded into the structure shown in FIG. 3 and FIG. If the difference in coefficient of thermal expansion between the two is considered as compressive stress, the difference between the amount of contraction in the radial direction of the insulator 3 and the amount of contraction in the radial direction of the conducting electrode portion 201 is
The compressive stress is applied to the outer circumferential surface of , that is, the interface between the conductive electrode portion 201 and the insulator 3 . Similarly, in the insulator 3, the difference between the amount of radial contraction of the base 1 and the amount of radial contraction of the insulator 3 is applied to the outer peripheral surface of the insulator 3, that is, the interface between the two. It is applied as compressive stress to the part. Furthermore, when looking at the outer peripheral surface of the conductive electrode portion 201, not only the compressive stress in the radial direction of the insulator 3 but also the compressive stress in the radial direction of the base 1 is applied, and these phenomena appear as if they were the same as shrink-fitting. , the conductive electrode portion 201 and the insulator 3
The interface between the insulator 3 and the base 1 and the interface between the insulator 3 and the base 1 maintain extremely high airtightness.

次に、沿面絶縁物31は、その絶縁物31のガ
ラス転位温度以下において、前記の中心部に位置
する通電極部分202と熱膨脹係数の差を圧縮応
力として比較すれば、通電極部分202は熱膨脹
係数が大きく、この界面には沿面絶縁物31から
の圧縮応力は加わらない。
Next, if the creeping insulator 31 is compared with the conductive electrode portion 202 located at the center by the difference in thermal expansion coefficient as a compressive stress below the glass transition temperature of the insulator 31, the conductive electrode portion 202 will thermally expand. Since the coefficient is large, compressive stress from the creeping insulator 31 is not applied to this interface.

よつて、この鉛面絶縁物31は、何らの応力を
受けず、円周および軸方向何れにも、従来品のよ
うな輪状あるいは縦方向の亀裂が発生することが
なく勿論脱落現象等は皆無である。このようにし
て完全な沿面絶縁抵抗を保持する沿面絶縁部31
が構成される。
Therefore, this lead-faced insulator 31 is not subjected to any stress, does not generate ring-shaped or vertical cracks in both the circumferential and axial directions, unlike conventional products, and, of course, does not experience any falling-off phenomenon. It is. Creepage insulation portion 31 that maintains perfect creepage insulation resistance in this way
is configured.

上記実施例による具体的な説明においては、通
電極部分201に径5mmφのコパールを使用して
いるが、径が8〜10mmφあるいは、これより太く
なつても差支えないのは勿論、材質に関してもコ
パール材質に限定されるものではなく、要はガラ
ス・マイカ塑造体のガラスの転位温度以下の熱膨
脹係数より小さい熱膨脹係数で高温度に富むもの
であればよく、チタン材等も有効に使用できる。
また通電極部分202には、鋼材で熱膨脹係数が
11.3×10-6で、10.5×10-6のガラス・マイカ塑造
体より僅かに大きいものを使用しているが、ステ
ンレスのように18×10-6と大きな熱膨脹係数を有
し、高温強度の大きいものは極めて有効に使用で
きる。また原料ガラスに有鉛ガラスを使用し、ガ
ラス・マイカ塑造体のガラスの転位温度以下の熱
膨脹係数が10.5×10-6のものを使用しているが、
この種のガラスに限定されるものではなく、アル
ミニウム琺瑯などに使用する釉薬なども有効に使
用できる。
In the specific explanation of the above embodiment, copal with a diameter of 5 mmφ is used for the conductive electrode portion 201, but it goes without saying that there is no problem even if the diameter is 8 to 10 mmφ or thicker. The material is not limited to any material, as long as it has a coefficient of thermal expansion smaller than the coefficient of thermal expansion below the transition temperature of glass of the glass/mica plastic body and is suitable for high temperatures, and titanium materials can also be effectively used.
In addition, the conductive electrode portion 202 is made of steel and has a coefficient of thermal expansion.
11.3 x 10 -6 , which is slightly larger than the 10.5 x 10 -6 glass/mica plastic body, has a large coefficient of thermal expansion of 18 x 10 -6 like stainless steel, and has high temperature strength. Large ones can be used very effectively. In addition, leaded glass is used as the raw material glass, and the coefficient of thermal expansion is 10.5 x 10 -6 , which is below the transition temperature of the glass of the glass/mica plastic body.
It is not limited to this type of glass, and glazes used for aluminum enamel and the like can also be effectively used.

以上に述べたように、この発明による多極絶縁
端子は、通電極の径が1〜2mmφで、絶縁物兼気
密封着剤にガラス・マイカ塑造体を使用した従来
品が保持する耐熱特性に富み、経年変化がなく、
極めて高度の気密(水密)特性を保持し、冷却媒
体に対する耐食特性、冷熱および機械的衝撃強度
を完全に具備すると共に、従来品が通電極の径が
太くなると保持し得なかつた沿面絶縁抵抗も完全
に保持しており、従来品の致命的な欠陥を完全に
除去したもので、従来、単極端子を複数個並列に
使用していたものが、単数使用で目的を達するこ
とが可能になつたため、装置自体が小型軽量化が
できることは勿論、製造手数も大きく簡易化さ
れ、その技術的および実用的効果は極めて大き
い。
As described above, the multi-pole insulated terminal according to the present invention has a diameter of the conducting electrode of 1 to 2 mmφ, and has the same heat resistance properties as conventional products that use glass/mica plastic as the insulator and airtight sealant. Wealth, no change over time,
It maintains an extremely high degree of airtightness (watertightness), complete corrosion resistance against cooling media, and thermal and mechanical impact strength, as well as creeping insulation resistance, which conventional products could not maintain when the diameter of the conducting electrode became larger. This product has completely retained the same characteristics and has completely removed the fatal flaws of the conventional product.In the past, multiple single-pole terminals were used in parallel, but now it is possible to achieve the purpose by using a single terminal. Therefore, not only can the device itself be made smaller and lighter, but the manufacturing process is greatly simplified, and its technical and practical effects are extremely large.

また、前述した発明の説明にあたつては、液体
を媒体とする整流装置用の気密絶縁端子を対象と
しているが、用途はこの面に限定されるものでは
なく、高圧ガスを充満した金属容器などにも使用
可能であり、その用途は極めて広範囲である。
Furthermore, in the description of the invention described above, the object is an airtight insulated terminal for a rectifier that uses liquid as a medium, but the application is not limited to this aspect, and it is applicable to a metal container filled with high-pressure gas. It can also be used for a wide range of applications.

さらにまた、上記のように、この発明による多
極絶縁端子は特別な設備を必要とせず、従来の製
造設備で生産が可能であるから、安価に高性能品
が生産されるので、その効果は極めて大きいもの
である。
Furthermore, as mentioned above, the multi-pole insulated terminal according to the present invention does not require special equipment and can be produced using conventional manufacturing equipment, so high-performance products can be produced at low cost. It is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多極絶縁端子の縦断面図、第2
図は第1図の−線の横断面図、第3図はこの
発明の一実施例による多極絶縁端子の縦断面図、
第4図は第3図の−線の横断面図である。 図中、1……基体、101……貫通孔、103
……基体上面、104……基体下面、2……通電
極、2a……中心通電極、2b……中心以外の通
電極、201……通電極部分、202……通電極
部分B、203……接続部、21……突出部、3
……絶縁物、31……沿面絶縁部、32……連結
部。なお、図中、同一符号は同一もしくは相当部
分を示す。
Figure 1 is a vertical cross-sectional view of a conventional multi-pole insulated terminal;
The figure is a cross-sectional view taken along the - line in FIG. 1, and FIG. 3 is a vertical cross-sectional view of a multipolar insulated terminal according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view taken along the - line in FIG. 3. In the figure, 1...Base, 101...Through hole, 103
...Base upper surface, 104...Base lower surface, 2...Carrying electrode, 2a...Center conducting electrode, 2b...Carrying electrode other than the center, 201...Carrying electrode part, 202...Carrying electrode part B, 203... ...Connection part, 21...Protrusion part, 3
... Insulator, 31 ... Creeping insulation part, 32 ... Connection part. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 複数の貫通孔を有する基体と、前記複数の貫
通孔に各別に貫通して設けられた複数の端子導体
と、前記貫通孔および端子導体を密封固着すると
共に前記端子導体の貫通孔からの突出部周辺を各
別に包囲する沿面絶縁部を成形したガラス・マイ
カ塑造体からなる絶縁物とを備えた多極絶縁端子
において、 上記ガラス・マイカ塑造体からなる絶縁物を構
成するガラス質の転位温度以下における該絶縁物
の熱膨脹率を基準にして、基体の熱膨腸率を該基
準熱膨腸率より大きくし、前記端子導体の基体の
貫通孔内に位置する部分の熱膨腸率を前記基準熱
膨腸率より小さくし、かつ、端子導体のその他の
部分の熱膨脹率を前記基準熱膨脹率と同等もしく
は大きくすると共に前記貫通孔内に位置する端子
導体とその他の部分の端子導体とを一体物に構成
していることを特徴とする多極絶縁端子。
[Scope of Claims] 1. A base body having a plurality of through-holes, a plurality of terminal conductors provided to penetrate through each of the plurality of through-holes, and a plurality of terminal conductors that seal and fix the through-holes and the terminal conductors, and the terminal conductor. In a multi-polar insulated terminal, the insulator is made of a molded glass-mica plastic body, and the insulator made of a molded glass-mica plastic body has a creeping insulation portion that separately surrounds the periphery of the protrusion from the through-hole. Based on the thermal expansion coefficient of the insulator at a temperature below the transition temperature of the glass material, the thermal expansion coefficient of the base body is made larger than the reference thermal expansion coefficient, and the portion of the terminal conductor located in the through hole of the base body is The coefficient of thermal expansion is made smaller than the reference coefficient of thermal expansion, and the coefficient of thermal expansion of other parts of the terminal conductor is made equal to or larger than the reference coefficient of thermal expansion, and the terminal conductor and other parts located in the through hole are made. A multi-pole insulated terminal characterized in that it is configured as an integral part with a terminal conductor.
JP11012382A 1982-06-25 1982-06-25 Multipolar insulated terminal Granted JPS59878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11012382A JPS59878A (en) 1982-06-25 1982-06-25 Multipolar insulated terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11012382A JPS59878A (en) 1982-06-25 1982-06-25 Multipolar insulated terminal

Publications (2)

Publication Number Publication Date
JPS59878A JPS59878A (en) 1984-01-06
JPS6331903B2 true JPS6331903B2 (en) 1988-06-27

Family

ID=14527605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11012382A Granted JPS59878A (en) 1982-06-25 1982-06-25 Multipolar insulated terminal

Country Status (1)

Country Link
JP (1) JPS59878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428501A (en) * 1990-05-24 1992-01-31 Nakabayashi Kk Caulking device for binder used exclusively for computer output sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428501A (en) * 1990-05-24 1992-01-31 Nakabayashi Kk Caulking device for binder used exclusively for computer output sheet

Also Published As

Publication number Publication date
JPS59878A (en) 1984-01-06

Similar Documents

Publication Publication Date Title
US2100187A (en) Entrance insulation for electrical conductors
US2398176A (en) Electrical capacitor
US3955167A (en) Encapsulated vacuum fuse assembly
US3770878A (en) Hermetically sealed electrical terminal
US2307561A (en) Terminal construction for electrical devices
US2458748A (en) Hermetic seal for electric terminals and the like
US1562533A (en) Sealed joint
US20020101323A1 (en) High-voltage current-limiting fuse
US2241505A (en) Manufacture of metal to porcelain seals
US2272210A (en) Method of sealing dissimilar materials
JPS6331903B2 (en)
US3525894A (en) Spark plug with a conductive glass seal electrode of glass and a metal alloy
US2300931A (en) Metal-porcelain-glass vacuumtight structure
US3450962A (en) Pressure electrical contact assembly for a semiconductor device
US3535099A (en) Method of forming a hermetic enclosure for electronic devices
US3408524A (en) Sparkplug and seal therefor
US3009013A (en) Electrical insulator with compression ring seal
KR830000495B1 (en) Manufacturing method of multi-pole insulated terminal
JPH0124858Y2 (en)
RU2778223C1 (en) Method for producing high-voltage brazed joint
US4161746A (en) Glass sealed diode
JPS59877A (en) Multipolar insulated terminal
US2231459A (en) Electrical conductor for vapor electric devices
JPS6220267A (en) Airtight insulated terminal
JPS6134877A (en) Ignition plug