JPS6342370B2 - - Google Patents

Info

Publication number
JPS6342370B2
JPS6342370B2 JP16557178A JP16557178A JPS6342370B2 JP S6342370 B2 JPS6342370 B2 JP S6342370B2 JP 16557178 A JP16557178 A JP 16557178A JP 16557178 A JP16557178 A JP 16557178A JP S6342370 B2 JPS6342370 B2 JP S6342370B2
Authority
JP
Japan
Prior art keywords
nozzle
glass tube
phosphor
fluorescent lamp
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16557178A
Other languages
Japanese (ja)
Other versions
JPS5591557A (en
Inventor
Makoto Toho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP16557178A priority Critical patent/JPS5591557A/en
Publication of JPS5591557A publication Critical patent/JPS5591557A/en
Publication of JPS6342370B2 publication Critical patent/JPS6342370B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 この発明はけい光ランプの偏厚けい光体膜形成
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a unevenly thick phosphor film for a fluorescent lamp.

従来の一般けい光ランプの管構造は、第1図に
示すようにガラス管1の内面にけい光体層2を一
定厚みで塗布しているため、配光特性Aは第2図
に示すように中心に対し真円形を呈している。し
かし、一般には照明器具に組込み天井に吊下げる
等して光をより多く一方向(下方)へ要求するこ
とが殆んどであるため、ランプの上半部の光は上
方へ抜けたり、たとえ器具や天井で反射できたと
しても、数回の多重反射や反射効率の悪さのため
無駄に費消されることが多い。このような欠点除
去のため、従来リフレクタ型ランプが存在する。
その構造は第3図に示すように、ガラス管1の上
面に反射膜3を形成して上方への射光を下方へ反
射するようにしてあり、その配光特性Bは第4図
に示すようになつている。ところが、このランプ
は、反射膜3のある部分は光が透過しないので、
逆に上方が全く暗くなりすぎ、かえつて天井や器
具が陰うつな感じを与え、雰囲気として好ましく
ないという欠点が生じた。また、その製法は、一
旦反射膜3を全面塗布した後、一部除去し、その
後けい光体層2を塗布するという工程であつて一
部のみの除去は厄介で、高価かつ量産しにくいと
いう欠点があつた。
In the tube structure of a conventional general fluorescent lamp, as shown in Fig. 1, a phosphor layer 2 is coated on the inner surface of a glass tube 1 with a constant thickness, so that the light distribution characteristic A is as shown in Fig. 2. It has a perfect circular shape with respect to the center. However, in most cases, more light is required to go in one direction (downward) by incorporating it into a lighting fixture and suspending it from the ceiling, so the light from the upper half of the lamp may escape upward, or even Even if the light can be reflected by a fixture or ceiling, it is often wasted due to multiple reflections or poor reflection efficiency. In order to eliminate such defects, reflector type lamps have conventionally existed.
As shown in Fig. 3, its structure is such that a reflective film 3 is formed on the top surface of the glass tube 1 to reflect the upwardly emitted light downward, and its light distribution characteristic B is as shown in Fig. 4. It's getting old. However, in this lamp, the light does not pass through the part where the reflective film 3 is located.
On the other hand, the upper part was too dark, and the ceiling and fixtures gave a gloomy feeling, creating an undesirable atmosphere. In addition, the manufacturing method involves coating the entire surface with the reflective film 3, then removing a portion of it, and then applying the phosphor layer 2. Removing only a portion is troublesome, expensive, and difficult to mass-produce. There were flaws.

そこで、配光特性を改善し利用効率を高めるこ
とができるけい光ランプが提案されている。その
一例を第5図に示す。すなわち、このけい光ラン
プは、ガラス管1の前面側(下面側に相当)の内
面4の塗布層d1と後面側(上面側に相当)の内面
5の塗布厚d2との関係をd1>d2となるように、け
い光体層6を塗布している。けい光体塗布厚を薄
くすると、紫外線吸収率したがつて可視光(けい
光)の発光率が低くなる傾向により、このように
すると、その配光特性Cは第6図のようになつ
て、リフレクタ型ランプの場合よりも、上半部へ
幾分光が出るようになる。その程度は、塗布厚を
変えることにより所望に達成できるから、塗布厚
設定によつて陰うつ感を抑えることができる。一
例として、逆富士形照明器具を用い天井直付とし
た場合の配光特性を、従来の一般用ランプおよび
リフレクタ型ランプと比較してみた。結果は第7
図のとおりである。すなわち、同図aは一般ラン
プaであつて配光特性a1は上方への光束が多過ぎ
(約30〜40%)、天井面Pが明かるくなり過ぎると
共に下方への実際の有効光が減る。同図bはリフ
レクタ型ランプbであつて配光特性b1は上方への
光束が少なく(数%)、天井面Pや器具Qが暗く
陰うつな感じになつた(器具がなくても同じ)。
同図cは実施例のランプcであつて、その配光特
性c1は適度に天井面Pへも光が届き(10〜20%)、
しかし大半は有効に下方へ配光されているといえ
る。
Therefore, fluorescent lamps have been proposed that can improve light distribution characteristics and increase usage efficiency. An example is shown in FIG. That is, in this fluorescent lamp, the relationship between the coating layer d 1 on the inner surface 4 on the front side (corresponding to the lower surface side) of the glass tube 1 and the coating thickness d 2 on the inner surface 5 on the rear surface side (corresponding to the upper surface side) is d The phosphor layer 6 is applied so that 1 > d 2 . As the thickness of the phosphor coating becomes thinner, the ultraviolet absorption rate and hence the visible light (fluorescence) emission rate tend to decrease, so if this is done, the light distribution characteristic C will become as shown in Figure 6. Light is emitted somewhat more towards the upper half than with a reflector type lamp. Since the desired degree can be achieved by changing the coating thickness, the feeling of depression can be suppressed by setting the coating thickness. As an example, we compared the light distribution characteristics of an inverted Fuji-shaped lighting fixture mounted directly on the ceiling with conventional general-use lamps and reflector-type lamps. The result is the 7th
As shown in the figure. In other words, a in the same figure is a general lamp A, and the light distribution characteristic A1 is that the luminous flux is too large upwards (approximately 30 to 40%), the ceiling surface P becomes too bright, and the actual effective light downwards is too large. decrease. Figure b is reflector type lamp b, and light distribution characteristic b1 has a small upward luminous flux (several percent), making the ceiling P and fixture Q look dark and gloomy (same even without fixture). ).
The figure c shows the lamp c of the example, and its light distribution characteristic c 1 allows light to reach the ceiling surface P moderately (10 to 20%).
However, it can be said that most of the light is effectively distributed downward.

こうして、室全体の柔らかな配光雰囲気をかも
し出しつつ、下方へ効率的に光を与えることがで
きる。
In this way, it is possible to efficiently provide light downward while creating a soft light distribution atmosphere throughout the room.

また、このけい光ランプは、従来のリフレクタ
型ランプに比し、けい光体量が減少できる一方、
同等以上の光束を得ることができる。特に、特殊
けい光体を利用した高演色型ランプとした場合、
けい光体減少に伴う材料費低減の効果は大きい。
また、点灯中の光束減退および管の黄変着色は一
般にけい光体の塗布厚が薄い程激しいが、このけ
い光ランプでは下方へよく見える部分は逆に厚い
ので、上記劣化現象はより小さくみえ実際利用上
の品質効果が大きい。
In addition, while this fluorescent lamp can reduce the amount of fluorescent material compared to conventional reflector lamps,
It is possible to obtain the same or higher luminous flux. In particular, when using a high color rendering lamp that uses a special phosphor,
The effect of reducing material costs due to the reduction in the number of phosphors is significant.
In addition, the luminous flux reduction and yellowing of the tube during lighting are generally more severe as the coating thickness of the phosphor is thinner, but in this fluorescent lamp, the parts that can be seen clearly downward are thicker, so the above-mentioned deterioration phenomenon appears to be smaller. The quality effect in actual use is significant.

さらに、このけい光ランプのガラス管1の長面
上のいずれの側のけい光体層6が厚いかを区分す
る指示マーク7が付けてある(第5図)。
Further, an indicator mark 7 is provided on the long side of the glass tube 1 of this fluorescent lamp to indicate which side of the phosphor layer 6 is thicker (FIG. 5).

さて、以上のような、けい光体膜の偏厚塗布方
法について、従来ガラス管の温度によりけい光体
スラリの塗着厚が薄くなる現象を利用してガラス
管を部分加熱するものがある(実開昭54−173584
号公報)が、ガラス管の部分加熱条件およびその
温度条件下でのスラリの流込みといつた作業が煩
雑になり、製造性が悪いという欠点がある。
Now, regarding the above-mentioned method of applying uneven thickness of the phosphor film, there is a conventional method in which the glass tube is partially heated by taking advantage of the phenomenon that the coating thickness of the phosphor slurry becomes thinner depending on the temperature of the glass tube ( Jitsukai Showa 54-173584
However, the disadvantage is that the operations such as partial heating of the glass tube and pouring of the slurry under the temperature conditions are complicated, and the productivity is poor.

これに対し、従来と比べて製造性がほとんど変
わらない方法による装置を第8図ないし第10図
に示す。すなわち、この製造装置は、一般垂下塗
装法によりガラス管1の内面にけい光体層6を偏
厚塗布するものである。けい光体液8を噴射する
ノズル9の先端は第10図のように円形で、その
周辺に等間隔で噴射小孔10…が多数形成され、
かつこれら小孔10…を開閉弁11で開閉制御し
ている。12は開閉弁作動シヤフト、13はけい
光体液供給容器、14は受け溜である。このノズ
ル9は、第8図ないし第10図のように垂直に立
てたガラス管1の上端から偏心した位置に垂直下
方に挿入し、開閉弁11を開いてけい光液8を噴
射する。その結果、噴射したけい光体液8は放物
線を描きながら管内面に付着するようになり、そ
の場合、ノズル9が偏心しているため、ノズル9
に近い管内面側15が厚く、その反対側16がけ
い光体液8が付着する量が少なくなつて薄く形成
されるようになり、第5図に示すような偏厚をも
つたけい光体層が形成される。この場合、厚み調
整はノズル9の偏心量を加減すればよい。塗布後
は管内を乾燥し、けい光体液を固着させ、けい光
体焼成、マウント封止、排気、ガス封入等の所定
の工程を経てランプを作り上げる。この製造装置
は、したがつて従来の工程数を増加することな
く、きわめて簡単にけい光体を偏厚塗布できる。
On the other hand, a device using a method with almost no difference in productivity compared to the conventional method is shown in FIGS. 8 to 10. That is, this manufacturing apparatus applies the phosphor layer 6 to an uneven thickness on the inner surface of the glass tube 1 by a general drooping coating method. The tip of the nozzle 9 that sprays the fluorescent body fluid 8 is circular as shown in FIG. 10, and a large number of small spray holes 10 are formed around it at equal intervals.
In addition, these small holes 10 are controlled to open and close by an on-off valve 11. 12 is an opening/closing valve operating shaft, 13 is a fluorescent body fluid supply container, and 14 is a reservoir. This nozzle 9 is inserted vertically downward at an eccentric position from the upper end of the vertically erected glass tube 1 as shown in FIGS. 8 to 10, and the on-off valve 11 is opened to inject the fluorescent liquid 8. As a result, the ejected fluorescent body fluid 8 comes to adhere to the inner surface of the tube while drawing a parabola, and in this case, since the nozzle 9 is eccentric, the nozzle 9
The inner surface 15 of the tube, which is closer to the inner surface of the tube, is thicker, and the opposite side 16 has a smaller amount of phosphor fluid 8 adhering to it and is formed thinner, resulting in a phosphor layer with uneven thickness as shown in FIG. is formed. In this case, the thickness can be adjusted by adjusting the amount of eccentricity of the nozzle 9. After coating, the inside of the tube is dried, the phosphor fluid is fixed, and the lamp is completed through predetermined processes such as firing the phosphor, sealing the mount, evacuation, and gas filling. This manufacturing apparatus can therefore extremely easily apply the phosphor in uneven thickness without increasing the number of conventional steps.

また第11図ないし第13図は静電塗装法によ
つて偏厚塗布するものである。この場合、ノズル
9の噴射小孔10は等間隔(第9図に相当)であ
り、かつノズル9は金属製を用い、またガラス管
1の外部に金属管17を外包してノズル9と金属
管17との間に電源Eを接続して電圧をかけ、ノ
ズル9はガラス管1内を偏心位置で挿入(一定速
度)してけい光体液8を噴射する。このとき、け
い光体液8の噴射霧体は帯電してガラス管1の内
面に静電吸着するので前記垂下塗装法に比しけい
光体液8を増粘すべきバインダが不要であるう
え、偏心位置でガラス管1内を一定速度でノズル
9を移動することにより、ガラス管1内面のノズ
ル9の近い面が厚くその反対側の面が薄く塗布さ
れることとなる。したがつて、製造工程数を殆ん
ど変えることなくきわめて簡単に第5図のような
けい光体層6を得ることができる。
Moreover, FIGS. 11 to 13 show cases in which uneven thickness is applied by electrostatic coating. In this case, the injection holes 10 of the nozzle 9 are equally spaced (corresponding to FIG. 9), the nozzle 9 is made of metal, and a metal tube 17 is wrapped outside the glass tube 1 to connect the nozzle 9 with the metal. A power source E is connected between the tube 17 and a voltage is applied, and the nozzle 9 is inserted into the glass tube 1 at an eccentric position (at a constant speed) to inject the fluorescent body fluid 8. At this time, the sprayed mist of the fluorescent body fluid 8 is charged and electrostatically adsorbed on the inner surface of the glass tube 1, so compared to the drooping coating method, there is no need for a binder to thicken the fluorescent body fluid 8. By moving the nozzle 9 within the glass tube 1 at a constant speed, the inner surface of the glass tube 1 near the nozzle 9 is thickly coated, and the opposite side is coated thinly. Therefore, the phosphor layer 6 as shown in FIG. 5 can be obtained very easily without changing the number of manufacturing steps.

しかしながら、これらの製造方法はノズルがガ
ラス管に対して偏心位置に設定される必要がある
ため、従来の製造の量産設備においてノズルとガ
ラス管の相対的位置関係を調整可能に設定する必
要があり、設備の変更を必要とするという欠点が
ある。
However, these manufacturing methods require the nozzle to be set at an eccentric position with respect to the glass tube, so it is necessary to adjust the relative positional relationship between the nozzle and the glass tube in conventional manufacturing mass production equipment. However, it has the disadvantage of requiring changes to the equipment.

したがつて、この発明の目的は、従来の設備を
そのまま適用できしかも製造性も変わらずにけい
光体膜を偏厚塗布することができるけい光ランプ
の偏厚けい光体膜形成方法を提供することであ
る。
Therefore, an object of the present invention is to provide a method for forming a phosphor film of uneven thickness for a fluorescent lamp, which can apply conventional equipment as is and coat a phosphor film of uneven thickness without changing productivity. It is to be.

この発明の第1の実施例を第14図および第1
5図に示す。すなわち、この製造装置は、垂下塗
装法によるもので前記ノズル9の噴射小孔10′
…を等間隔にせず、一方向に数多く、反対方向に
数少なくなるようにし、ノズル9はガラス管1の
中心上に位置させるようにしている。この場合、
噴射小孔10′…から出るけい光体液の流量は一
定であるから、噴射小孔10′…の数が多い程そ
の方向に多く噴射するようになる。その結果、第
5図のようなけい光層の偏厚形成を得ることがで
きる。この場合の塗布層は噴射小孔10′…の偏
り密度によつて決まる。その他は第8図ないし第
10図と同様である。したがつて、この方法によ
れば、従来と比べて異なる点がノズル9のみであ
り、単にノズル9を交換するだけで、従来の設備
をそのまま使用でき、しかも製造性も全く変化が
ない。
The first embodiment of this invention is shown in FIG.
It is shown in Figure 5. That is, this manufacturing apparatus uses a drooping coating method, and the small injection hole 10' of the nozzle 9 is
The nozzles 9 are arranged at equal intervals, with more in one direction and fewer in the opposite direction, and the nozzle 9 is positioned over the center of the glass tube 1. in this case,
Since the flow rate of the fluorescent fluid coming out of the small injection holes 10' is constant, the more small injection holes 10' there are, the more the fluorescent fluid will be ejected in that direction. As a result, it is possible to form a luminescent layer with uneven thickness as shown in FIG. The coating layer in this case is determined by the uneven density of the injection holes 10'. Other details are the same as in FIGS. 8 to 10. Therefore, according to this method, the only difference from the conventional method is the nozzle 9, and by simply replacing the nozzle 9, the conventional equipment can be used as is, and there is no change in productivity.

第2の実施例を第16図ないし第18図に示
す。すなわち、この製造装置は、前記第11図な
いし第13図による方法と同様であるが、ノズル
9の噴射小孔10′…の孔数密度を偏奇させ、ノ
ズル9はガラス管1の中心上を一定速度移動さ
せ、もつてけい光体層を偏厚形成する。その他は
この発明の第1の実施例と同様であり、かつ同様
の効果を有する。
A second embodiment is shown in FIGS. 16 to 18. That is, this manufacturing apparatus is similar to the method shown in FIGS. 11 to 13 above, but the number density of the small injection holes 10' of the nozzle 9 is uneven, and the nozzle 9 is arranged above the center of the glass tube 1. It is moved at a constant speed to form a phosphor layer with uneven thickness. The rest is the same as the first embodiment of the present invention, and has the same effects.

以上のように、この発明のけい光ランプの偏厚
けい光体膜形成方法は、ノズルの多数の噴射小孔
の開口量を一方向に大となるようにしたため、従
来の設備をそのまま使用でき、かつ製造性を何ら
変化することなくけい光体膜の偏厚塗布ができ、
所期のけい光ランプを安価に提供できるという効
果がある。
As described above, in the method for forming a unevenly thick phosphor film in a fluorescent lamp of the present invention, the opening amount of the large number of small injection holes in the nozzle is increased in one direction, so that conventional equipment can be used as is. , and allows uneven thickness coating of the phosphor film without any change in manufacturability.
This has the effect of providing the desired fluorescent lamp at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の一般用けい光ランプの断面図、
第2図はその配光曲線図、第3図は従来のリフレ
クタ型けい光ランプの断面図、第4図はその配光
曲線図、第5図は提案例のけい光ランプの断面
図、第6図はその配光曲線図、第7図は天井取付
状態における配光曲線の比較図でaは一般用けい
光ランプ、bはリフレクタ型けい光ランプ、cは
提案例のけい光ランプについての配光曲線図、第
8図は従来の製造方法による装置の断面略図、第
9図はその要部拡大図、第10図はその水平断面
略図、第11図はその他の装置の断面図、第12
図はその縦断正面図、第13図はそのノズルの拡
大断面図、第14図はこの発明の第1の実施例の
ノズルの断面図、第15図はその縦断正面図、第
16図はこの発明の第2の実施例の縦断面図、第
17図はその縦断正面図、第18図はノズルの拡
大断面図である。 1……ガラス管、4……下面側(前面側)、5
……上面側(後面側)、d1,d2……塗布厚、6…
…けい光体層、8……けい光体液、9……ノズ
ル、10′……噴射小孔、11……開閉弁。
Figure 1 is a cross-sectional view of a conventional general-use fluorescent lamp.
Figure 2 is its light distribution curve, Figure 3 is a cross-sectional view of a conventional reflector type fluorescent lamp, Figure 4 is its light distribution curve, Figure 5 is a cross-sectional view of the proposed fluorescent lamp, and Figure 5 is a cross-sectional view of the proposed fluorescent lamp. Figure 6 is a diagram of its light distribution curve, and Figure 7 is a comparison diagram of its light distribution curve when it is installed on the ceiling, where a is a general fluorescent lamp, b is a reflector type fluorescent lamp, and c is a proposed fluorescent lamp. A light distribution curve diagram, FIG. 8 is a cross-sectional schematic diagram of a device manufactured by a conventional manufacturing method, FIG. 9 is an enlarged view of its main parts, FIG. 10 is a horizontal cross-sectional diagram thereof, FIG. 12
13 is an enlarged sectional view of the nozzle, FIG. 14 is a sectional view of the nozzle of the first embodiment of the present invention, FIG. 15 is a longitudinal sectional front view of the nozzle, and FIG. FIG. 17 is a longitudinal sectional view of the second embodiment of the invention, FIG. 17 is a longitudinal sectional front view thereof, and FIG. 18 is an enlarged sectional view of the nozzle. 1...Glass tube, 4...Bottom side (front side), 5
...Top side (rear side), d 1 , d 2 ... Coating thickness, 6...
...phosphor layer, 8... fluorescent body fluid, 9... nozzle, 10'... small injection hole, 11... opening/closing valve.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス管の中心軸上にノズルを配置し、その
ノズルの周囲に所定数の噴射小孔を形成し、かつ
その噴射小孔の開口量がガラス管の一方向につい
て大となるようにし、この噴射小孔よりけい光体
を前記ガラス管の内面に塗布することを特徴とす
るけい光ランプの偏厚けい光体膜形成方法。
1 Place a nozzle on the central axis of the glass tube, form a predetermined number of small injection holes around the nozzle, and make the opening amount of the small injection holes large in one direction of the glass tube. A method for forming a unevenly thick phosphor film for a fluorescent lamp, characterized in that the phosphor is applied to the inner surface of the glass tube through a small injection hole.
JP16557178A 1978-12-30 1978-12-30 Fluorescent lamp and its manufacturing device Granted JPS5591557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16557178A JPS5591557A (en) 1978-12-30 1978-12-30 Fluorescent lamp and its manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16557178A JPS5591557A (en) 1978-12-30 1978-12-30 Fluorescent lamp and its manufacturing device

Publications (2)

Publication Number Publication Date
JPS5591557A JPS5591557A (en) 1980-07-11
JPS6342370B2 true JPS6342370B2 (en) 1988-08-23

Family

ID=15814884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16557178A Granted JPS5591557A (en) 1978-12-30 1978-12-30 Fluorescent lamp and its manufacturing device

Country Status (1)

Country Link
JP (1) JPS5591557A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079796B2 (en) * 1987-03-28 1995-02-01 東芝ライテック株式会社 Discharge lamp
DE69117316T2 (en) * 1990-03-30 1996-08-01 Toshiba Lighting & Technology Fluorescent lamp and its manufacturing process

Also Published As

Publication number Publication date
JPS5591557A (en) 1980-07-11

Similar Documents

Publication Publication Date Title
JPS6342370B2 (en)
US1698845A (en) Method of dry-coating lamp bulbs
US20090134771A1 (en) Arc tube and method of phosphor coating
US2317977A (en) Luminescent coating for electric lamps
US1816903A (en) Method for coating the interior wall of hollow bodies
EP0660374B1 (en) Low-pressure mercury vapour discharge lamp and method of manufacturing same
CN109065693B (en) LED packaging method
CN206207091U (en) A kind of cell-shell and the LED filament bulb lamp using the cell-shell
US3912828A (en) Precoat for reprographic lamps having oxide reflector coatings
US1706182A (en) Colored or diffusing coating for incandescent lamps and similar articles
US1941990A (en) Lamp coating
US2855326A (en) Method of internally masking hollow articles
JPH0294225A (en) Tubular bulb
CN105312206B (en) A kind of method that stable heat insulating coat is coated to xenon short-act lamp
US4064291A (en) Spray-coating method of window forming in tubular lamp
JPH01217827A (en) Phosphor membrane forming method for glass bulb for fluorescent lamp
JPS58131638A (en) Coating method of fluorescent material
JPS6016834A (en) Method for forming fluorescent layer to inner surface of glass tube
JPH0129713Y2 (en)
JP2690085B2 (en) Method for forming phosphor coating
KR100504970B1 (en) an incandescent of heatproof oxide coating
JPH03163731A (en) Manufacture of ultraviolet ray suppressing lamp
JP2002343246A (en) Method of forming phosphor film onto glass tube inner wall surface
JPS63889B2 (en)
JPH06150888A (en) Tungsten halogen lamp