JPS6342368A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS6342368A
JPS6342368A JP18740486A JP18740486A JPS6342368A JP S6342368 A JPS6342368 A JP S6342368A JP 18740486 A JP18740486 A JP 18740486A JP 18740486 A JP18740486 A JP 18740486A JP S6342368 A JPS6342368 A JP S6342368A
Authority
JP
Japan
Prior art keywords
sputtering
targets
substrate
target
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18740486A
Other languages
Japanese (ja)
Inventor
Ryuji Iwama
岩間 竜治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18740486A priority Critical patent/JPS6342368A/en
Publication of JPS6342368A publication Critical patent/JPS6342368A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and efficiently form good-quality laminated films by juxtaposing plural sputtering targets on a rotating cylindrical body along the rotating direction and sputtering the targets while the targets are successively opposed to a substrate to be treated. CONSTITUTION:Plural pieces of the sputtering targets 7A-7H are juxtaposed on the cylindrical body 4 rotated by a shaft 5 in a vacuum vessel 1 along the rotating direction of the cylindrical body 4. The inside of the vacuum vessel 1 is maintained at a prescribed vacuum degree by an inert gas. The target 7A is first opposed to the substrate 8 to be treated and is sputtered by impressing independent DC electric power through a backing plate 6A from a power source. The cylindrical body 4 is rotated in the state of maintaining the atmosphere in the vacuum vessel 1 as it is to oppose the targets 7B-7H successively to the substrate 8 to be treated and the sputtering is executed by impressing the DC electric powers respectively independently to the targets upon ending of the sputtering of the target 7A. The adhesiveness between the films of the respective layers is thereby increase and the film quality is uniformized. The good-quality laminated films are thus formed.

Description

【発明の詳細な説明】 〔概 要] 回転する筒体上に回転方向に沿って並んで配設された複
数のスパッタターゲットから、該複数のスパッタターゲ
ットが順次対向する被処理基板上にそれぞれのターゲッ
ト材料を順次スパッタさせるスパッタリング装置で、各
層間の密着強度が高く各層の膜品質が均一化された良質
の積層被膜が容易に且つ効率良く形成される。
[Detailed Description of the Invention] [Summary] From a plurality of sputter targets arranged in line along the rotational direction on a rotating cylinder, each of the sputter targets is sequentially placed on an opposing substrate to be processed. With a sputtering device that sequentially sputters target materials, a high-quality laminated film with high adhesion strength between each layer and uniform film quality of each layer can be easily and efficiently formed.

〔産業上の利用分野〕[Industrial application field]

本発明はスパッタリング装置に係り、特に多層膜の形成
に有利なターゲット回転送り方式のスパッタリング装置
に関する。
The present invention relates to a sputtering apparatus, and particularly to a sputtering apparatus using a rotational target feeding method, which is advantageous for forming multilayer films.

LSI等高集積化される半導体rcにおいて、配線幅は
極度に縮小されて来ており、また不純物導入領域も極め
て浅く形成されるようになって来ている。
In semiconductor rcs that are highly integrated such as LSIs, the wiring width has been extremely reduced, and impurity doped regions have also become extremely shallow.

かかる状況において配線強度を高めるために、例えばア
ルミニウム(AI)−シリコン(Si)合金(AI−1
%Si)膜とチタン(Ti)膜とへ1−1%Si膜との
多層膜構造を有する配線パターンや、不純物導入領域と
のコンタクト部におけるAI内へのSiの溶解を阻止し
て不純物導入領域の接合破壊を防止するためにバリア層
として窒化チタン(TiN)膜を含んだ下層からTi−
TiN−Al構成を有する多層膜構造の配線パターン等
が用いられる。
In order to increase the wiring strength in such a situation, for example, aluminum (AI)-silicon (Si) alloy (AI-1
%Si) film, titanium (Ti) film, and 1-1%Si film, or in the contact area with the impurity introduction region, impurities can be introduced by preventing the dissolution of Si into the AI. In order to prevent junction breakdown in the region, Ti-
A wiring pattern having a multilayer structure having a TiN-Al structure is used.

上記多層膜の形成は工程が複雑になり、また膜品質の変
動も生じ易いので、これ等の改善が要望されている。
Formation of the above-mentioned multilayer film requires complicated steps and also tends to cause variations in film quality, so improvements in these areas are desired.

〔従来の技術〕[Conventional technology]

従来、上記多層膜の形成には通常単層膜の形成に用いら
れる単一ターゲット材料のマグネトロンスパッタ装置が
用いられていた。
Conventionally, a magnetron sputtering device using a single target material, which is normally used for forming a single-layer film, has been used to form the above-mentioned multilayer film.

第2図はマグネトロンスパッタ装置の要部を示す模式側
断面図で、図中、51は陽極となる真空容器、52はガ
ス導入口、53は真空排気口、54は陰極となるバンキ
ングプレート、55はスパッタターゲット、56はプラ
ズマ閉じ込め用磁場を形成する磁石、57は回動する磁
石支持体、5日は絶縁体パツキン、59は基板保持治具
、60は被処理基板、61は堆積膜、Eは直流電源、G
NDは接地、N、Sは磁極を表している。
FIG. 2 is a schematic side cross-sectional view showing the main parts of the magnetron sputtering apparatus. In the figure, 51 is a vacuum container that becomes an anode, 52 is a gas inlet, 53 is a vacuum exhaust port, 54 is a banking plate that is a cathode, and 55 5 is a sputtering target, 56 is a magnet for forming a magnetic field for plasma confinement, 57 is a rotating magnet support, 5 is an insulator packing, 59 is a substrate holding jig, 60 is a substrate to be processed, 61 is a deposited film, E is DC power supply, G
ND represents ground, and N and S represent magnetic poles.

なお、雰囲気ガスとしてはアルゴン(Ar)等の不純活
性ガスが用いられ、スパッタに際しての真空容器内のガ
ス圧(真空度)は5 X 10−’Torrf1度にす
る。
Note that an impure active gas such as argon (Ar) is used as the atmospheric gas, and the gas pressure (degree of vacuum) in the vacuum container during sputtering is set to 5 x 10-' Torrf 1 degree.

このような単一ターゲット構成の通常のマグネトロンス
パッタ装置を用いて、前述した多層膜構造の配線層を短
手番で形成する際には、膜の府故に対応する数のスパッ
タ装置(スパッタターゲットが配設された真空容器)が
使われるので、それぞれの装置の雰囲気条件を厳密に等
しく保つことが困難なために各層被膜毎に膜の品質が変
動して所要の配線性能が得られなかったり、装置間搬送
時の酸化や汚染によって各層の被膜間の密着度の低下や
配線抵抗の増大等の問題を生じていた。
When forming wiring layers of the multilayer film structure described above in a short order using a normal magnetron sputtering device with such a single target configuration, it is necessary to use a number of sputtering devices (sputter targets are Since it is difficult to maintain exactly the same atmospheric conditions in each device, the quality of each layer varies, making it impossible to obtain the desired wiring performance. Oxidation and contamination during transport between devices have caused problems such as reduced adhesion between coatings of each layer and increased wiring resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする点は、多層膜構造の配線層を
形成する際に、従来のスパッタリング装置を複数台用い
た場合生じていた、各層毎の膜品質の変動、及び装置間
搬送時の酸化、汚染に起因する各開被膜間の密着度の低
下や配線抵抗の増大の問題と、更には使用装置台数の増
大に伴う作業手番や装置専有面積の増大等の問題である
The problems that the present invention aims to solve are the variations in film quality for each layer that occur when multiple conventional sputtering devices are used when forming wiring layers of a multilayer film structure, and the problems that occur during transport between devices. These problems include a decrease in the degree of adhesion between each open film and an increase in wiring resistance due to oxidation and contamination, and further problems such as an increase in the number of work steps and the area occupied by the device due to an increase in the number of devices used.

〔問題点を解決するための手段〕[Means for solving problems]

真空容器(1)内に配設され軸(5)を中心にして回転
する筒体)4)上に、その回転方向に沿って並んで配設
された複数個のスバソタターゲッ) (7A)〜(71
1)を有し、該真空容器(1)内の該回転する筒体(4
)上の複数のスパッタターゲット(7A)〜(7H)の
各々が順次正対する位置に被処理基板(8)が配置され
、該被処理基板上(8)に、該被処理基板(8)に順次
対向する複数のスパッタターゲット(7八)〜(7H)
から、それぞれのターゲット材料を順次スパッタさせる
本発明によるスパッタリング装置によって解決される。
A plurality of subasota targets) (7A) to (7A) arranged in line along the direction of rotation on the cylinder (4) arranged in the vacuum container (1) and rotating around the shaft (5). 71
1), and the rotating cylinder (4) in the vacuum container (1)
) A substrate to be processed (8) is placed at a position where each of the plurality of sputter targets (7A) to (7H) on A plurality of sputter targets (78) to (7H) facing each other in sequence
This problem is solved by the sputtering apparatus according to the present invention, which sequentially sputters each target material.

〔作 用〕[For production]

即ち本発明のスパッタリング装置は、真空容器内で回転
する筒体上に回転方向に沿って並んで配設された複数の
スパッタターゲットから、該複数のスパッタターゲット
が順次対向する被処理基板上にそれぞれのターゲット材
料を順次スパックさせることによって、被処理基板上に
複数のターゲット材料が、それぞれのターゲットが被処
理基板に対向する順序に順次積層された多層膜を被着さ
せる機能を有し、各スパッタターゲットが同一の真空容
器内に配設されることから各ターゲット材料のスパッタ
雰囲気が同−且つ良好に保たれ、且つ下層膜の形成を開
始してから多層膜が完成するまで被処理基板の装置外搬
送がなされないので、各層の膜品質が良好且つ均一化さ
れることによる配線層性能の向上、各層液膜表面の酸化
、汚染がないことによる各層被膜の眉間密着強度の増大
及び配線抵抗の減少等が図れる。
That is, the sputtering apparatus of the present invention has a plurality of sputter targets arranged side by side along the rotational direction on a cylinder rotating in a vacuum container, and each of the plurality of sputter targets is sequentially sputtered onto an opposing substrate to be processed. By sequentially spucking the target materials of Since the targets are placed in the same vacuum container, the sputtering atmosphere for each target material is maintained at the same level and in a good condition. Since there is no external transport, the film quality of each layer is good and uniform, which improves the performance of the wiring layer. There is no oxidation or contamination of the liquid film surface of each layer, which increases the adhesion strength between the eyebrows of each layer and reduces the wiring resistance. This can be reduced.

〔実施例〕〔Example〕

以下本発明を、第1図に模式的に示す本発明に係るスパ
ッタリング装置の一実施例の内部平面図(a)、内部側
面図(bl及び電源回路図(C1を参照して具体的に説
明する。
The present invention will be specifically described below with reference to an internal plan view (a), an internal side view (bl), and a power supply circuit diagram (C1) of an embodiment of a sputtering apparatus according to the present invention schematically shown in FIG. do.

第1図において、1はステンレス等の導体で形成された
真空容器、2はガス導入口、3は真空排気口、イ絶縁体
によって形成さた正8角筒体、5は筒体の回転軸、6A
、 6B、6C,6D、6E、 6F、 6G。
In Figure 1, 1 is a vacuum container made of a conductor such as stainless steel, 2 is a gas inlet, 3 is a vacuum exhaust port, A is an octagonal cylinder made of an insulator, and 5 is the rotation axis of the cylinder. ,6A
, 6B, 6C, 6D, 6E, 6F, 6G.

61(は銅等により形成され内部に図示しない冷却手段
を有するそれぞれ独立したバッキングプレート、7A、
 7B、 7C,7D、 7E、 7F、 7G、 7
Mはスパッタリングターゲット、8はスパッタターゲッ
トが順次対向する容器面に図示しない固定手段により容
器と同電位に支持された被処理基板、9は電源配線、1
oは模式的に示す電源配線とバッキングプレートとの接
触端子、11は筒体の回転軸に連動し且つ接地された回
転摺動スイッチ、12A 、 12B 、 12C11
20,12E 、12F 、12G 、12Hは各電源
への接続端子、C6、Ell、Ec、εo−、Et、E
r1 Eo、EHはそれぞれ異なる電圧を有する直流電
源、GNDは接地を示す。
61 (are independent backing plates made of copper or the like and each having a cooling means (not shown) inside; 7A;
7B, 7C, 7D, 7E, 7F, 7G, 7
M is a sputtering target, 8 is a substrate to be processed that is supported at the same potential as the container by fixing means (not shown) on the surface of the container facing the sputtering target in sequence, 9 is a power supply wiring, 1
o is a contact terminal between the power supply wiring and the backing plate schematically shown, 11 is a rotary sliding switch that is interlocked with the rotating shaft of the cylinder and is grounded, 12A, 12B, 12C11
20, 12E, 12F, 12G, 12H are connection terminals to each power supply, C6, Ell, Ec, εo-, Et, E
r1 Eo and EH indicate DC power supplies having different voltages, and GND indicates grounding.

なお、スパッタの方式はマグネトロンスパッタ方式で、
バッキングプレートの裏面側には例えば従来例同様の構
造を有する図示しない磁石が配設される。
The sputtering method is magnetron sputtering.
For example, a magnet (not shown) having a structure similar to that of the conventional example is disposed on the back side of the backing plate.

スパッタに際しては、例えばターゲット7A〜7Hに異
なるターゲ7)材料を用い、ガス導入口2から不活性ガ
ス例えばArを流入し、真空排気口3がら排気を行って
真空容器1内を5×10−’程度の真空度に保った状態
で、先ず被処理基板8に対向するターゲット7Aからそ
のターゲット材料を被処理基板8上にスパッタさせる。
During sputtering, for example, different target materials are used for the targets 7A to 7H, an inert gas such as Ar is introduced from the gas inlet 2, and the air is evacuated through the vacuum exhaust port 3 to form a vacuum chamber 1 of 5×10 − First, the target material is sputtered onto the substrate 8 to be processed from the target 7A facing the substrate 8 to be processed while maintaining a degree of vacuum at a level of about 100 psi.

この際ターゲット7Aには筒体4の回転軸5に連動する
回転摺動端子11を介し更にバンキングプレート6Aを
介して電源E1から独立の直流電力が印加される。通常
スパッタ電圧は100〜500V、電力は1〜10 K
W程度である。
At this time, independent DC power is applied to the target 7A from the power source E1 via the rotary and sliding terminal 11 interlocked with the rotating shaft 5 of the cylinder 4 and further via the banking plate 6A. Usually sputtering voltage is 100-500V, power is 1-10K
It is about W.

所定の時間ターゲット7八材料のスパッタを行った後、
真空容器1内の雰囲気をその侭に維持した状態において
、筒体4を次のターゲット7Bが被処理基板8と対向す
る位置まで回転し、この際筒体4の回転軸5に連動する
摺動端子11を介し且つバッキングプレート6Bを介し
て電源E、から独立に供給される直流電力により所定の
時間ターゲット7Bのスパッタを行い、前記被処理基板
8の既に被着されているターゲット材料7Aのスパッタ
膜上にターゲット材料7Bのスパッタ膜を被着する。
After sputtering target 78 material for a predetermined time,
While maintaining the atmosphere inside the vacuum container 1, the cylinder 4 is rotated to a position where the next target 7B faces the substrate 8 to be processed. The target 7B is sputtered for a predetermined period of time using DC power independently supplied from the power source E through the terminal 11 and the backing plate 6B, and the target material 7A already deposited on the substrate 8 to be processed is sputtered. A sputtered film of target material 7B is deposited on the film.

以下同様に、筒体4を次のターゲットが被処理基板8と
対向する位置まで順次回転させ、ターゲット7C〜7H
に、対応する電源EC−EHからそれぞれ独立の直流電
力を印加してスパッタが行われ、それぞれのターゲット
材料のスパッタ膜が被処理基板8上に順次積層被着され
る。
Similarly, the cylinder 4 is sequentially rotated until the next target faces the substrate 8 to be processed, and the targets 7C to 7H
Then, sputtering is performed by applying independent DC power from the corresponding power supplies EC-EH, and sputtered films of the respective target materials are successively deposited on the substrate 8 to be processed.

このように本発明のスパッタリング装置においては、真
空容器1内が一定の良好な真空雰囲気に保たれた状態に
おいて、同一被処理基板8上に複数のターゲット材料の
スパッタ膜が続けて積層被着される。従って各々のター
ゲット材料のスパッタ膜の膜品質は均一に保たれ、更に
各スパッタ膜の表面が酸化されたり汚染されたりするこ
とが無いので積層されるスパッタ膜間の密着は良好且つ
強固に保たれる。
In this way, in the sputtering apparatus of the present invention, sputtered films of a plurality of target materials are successively deposited in a layered manner on the same substrate 8 to be processed while the inside of the vacuum container 1 is maintained at a constant and good vacuum atmosphere. Ru. Therefore, the quality of the sputtered films of each target material is maintained uniformly, and since the surface of each sputtered film is not oxidized or contaminated, the adhesion between the sputtered films stacked is good and strong. It will be done.

なお、各々のターゲ・7トのスパッタ時間即ちターゲッ
トと被処理基板を対向させて置く時間は、良好な膜質が
得られるスパッタレートと所要のスパッタ膜厚によって
決定されるが、条件が許されるならば各々のターゲット
のスパッタ時間は一定にした方が操作が簡単になる。
The sputtering time for each target, that is, the time for which the target and substrate to be processed are left facing each other, is determined by the sputtering rate to obtain good film quality and the required sputtered film thickness, but if conditions permit. For example, the operation will be easier if the sputtering time for each target is constant.

上記実施例においては、ターゲット7A〜711の材料
が総て異なる例を説明したが、複数のターゲットを同一
材料にして使用することもできる。
In the above embodiment, an example was explained in which the targets 7A to 711 are all made of different materials, but it is also possible to use a plurality of targets made of the same material.

例えばターゲット7A、7B、7CにAl−1%Si合
金を用い、7D、 7EにTiを用い、7F、7G、7
11にAl−1%Si合金を用いて、ターゲット7A、
7B、7C17F、7G、7Hをそれぞれ1700人/
minでスパッタさせ、ターゲット7D、7Eを500
人/minでスパッタさせることにより、各ターゲット
のスパッタ時間を一定の1分間に保って、5100人:
 1000人: 5100人の膜厚比率を有する前述の
Al−1%Si合金−Ti −AI−1%Si合金の配
線層を形成することができる。
For example, Al-1%Si alloy is used for targets 7A, 7B, and 7C, Ti is used for targets 7D and 7E, and targets 7F, 7G, and 7
Using Al-1%Si alloy for 11, target 7A,
1700 people/7B, 7C17F, 7G, 7H each
sputter at min, target 7D, 7E at 500
By sputtering at a rate of 5,100 people/min, the sputtering time for each target was kept constant at 1 minute:
A wiring layer of the aforementioned Al-1%Si alloy-Ti-AI-1%Si alloy having a film thickness ratio of 1000:5100 can be formed.

なおまた、上記実施例においては被処理基板を1枚とし
たが、これは1枚に限られるものではなく、上記1枚の
被処理基板の他に、他のターゲットに対向する位置に別
の被処理基板を配置することによって、複数枚に被処理
基板に対して同一バッチで同種の積層スパッタ膜を形成
することができる。
Furthermore, in the above embodiment, the number of substrates to be processed is one, but this is not limited to one. In addition to the one substrate to be processed, another substrate is placed opposite to another target. By arranging the substrates to be processed, it is possible to form laminated sputtered films of the same type on a plurality of substrates to be processed in the same batch.

更にまた、同一筒体上にターゲット列を複数列配設すれ
ば、更に製造能力の大きい装置が形成される。
Furthermore, by arranging a plurality of target rows on the same cylindrical body, an apparatus with even greater manufacturing capacity can be formed.

なお上記実施例においては筒体を正8角形に形成し、該
筒体表面にその回転方向に沿って8個のターゲットが並
べて配設されたが、筒体の形状は上記8角形に限られる
ものではなく、従って回転方向に沿って並べられるクー
ゲット数も上記8個に限られるものではない。また筒体
は円筒形でもよい。
In the above embodiment, the cylinder was formed into a regular octagon, and eight targets were arranged on the surface of the cylinder along the direction of rotation, but the shape of the cylinder is limited to the above-mentioned octagon. Therefore, the number of cugettes arranged along the rotation direction is not limited to the above-mentioned eight. Further, the cylinder may be cylindrical.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明のスパッタリング装置によれば
、被処理基板上に積層被膜を形成する際に、被処理基板
の装置間搬送を伴わずに、同一真空容器内において同一
の良好な真空雰囲気中で連続して積層形成することがで
きる。
As described above, according to the sputtering apparatus of the present invention, when forming a laminated film on a substrate to be processed, the same good vacuum atmosphere can be maintained in the same vacuum container without transporting the substrate to be processed between devices. It is possible to form a continuous layer in the interior.

従って積層される各々の膜品質は均一になる。Therefore, the quality of each laminated film is uniform.

そして更に、各層の被膜間に酸化被膜や汚染物質が介在
することがなくなるので、各層液膜間の密着強度は増大
し、積層配線層等の場合電気抵抗の減少、パターンニン
グ性の向上環が図れる。
Furthermore, since there are no oxide films or contaminants interposed between the coatings of each layer, the adhesion strength between the liquid films of each layer increases, and in the case of laminated wiring layers, electrical resistance is reduced and patterning properties are improved. I can figure it out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を模式的に示す内部平面図(
a)、内部側面図(bl及び電源回路図fcl、第2図
は従来用いられていたマグネトロンスパッタ装置の模式
側断面図である。 図において、 1は真空容器、 2はガス導入口、 3は真空排気口、 4筒体、 5は筒体の回転軸、 6^、6B、 6C,60,6E、 6F、 6G、 
684!バツキングプレート、 7八、 78、7C17D、 7E、 7F、 7G、
 711はスパッタターゲット、 8は被処理基板、 9は電源配線、 10は接触端子、 11は回転摺動スイッチ、 12A 、 12B 、 12C、120、12E 、
 12F 。 12G 、12+1は接続端子、 EA、、E6、Ec、  EDlEE、、EFlEG、
El+は直流電源 GNDは接地 を示す。
FIG. 1 is an internal plan view schematically showing an embodiment of the present invention (
a), internal side view (BL and power supply circuit diagram FCL), and Figure 2 are schematic side sectional views of a conventionally used magnetron sputtering device. In the figure, 1 is a vacuum vessel, 2 is a gas inlet, and 3 is a gas inlet. Vacuum exhaust port, 4 cylinders, 5 is the rotation axis of the cylinder, 6^, 6B, 6C, 60, 6E, 6F, 6G,
684! Bucking plate, 78, 78, 7C17D, 7E, 7F, 7G,
711 is a sputter target, 8 is a substrate to be processed, 9 is a power supply wiring, 10 is a contact terminal, 11 is a rotary slide switch, 12A, 12B, 12C, 120, 12E,
12F. 12G, 12+1 are connection terminals, EA, , E6, Ec, EDlEE, EFlEG,
El+ indicates DC power supply and GND indicates grounding.

Claims (1)

【特許請求の範囲】 真空容器(1)内に配設され軸(5)を中心にして回転
する筒体(4)上に、その回転方向に沿って並んで配設
された複数個のスパッタターゲット(7A)〜(7H)
を有し、 該真空容器(1)内の該回転する筒体(4)上の複数の
スパッタターゲット(7A)〜(7H)の各々が順次正
対する位置に被処理基板(8)が配置され、該被処理基
板上(8)に、該被処理基板(8)に順次対向する複数
のスパッタターゲット(7A)〜(7H)から、それぞ
れのターゲット材料を順次スパッタさせることを特徴と
するスパッタリング装置。
[Claims] A plurality of sputters arranged in line along the direction of rotation on a cylinder (4) arranged in a vacuum container (1) and rotating around an axis (5). Target (7A) ~ (7H)
A substrate to be processed (8) is arranged at a position where each of the plurality of sputter targets (7A) to (7H) on the rotating cylinder (4) in the vacuum container (1) sequentially faces each other. , a sputtering apparatus characterized in that each target material is sequentially sputtered onto the substrate to be processed (8) from a plurality of sputter targets (7A) to (7H) sequentially facing the substrate to be processed (8). .
JP18740486A 1986-08-08 1986-08-08 Sputtering device Pending JPS6342368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18740486A JPS6342368A (en) 1986-08-08 1986-08-08 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18740486A JPS6342368A (en) 1986-08-08 1986-08-08 Sputtering device

Publications (1)

Publication Number Publication Date
JPS6342368A true JPS6342368A (en) 1988-02-23

Family

ID=16205435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18740486A Pending JPS6342368A (en) 1986-08-08 1986-08-08 Sputtering device

Country Status (1)

Country Link
JP (1) JPS6342368A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492114A1 (en) 1990-12-20 1992-07-01 Leybold Aktiengesellschaft Sputtering apparatus
US5292419A (en) * 1990-12-20 1994-03-08 Leybold Aktiengesellschaft Sputtering unit
WO2010047235A1 (en) * 2008-10-22 2010-04-29 国立大学法人東北大学 Magnetron sputtering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492114A1 (en) 1990-12-20 1992-07-01 Leybold Aktiengesellschaft Sputtering apparatus
US5292419A (en) * 1990-12-20 1994-03-08 Leybold Aktiengesellschaft Sputtering unit
WO2010047235A1 (en) * 2008-10-22 2010-04-29 国立大学法人東北大学 Magnetron sputtering device
JP2010100880A (en) * 2008-10-22 2010-05-06 Tohoku Univ Magnetron sputtering apparatus

Similar Documents

Publication Publication Date Title
TWI301311B (en) Method and apparatus for dechucking a substrate
US3856647A (en) Multi-layer control or stress in thin films
KR101786868B1 (en) Manufacturing method
KR20080059304A (en) Film forming apparatus method of forming film
JPH08274046A (en) Method of forming platinum thin film on silicon wafer, silicon substrate manufactured by its method and manufactureof semiconductor element using its substrate
EP1176625B1 (en) Sputtering apparatus
WO2018186038A1 (en) Film forming device and film forming method
JPS6342368A (en) Sputtering device
JPH0499176A (en) Plasma treating device
JP2010001505A (en) Film-forming apparatus and film-forming method
JP3727693B2 (en) TiN film manufacturing method
JPH10298752A (en) Low pressure remote sputtering device, and low pressure remote sputtering method
JP2844669B2 (en) Reactive magnetron sputtering equipment
JPS63283085A (en) Superconducting device
EP0332218A2 (en) Process of forming superconducting film
JPH0519296A (en) Method and device for forming insulating film
JPH02140933A (en) Semiconductor device and manufacture thereof
JPH10121233A (en) Formation of dielectric thin film
JP5137332B2 (en) Operation method of film forming equipment
JPS63143261A (en) Formation of multi-layered film by sputtering
JPS63153266A (en) Sputtering device
JPH05171432A (en) Sputtering device
JP2901984B2 (en) Conductive thin film manufacturing equipment
JPS61198636A (en) Thin film former
JPH07114204B2 (en) Method for manufacturing semiconductor device