JPS6342204A - Truss structure antenna - Google Patents

Truss structure antenna

Info

Publication number
JPS6342204A
JPS6342204A JP18515086A JP18515086A JPS6342204A JP S6342204 A JPS6342204 A JP S6342204A JP 18515086 A JP18515086 A JP 18515086A JP 18515086 A JP18515086 A JP 18515086A JP S6342204 A JPS6342204 A JP S6342204A
Authority
JP
Japan
Prior art keywords
specular surface
mirror surface
mirror
antenna
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18515086A
Other languages
Japanese (ja)
Other versions
JPH0716128B2 (en
Inventor
Takao Itanami
板波 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18515086A priority Critical patent/JPH0716128B2/en
Publication of JPS6342204A publication Critical patent/JPS6342204A/en
Publication of JPH0716128B2 publication Critical patent/JPH0716128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To prevent a trouble for adjusting a specular surface, and weight from increasing due to deterioration in a side lobe characteristic and an increase of the number of specular surface adjusting mechanisms, by placing the specular surface adjusting mechanism so as to become sparse in the center part of the specular surface, and dense in the peripheral part of the specular surface. CONSTITUTION:By a specular surface adjusting mechanism, a fixed point 1 to a truss structure 3, of a specular surface shell is placed at a sparse interval in the center part of the specular surface, and at a dense interval in the peripheral part, by which the periodicity of a thermal deformation under a severe temperature condition is decreased, and also, the deformation quantity is also reduced. In this way, comparing with the case when the whole specular surface has been fixed uniformly at a sparse interval by the specular surface adjusting mechanism, a side lobe level is also low and a position where a side lobe appears can be set to a position for exerting no influence on communication, and also, comparing with the case when the whole specular surface has been fixed uniformly at a dense interval by the specular surface adjusting mechanism, the number of specular surface adjusting mechanisms can be curtailed, and an increase of a trouble for adjusting the specular surface, and an increase of weight can be suppressed.

Description

【発明の詳細な説明】 本発明は、高い鏡面精度が必要とされる大口径のアンテ
ナ、例えば、衛星搭載用の大口径のアンテナに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a large-diameter antenna that requires high mirror accuracy, for example, a large-diameter antenna for use on a satellite.

(従来の技術) 従来のアンテナの鏡面は、CFRPの表皮を両端に有し
、その間にアルミニウムハニカム製のコアを存するサン
ドイッチ構造のものであり、高蹟度の要求される大口径
アンテナ用の大形鏡面を製造するには製造誤差が大きく
充分な性能のアンテナ鏡面を得ることができなかった。
(Prior Art) The mirror surface of a conventional antenna has a sandwich structure with a CFRP skin on both ends and an aluminum honeycomb core between them. In manufacturing a shaped mirror surface, manufacturing errors were large and it was not possible to obtain an antenna mirror surface with sufficient performance.

これを解決するためトラス構造アンテナ鏡面は考えられ
、薄い殻状の鏡面をトラス構造の骨組みに接続・IN定
するとともに、接続部にトラス構造と殻状の鏡面との間
隔を調整できる鏡面調整機構を用いることにより、トラ
ス構造や鏡面を構成する殻(鏡面殻)の製造誤差にかか
わらず、所望の形状の鏡面が11?られるように成され
ていた。
In order to solve this problem, a truss structure antenna mirror surface was devised, in which a thin shell-like mirror surface is connected to the framework of the truss structure and the IN position is set, and a mirror surface adjustment mechanism is provided at the connection part that can adjust the distance between the truss structure and the shell-like mirror surface. By using , the desired shape of the mirror surface can be obtained regardless of the manufacturing error of the truss structure or the shell (mirror surface shell) that makes up the mirror surface. It was made so that it could be done.

第1図(a)は従来のトラス構造アンテナの鏡面の固定
点の配置を示す図である。第1図において、1の黒丸は
鏡面調整機構を介して鏡面殻がトラス構造に固定される
固定点、2は鏡面殻、3はトラス構造である。
FIG. 1(a) is a diagram showing the arrangement of fixed points on a mirror surface of a conventional truss structure antenna. In FIG. 1, the black circle 1 is a fixing point where the mirror shell is fixed to the truss structure via the mirror adjustment mechanism, 2 is the mirror shell, and 3 is the truss structure.

この際、鏡面調整機構を設ける間隔は、トラス構造によ
り決まる鏡面調整機構設置の容易な−・定の粗な間隔で
あった。
At this time, the intervals at which the mirror surface adjustment mechanisms were provided were determined by the truss structure and were fixed rough intervals that made it easy to install the mirror surface adjustment mechanisms.

(発明が解決しようとする問題点) このため、宇宙空間の苛酷な温度条件の下でトラス構造
と鏡面殻の熱膨張係数の差に起因する周期的な熱変形を
生じ、アンテナの重要な電気性能の1つであるサイドロ
ーブ特性が、通信に影響のi、y> 6 ”Hv l’
l 内に、、m J、5い″(、:CIF、’、; h
)ji141)’+ kh4 ”I’;ニ1h \−(
入、き・く劣化XJイCどいラド具1)をノiIgン(
いl:・。* r= 。
(Problem to be solved by the invention) For this reason, periodic thermal deformation occurs due to the difference in thermal expansion coefficient between the truss structure and the mirror shell under the harsh temperature conditions of outer space, and the antenna's important electrical The sidelobe characteristic, which is one of the performance characteristics, affects communication when i, y> 6 "Hv l'
In l,,m J,5''(,:CIF,',;h
)ji141)'+kh4 ``I';ni1h \-(
Input, input, deteriorated
I:・. *r=.

第1図(b) k二本)5−ようにり−(1”ロー丁I
特1″th脣tつ化I7ない、1z・)1に゛細かい間
隔で1−・じi二)i“る1、冒)、多数σ)♂0,1
1旧調整機構が必要と11つたり、時には、!%I整機
構の配置1’T: n ’5よ゛)に1−ラス構造の間
隔を細かく1−4. l:=め、アンテナの製j森・調
整1c %大の時間と人tを要1ノコストが高くなる、
衛星拮絃用アノデーノーどじで重要な性イILの1つで
ある軽に性が損な、わわるというような欠点を/1し7
ていた。本究明は、トラス構造アンテナにおζ・」る所
望の領域に↓51ろ)ノイドローブ特性の劣化および鏡
面調整機構数の増加による鏡面調整の[間の増加、if
’(i武の増加をなくすための1段を提供″4−るムの
°である。
Figure 1 (b) k2 pieces) 5-Yoniri- (1” Ro-cho I
Special 1"th extension I7 not, 1z・) 1"at fine intervals 1-・jii 2) i"ru1, pronunciation), many σ)♂0,1
1 old adjustment mechanism is needed and 11 times, sometimes! %I alignment mechanism arrangement 1'T: n' 5) Finely space the 1-las structure 1-4. l:=It takes 1% more time and people to make and adjust the antenna, which increases the cost by 1%.
It is one of the important sex ILs for satellite ensembles, and the drawbacks are that the sex may be slightly damaged or damaged.
was. This study shows that the desired region of the truss structure antenna is ζ.
(Providing one step to eliminate the increase in i-mu)

(問題点を解決1″るための1段) 本究明では、こ、t″1.らの欠点をなく4−ため、鏡
面調整機構を鏡面の中央部゛では粗な間隔で、土ノ:・
、鏡面の周辺部では密な間隔で配置するように鏡面調?
l:機構の配置を定めることにより、リーfトロープ特
竹を改善できるどともに通信に影響の無いようj、−=
1ノ・イトV′、l−ブの現オT、し位置を・定める4
−−2・が−(・′キルよ’) kTしl:fill、
〉ノ゛v、ラロ1、密な間隔どIilな間1マ?コと6
゜文例λば1:2程度と1ノ、かつ、−り了)” UJ
 −H,v□を・仰々j−る方向に応じ−【′面記間隔
t;L調節さt′)。る/jのと11−る。
(1 step to solve the problem 1") In this investigation, t"1. In order to eliminate these drawbacks, the mirror surface adjustment mechanism is installed at coarse intervals in the center of the mirror surface.
, Is it mirror-like so that it is placed at close intervals around the mirror surface?
l: By determining the arrangement of the mechanism, it is possible to improve the leaf-trope special bamboo, but also so that it does not affect communication, j, -=
1. Determine the position of the current position of V', l-b.4
-2・ga-(・'Kill') kTshil:fill,
〉No゛v, Lalo 1, close interval etc. 1 ma? Ko and 6
゜ Sentence example λ ba 1: about 2 and 1 no, and -ri completed)” UJ
- Depending on the direction in which H and v□ are raised, - ['Scale spacing t; L adjustment t'). ru/jnoto 11-ru.

(作用) Xへ面の中1z1部と周辺部′τ゛鏡面調整機枯に:3
1、と)鏡面殻のトラス構造への固定点’□ W gδ
〜う−る間隔を′;■゛化、g (!’、jハ酷な温度
条件干゛での熱変形の周u11↑14)、!少なく4″
るとと・bに変形時LL)低gするにとに゛より、鏡面
全体を一様に粗な間隔で鏡面調も;−機構により固定I
ノた場合に比1ノ丁、す′rド(1−プレベルも低くり
゛イドロー・ブの現41.る位置ター・通イ5曹、−影
響の無い位置にて8、また、鏡面全面を一様に密な間隔
で鏡面よ1整機構に二より固定した場拾6て比しし、鏡
面調整機構数の削減かit能と・なり鏡面調整の[2間
の増加、gfI量の増加を抑えることができる1、(実
施例) 第1図に″は、従来の固定点配置゛である(、′i) 
(+))の他に、(C)として中央部を一等間隔で固定
して低サイドロー ブ特性か得tうわ、るどと7.)に
・す′rドvドーグlノベルのピークが通イムに影響の
無い位置1・−なる間隔d2の2倍程度に相な間隔c玉
。で、周辺部を密な間隔d2で固定1−る本究明のアン
テナ鏡面固定点の配置例をポしてよ5つ、(d)とし゛
−C本発明とは逆(、″′中央部を密な間隔d2で、周
辺部を粗な間隔d、で固定し固定点数の節約を図っIJ
:鏡面固定点の配置例が、バ1)であるまた、第2図に
は鏡面全面にわたり粗に二固定した従来の鏡面固定点配
置(第1 図(a)の配置)によるアンプ3−の・す゛
fイトローブ特性曲線Aどし゛(−1鏡面全面1.′わ
j::り密に固定17た場名の固定点配置(第1図(b
)の配置)に−よるアンテナのサイドローブ特性を曲線
nどl。
(Function) In the middle 1z1 part of the surface to X and the peripheral part ′τ゛Mirror surface adjustment machine dry: 3
1) Fixed point of mirror shell to truss structure '□ W gδ
The interval between ~ is ′;■゛, g (!', j is the circumference of thermal deformation under severe temperature conditions u11↑14),! less than 4″
When deformed to (LL), the entire mirror surface is uniformly spaced at coarse intervals to create a mirror-like finish.
In this case, compared to the 1st position, the stage (1- level is also low). Comparing the case where the mirror surface adjustment mechanism is fixed to the mirror surface adjustment mechanism at uniformly close intervals, the number of mirror surface adjustment mechanisms can be reduced, and the amount of gfI can be increased. 1. (Example) In Fig. 1, "" is the conventional fixed point arrangement"(,'i)
In addition to (+)), as (C), you can fix the center part at equal intervals to obtain low side lobe characteristics. ), the peak of the novel is at a position 1, which has no effect on time, and the interval c is approximately twice the interval d2. Now, point out an example of the arrangement of the mirror surface fixing points of the antenna according to the present study, in which the peripheral parts are fixed at close intervals d2. The IJ is fixed at close intervals d2 and the periphery is fixed at coarse intervals d to save the number of fixing points.
: An example of the arrangement of mirror surface fixing points is shown in bar 1).Furthermore, FIG.・Swift lobe characteristic curve A (-1 specular entire surface 1.'W:: densely fixed 17 fixed point arrangement (Fig. 1(b)
) The side lobe characteristics of the antenna due to the arrangement of the curve ndl.

で、本発明の固定点配置(第1図((:)の配置)によ
るアンテナ鏡面を用いた場合のアンテナの+工・イトロ
ーブ特性を曲線Cとして、中央部を密1Zr周辺部を粗
に固定14.た固定点配置(第1図(d)の配置)によ
るアンテナのザイドローブ特+Ii′を曲線りとして、
それぞれ示しである 111本を対象と1ノた衛〒通信においては、例えば周
波数のれり迦、し使用を行つI::めり(1” Ul 
 ブ(、゛よる[渉を低いレベルに抑えろ私費のある東
5;ミ・大版間、札幌・東京間等は、(1,8−1,2
度の間−Cあり1.5度以内の角度[ザイドロ・−ブ1
、/ベルの高い個所か無いという特性が得らJ”’1.
 、itば良い9、・“=11を満足″1″るように定
め1.二本1発明の一実施例のアンテナ鏡面の固定点の
間隔は使用周波数の波長を・えどして中央部で50λ4
、周辺部′で゛25λ程度とjy l’y−とき、第2
図中+、:二C(7)線−e ”c (7)特性計算!
l′i2ψを示すように、す゛イドローブ;、/ベルノ
ー)低くす(トVJ−ブの現」7る位置4・通信1、′
l影響の無い位置に配置でき”−Cいる。従来の2へ面
全体を粗1z″l固定l−5また場合に1)いてのソー
イド1トープ特性の計算結果は第2図のA((゛示すと
おり”τ゛あるか、ザfド0−ブレヘルのビ・−りは約
0.9度のところに二あり、曲線Cのピークレベルより
b大きい値となっ−Cいる。。
Then, when using the antenna mirror surface according to the fixing point arrangement of the present invention (Fig. 1 ((:) arrangement), the antenna's positive-to-lobe characteristic is defined as curve C, and the central part is densely fixed with 1Zr and the peripheral part is coarsely fixed. 14. Let the zydlobe characteristic +Ii' of the antenna with the fixed point arrangement (the arrangement shown in Fig. 1(d)) be a curve,
For example, in 1-node satellite communications targeting 111 lines, for example, I::Meri (1" Ul
(, ゛ [Keep crossing to a low level. East 5 with private funds; Mi-Ohanma, Sapporo-Tokyo, etc.) (1, 8-1, 2
Angle within 1.5 degrees with -C between degrees [Zydro-B1
,/J”'1.
, it should be 9, ``=11'' is satisfied. 50λ4
, when jy l'y- is about 25λ in the peripheral part',
+ in the figure: 2C (7) line -e ”c (7) Characteristic calculation!
As shown in l'i2ψ, position 4, communications 1,'
It can be placed in a position where there is no influence.The calculation result of the tope characteristic of the soid 1 when the entire surface is roughly fixed at 1z''l in the conventional case 1) is shown in Fig. 2A(( As shown, there is τ, and the bias of the f-do-0-Breher is at about 0.9 degrees, which is a value b larger than the peak level of the curve C.

第2図のBは鏡面全体を密jう丁固定1. 六:場合1
に′つぃC゛のサイドローブ特性であり、電気特性どし
ては所望の特性が得られでいる。また、第2図のDは中
央部を密に固定し周辺部を粗jζ固定し〕、′−,bの
のサイドローブ特性の計算結果である。サイドローブレ
ベルのピークは約0.9度のところにあり、ピークレベ
ルも本発明によるCのものより大きい値となっている。
B in Fig. 2 shows the fixation 1. which covers the entire mirror surface. 6: Case 1
This is the sidelobe characteristic of Ni'C', and the desired electrical characteristics are not obtained. Further, D in FIG. 2 is the calculation result of the side lobe characteristic of '-, b, with the central part being tightly fixed and the peripheral part being coarsely fixed at jζ]. The peak of the sidelobe level is at about 0.9 degrees, and the peak level is also larger than that of C according to the present invention.

これより、アンテナ鏡面の常識的な考えに反して鏡面の
中央部の影響が少なく、周辺部の影響が大きいこと、本
発明の固定点配置に従い鏡面調整機構を鏡面の中央部で
は粗に、鏡面の周辺部では密に配置するように鏡面調整
機構の間隔を定めることによりサイドローブレベルも低
くサイドローブの出現する位置を通信に影響の無い位置
にできることが分かる。第3図には第2図のA、B。
From this, it is clear that contrary to the common sense idea of antenna mirror surfaces, the influence of the central part of the mirror surface is small and the influence of the peripheral parts is large, and that according to the fixed point arrangement of the present invention, the mirror surface adjustment mechanism is adjusted roughly in the central part of the mirror surface, and that the mirror surface is It can be seen that by determining the spacing of the mirror adjustment mechanisms so that they are densely arranged in the peripheral area, the side lobe level is also low, and the position where the side lobe appears can be set to a position where it does not affect communication. Figure 3 shows A and B in Figure 2.

C,Dを計算により求める際に用いた鏡面変形のパター
ンをそれぞれA ’、B“、C’、D ’、として示す
The specular deformation patterns used to calculate C and D are shown as A', B'', C', and D', respectively.

第3図のA′は従来の鏡面全面にわたり鏡面精度調整点
間隔が粗で変形も大きい場合、B′は鏡面全面にわたり
鏡面積度調整点間隔が密で変形も小さい場合、Coは鏡
面の周辺部の鏡面精度調整点を増加、させ変形量を低減
することによりその部分の変形の周11Jlか短くなっ
た場合、D′は鏡面の中央部の鏡面精度調整点を増加さ
せ変形filを低減することによりその部分の変形の周
期が短くなった場合をそれぞれ想定したものであるが、
サイトローブにjf22yの大きい波状の変形について
のみ着目し変形を模擬しており、理想鏡面より第3図に
示す鏡面変形が生じたとしてサイドローブ特性の計算を
行っている。
In Fig. 3, A' is a case where the mirror surface accuracy adjustment points are spaced closely over the entire mirror surface and the deformation is large, B' is when the mirror surface accuracy adjustment points are closely spaced over the entire mirror surface and the deformation is small, and Co is the periphery of the mirror surface. If the circumference of the deformation of that part becomes shorter by 11 Jl by increasing the mirror surface precision adjustment point of the mirror surface and reducing the amount of deformation, D' increases the mirror surface precision adjustment point of the central part of the mirror surface and reduces the deformation fil. This assumes that the period of deformation of that part becomes shorter due to
The deformation is simulated by focusing only on the large wave-like deformation of jf22y in the site lobe, and the side lobe characteristics are calculated assuming that the specular deformation shown in FIG. 3 occurs from the ideal mirror surface.

鏡面全体にわたり鏡面調整機構による固定点を密に配置
すれば、第2図のBとして示すように鏡面の温度変化に
対する鏡面の変形の積と周期か小さくなりサイドローブ
レベルか小さくなるとともにサイドローブのピークが通
信に影響の無い位置にできることは明らかであるが、本
発明の固定点配置を採用する場合に比して、鏡面を固定
するための鏡面調整機構数の増大は避けられず、重量の
増加を生じることは明白である。また、鏡面調整機構を
鏡面全体にわたり所望の位置につけるためには、時には
トラス構造の変更部材の増加にもつながる場合もありそ
の際には、重量の増加もより一層大きなものになる。
If the fixing points of the mirror surface adjustment mechanism are arranged densely over the entire mirror surface, the product and period of the mirror surface deformation due to the temperature change of the mirror surface will become smaller, and the sidelobe level will become smaller, as shown by B in Figure 2. It is clear that the peak can be placed at a position that does not affect communication, but compared to the case where the fixed point arrangement of the present invention is adopted, an increase in the number of mirror surface adjustment mechanisms for fixing the mirror surface is unavoidable, and the weight is increased. It is clear that an increase occurs. Further, in order to place the mirror surface adjustment mechanism at a desired position over the entire mirror surface, it may sometimes lead to an increase in the number of members for changing the truss structure, and in this case, the weight increases even more.

(発明の効果) 以上説明したように、本発明のトラス構造アンテナを用
いれば、鏡面調整機構数を大幅に増加させることなく、
少ない重量でサイドローブレベルも低くサイドローブの
現れる位置を通信に影響の無い位置に配置することが可
能となり、また鏡面調整の手間の増加も少なく、軽量で
電気性能も優れた衛星搭載用のアンテナを実現できる。
(Effects of the Invention) As explained above, by using the truss structure antenna of the present invention, the number of mirror surface adjustment mechanisms can be reduced without significantly increasing the number of mirror adjustment mechanisms.
A satellite-mounted antenna that is lightweight, has low sidelobe levels, can be placed in a position where sidelobes appear without affecting communication, requires less effort for mirror adjustment, is lightweight, and has excellent electrical performance. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアンテナの鏡面の固定点の配置を示す1′:A
、第2図は種々の鏡面固定点配置に対するサイドローブ
特性の計算値を示す図、第3図は種々の鏡面固定点配置
の対するサイドローブ特性に対応1−る鏡面変形パター
ンを示す図である。 1は鏡面調整機構を介して鏡面殻とトラス構造を接続・
固定する点 2は鏡面殻 3はトラス構造 Aは従来の鏡面全面にわたり粗に固定した場合のアンテ
ナサイドローブ特性 Bは従来の鏡面全面にわたり密に固定した場合のアンテ
ナサイドローブ特性 Cは本発明の1実施例のアンテナサイドローブ特性 りは鏡面中央部を密に、鏡面周辺部を粗に固定した場合
のアンテナサイドローブ特性 A′は従来の鏡面全面にわたり粗に固定した場合のアン
テナ鏡面の変形例を示′1−曲線 B′は従来の鏡面全面にわたり密に固定した場合のアン
テナ鏡面の変形例を示す曲線 Coは本発明の1実施例のアンテナ鏡面の変形例を示す
曲線 D′は鏡面中央部を密に、鏡面周辺部を粗に固定した場
合のアンテナ鏡面の変形例を示す曲線 (c)           cci>トラ又犠A匡7
ンテナlす 色 惠 (塵) ゛ケイド工1−ブセ1幅−の 計食堵−朱2ゾ
Figure 1 shows the arrangement of fixed points on the mirror surface of the antenna 1':A
, FIG. 2 is a diagram showing calculated values of sidelobe characteristics for various mirror surface fixed point arrangements, and FIG. 3 is a diagram showing mirror surface deformation patterns corresponding to sidelobe characteristics for various mirror surface fixed point arrangements. . 1 connects the mirror shell and truss structure via the mirror adjustment mechanism.
The fixing point 2 is the mirror shell 3, the truss structure A is the antenna side lobe characteristic B when it is loosely fixed over the entire surface of the conventional mirror, and the antenna side lobe characteristic C when it is tightly fixed over the entire surface of the conventional mirror is the antenna side lobe characteristic C of the present invention. The antenna side lobe characteristics of the first embodiment are shown in the case where the central part of the mirror surface is tightly fixed and the peripheral parts of the mirror surface are loosely fixed.Antenna side lobe characteristics A' is a modified example of the antenna mirror surface when the conventional mirror surface is fixed roughly over the entire surface. '1-Curve B' shows a modified example of the antenna mirror surface when it is tightly fixed over the entire surface of the conventional mirror surface.Curve Co shows a modified example of the antenna mirror surface of an embodiment of the present invention.Curve D' shows the modified example of the antenna mirror surface in the case where the mirror surface is tightly fixed over the entire surface of the conventional mirror surface.Curve D' is the center of the mirror surface. Curve (c) showing an example of modification of the antenna mirror surface when the mirror surface is fixed densely and the peripheral portion of the mirror surface is fixed loosely.
The color of the antenna is dust.

Claims (1)

【特許請求の範囲】 鏡面殻をトラス構造に鏡面調節機構を介して固定するト
ラス構造アンテナにおいて、 鏡面調節機構の配置を鏡面中央部では粗に配置し、鏡面
周辺部においては密に配置したことを特徴とするトラス
構造アンテナ。
[Claims] In a truss structure antenna in which a mirror shell is fixed to a truss structure via a mirror adjustment mechanism, the mirror adjustment mechanism is arranged sparsely at the center of the mirror and densely arranged at the periphery of the mirror. A truss structure antenna featuring
JP18515086A 1986-08-08 1986-08-08 Truss structure antenna Expired - Lifetime JPH0716128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18515086A JPH0716128B2 (en) 1986-08-08 1986-08-08 Truss structure antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18515086A JPH0716128B2 (en) 1986-08-08 1986-08-08 Truss structure antenna

Publications (2)

Publication Number Publication Date
JPS6342204A true JPS6342204A (en) 1988-02-23
JPH0716128B2 JPH0716128B2 (en) 1995-02-22

Family

ID=16165734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18515086A Expired - Lifetime JPH0716128B2 (en) 1986-08-08 1986-08-08 Truss structure antenna

Country Status (1)

Country Link
JP (1) JPH0716128B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184145A (en) * 1989-07-06 1993-02-02 Minister Of The Post, Telecommunications And Space (Centre National D'etudes Des Telecommunications) Dismountable and air-transportable antenna for two-way telecommunications with a satellite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184145A (en) * 1989-07-06 1993-02-02 Minister Of The Post, Telecommunications And Space (Centre National D'etudes Des Telecommunications) Dismountable and air-transportable antenna for two-way telecommunications with a satellite

Also Published As

Publication number Publication date
JPH0716128B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
Schwab Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry
Sokolowski et al. Introduction to shape optimization
US4313116A (en) Hybrid adaptive sidelobe canceling system
JP2000146757A (en) Method for measuring aberration of projection lens
CN114325566B (en) Ultra-wideband wave signal frequency measurement direction finding array method and calculation method thereof
CN111046591A (en) Joint estimation method for sensor amplitude-phase error and target arrival angle
JPS6342204A (en) Truss structure antenna
US6784835B2 (en) Array antenna
CN109669172B (en) Weak target direction estimation method based on strong interference suppression in main lobe
JP7223178B1 (en) Learning model generation method and learning model generation program for array antenna
Raida Steering an adaptive antenna array by the simplified Kalman filter
CN113589223B (en) Direction finding method based on nested array under mutual coupling condition
CN112307588B (en) Non-uniform parabolic array antenna design method
CN114461974A (en) Array directional diagram rapid calculation method based on coupling compensation matrix and NuFFT
CN114114139A (en) DOA and mutual coupling joint estimation method based on nulling constraint
CN115470447A (en) Arbitrary-order super-gain beam forming method suitable for arbitrary array
Er et al. A robust method for broadband beamforming in the presence of pointing error
JP2003143046A (en) Calibration device for receiving array antenna
CN114722868B (en) Array excitation dynamic range controllable wide beam gain enhancement method
JPH04172803A (en) Mesh antenna
Haardt et al. Structured least squares to improve the performance of ESPRIT-type high-resolution techniques
Northcott University of Hawaii adaptive optics system: II. Computer simulation
Smirnov et al. MeerKAT Primary Beam Models: Derivation and Application In Calibration and Imaging
JP2996203B2 (en) Phased array antenna
JPS6260301A (en) Antenna system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term