JPS6342176B2 - - Google Patents

Info

Publication number
JPS6342176B2
JPS6342176B2 JP16149578A JP16149578A JPS6342176B2 JP S6342176 B2 JPS6342176 B2 JP S6342176B2 JP 16149578 A JP16149578 A JP 16149578A JP 16149578 A JP16149578 A JP 16149578A JP S6342176 B2 JPS6342176 B2 JP S6342176B2
Authority
JP
Japan
Prior art keywords
circuit
compressor
pressure
switch
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16149578A
Other languages
Japanese (ja)
Other versions
JPS5587880A (en
Inventor
Kimio Kato
Tomoo Fujii
Hiroya Kono
Hisao Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP16149578A priority Critical patent/JPS5587880A/en
Publication of JPS5587880A publication Critical patent/JPS5587880A/en
Publication of JPS6342176B2 publication Critical patent/JPS6342176B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は圧縮機の保護装置に係り、とくに圧縮
機を含む冷凍回路中の冷媒量の不足に起因する圧
縮機の潤滑不十分を未然に防止し、圧縮機の延命
化を促進するための保護装置に関する。 たとえば車両用の空調装置においては、冷凍回
路中を循環する冷媒を圧縮するための圧縮機は、
各摺動部を潤滑するための潤滑油を必要とする
が、近時では軽量化および高性能化の要求にこた
えて、強制給油のためのオイルポンプを廃止し、
潤滑油を含んだ冷媒を圧縮機内の各摺動部へ巧み
に導いて潤滑に供するようにしたのが一般的とな
つてきた。ところが、該潤滑技術においては、管
路の破損もしくは各密封部分の密封性不十分等に
起因して、冷媒が漏出し、冷凍回路中の冷媒の絶
対量が不足してくると、冷媒を媒介として圧縮機
の各摺動部へ運ばれる潤滑油の量が不十分とな
り、それに起因して各摺動部の摩耗が促進された
り、最悪の場合には焼付等によつて圧縮機が破損
する事故を誘起するものであつた。なお、該空調
装置を冷房用として使用する場合には、冷凍回路
中の冷媒が不足すると、そのことを冷房能力の低
下現象として運転者が察知することができるた
め、それ以後の圧縮機の運転をとりやめれば、圧
縮機の破損事故だけは未然に防止できる可能性が
有るが、該空調装置を冷房用としてではなく、単
なる除湿だけの目的で使用する場合には、運転者
はもはや冷凍回路中の冷媒の不足を察知すること
ができず、遂には圧縮機の破損事故に至るのであ
る。ただし前者のようにたとえ圧縮機の破損事故
だけは回避することができたとしても、各摺動部
の摩耗の促進は余儀無くされるもので、それが原
因となつて圧縮機の耐久性を著しく低下させるも
のである。 そこで上記欠点を解消すべく、従来から冷凍回
路の途中に配設された膨張弁が最大開度となつた
ときに閉となるスイツチによつて警告装置を作動
させるか、もしくは該スイツチの作動によつて、
圧縮機に駆動力を伝達するための電磁クラツチの
励磁回路を短絡させ、該回路中に配設されたヒユ
ーズを切つて、強制的に圧縮機の運転を停止させ
る構成のものが提案されたが、圧縮機の起動時に
は初期の比較的短時間だけ前記膨張弁が最大開度
となることがあるため、遅延装置を介在して、前
記短時間の間だけ前記保護装置を作動させないよ
うにして実施しているのが現状であつた。 ところが該従来装置においては、いまだ次のよ
うな欠点を具有するものであつた。それは前述の
ごとく、圧縮機の起動時に膨張弁が最大開度とな
るが、感温筒の応答は比較的遅いため、比較的長
時間の遅延装置が必要であり、また連続運転中に
おいても、冷凍負荷が極めて大となつて前記膨張
弁が最大開度となつた場合には、冷凍回路中に十
分な量の冷媒が存在しているにもかかわらず、前
記保護装置が作動するものであつた。すなわち、
そのような場合にはその都度無用な点検や、電磁
クラツチの励磁回路用ヒユーズの無駄な取換を強
いられ、極めて煩雑で不経済であるという欠点を
有していた。 本発明は上記欠点に鑑み、冷凍回路中で2種類
の異常を検知して初めて作動し、それによつて冷
凍回路中の冷媒量が本当に不足したときにのみ作
用する圧縮機の保護装置を提供することを目的に
なされた。以下図示の実施例に基づき本発明を詳
述する。 図において、1は圧縮機2の駆動源となるたと
えば車両走行用エンジンであり、これらエンジン
1と圧縮機2とは電磁クラツチ3を介してベルト
4によつて連結されている。前記電磁クラツチ3
の励磁コイルはヒユーズ5を介して電源6と連結
された励磁回路が形成されており、該励磁回路中
に配設され、運転席で操作可能なON―OFFスイ
ツチ(図示せず)および温度検知スイツチ(図示
せず)によつて、前記電磁クラツチ3ひいては前
記圧縮機2の作動が制御される。前記圧縮機2の
吐出側はコンデンサ7と連結され、続いて受液器
8、膨張弁9、エバポレータ10および圧縮機2
の吸入側と順次連結されて冷凍回路が形成されて
いる。前記膨張弁9は、エバポレータ10出口付
近に配置された感温筒11が管路内の冷媒の温度
を検知してそれによつて変化する該感温筒11内
の流体圧と、均圧管12によつて導かれる同じく
エバポレータ10出口付近の管路内の冷媒の圧力
との差圧で変位するダイヤフラム13の動きで弁
14の開度を調節し、冷凍負荷に応じた最適冷媒
流量が得られるように構成されている。 上記のごとき構成になる公知の冷凍回路におい
て、第1図に示す本発明の第1実施例では、膨張
弁9が最大開度となつたときに閉となる第1スイ
ツチ15と、該膨張弁9の出口側ないしはエバポ
レータ10内の圧力(低圧側冷凍回路内圧力)が
設定値以下となつたとき閉となる第2スイツチ1
6とが直列に接続され、前記励磁回路を短絡する
回路Aを構成している。なお、該短絡回路Aが導
通状態となつたときには、過大電流が流れる結果
ヒユーズ5が溶断して、前記励磁回路が開となつ
て、圧縮機の運転が不可能な状態となる。ここで
前記第1スイツチ15はダイヤフラム13に取付
けられた接点15aと、膨張弁本体に取付けられ
た接点15bとより構成され、これら両接点間は
絶縁材15cによつて絶縁されているとともに、
前記ダイヤフラム13が下端まで押下げられ該膨
張弁9が最大開度となつたとき前記両接点は接触
可能で、そのとき電気的に導通状態となる。また
前記第2スイツチ16は前記膨張弁9の出口側な
いしはエバポレータ10内の冷媒圧力を導入する
スイツチ体16aを有し、該スイツチ体16a内
に配置された接点16b,16cは、同じくスイ
ツチ体16a内に配置されたベローズ体16dの
先端に取付けられた接片16eが接触することに
よつて導通状態とされる。このときベローズ体1
6d内部は外周部の流体(膨張弁9出口側ないし
はエバポレータ10内の冷媒)とは、密封的に隔
絶され、直空状態もしくは一定圧力状態となつて
おり、その結果外周部の流体圧(前記冷媒の圧
力)に応じて伸縮し、それによつて前記接片16
eは前記接点16b,16cに向つて進退する。
つまり前記冷媒の圧力が低下するにつれて前記接
片16eは前記接点16b,16cに向つて前進
し、前記圧力が設定値以下となつたとき前記接片
16eと接点16b,16cが接触して、これら
接点16b,16cが導通状態となる。 第2図に示す本発明の第2実施例では、膨張弁
9が最大開度となつたときに閉となる前記第1実
施例と同様な第1スイツチ15と、前記膨張弁9
の入口側ないしはコンデンサ7内の圧力(高圧側
冷凍回路内圧力)が設定値以下となつたとき閉と
なる前記第1実施例における第2スイツチ16と
同様な構成の第3スイツチ17とが直列に接続さ
れ、前記励磁回路を短絡する回路Aが構成されて
いる。なお前記第3スイツチ17は、膨張弁9の
入口側ないしはコンデンサ7内の圧力変化に応じ
て作動する点で、前記第2スイツチ16と若干異
なるだけで、他の構成は第1実施例とすべて同様
である。 第3図に示す本発明の第3実施例では、膨張弁
9が最大開度となつたときに閉となる前記第1実
施例と同様な第1スイツチ15と、膨張弁9の入
口側と出口側の圧力差(冷凍回路の高圧側と低圧
側の圧力差)が設定値以下となつたとき閉となる
第4スイツチ18とが直列に接続され、前記励磁
回路を短絡する回路Aが構成されている。ここで
前記第4スイツチ18は内部にピストン18aの
摺動可能なシリンダ18bを備えたスイツチ体1
8cを有し、前記シリンダ18bの両端部には、
それぞれ膨張弁9の入口側および出口側の流体圧
が導入されるようになつている。そして前記膨張
弁9の入口側流体圧がもたらされる側の前記シリ
ンダ18b端部には、接点18d,18eが配設
され、他方ばね18fによつて前記接点18d,
18eの向きに付勢されたピストン18aの先端
に配設された接片18gが、前記接点18d,1
8eに対して接触可能である。つまり前記ばね1
8fの付勢力を適宜調節することによつて、前記
膨張弁9の入口側と出口側との圧力差が設定値以
下となつたときに、前記接片18gが接点18
d,18eに接触し、これら接点18d,18e
が導通状態となる。 第4図に示す本発明の第4実施例では、膨張弁
9の出口側ないしはエバポレータ10内の圧力
(低圧側冷凍回路内圧力)が設定値以下となつた
とき閉となる前記第1実施例と同様な第2スイツ
チ16と、前記膨張弁9の入口側と出口側の圧力
差(冷凍回路の高圧側と低圧側の圧力差)が設定
値以下となつたとき閉となる前記第3実施例と同
様な第4スイツチ18とが直列に接続され、前記
励磁回路を短絡する回路Aが構成されており、他
は前記各実施例と同様である。 第5図に示す本発明の第5実施例は、第1実施
例の変形例であつて、該実施例においては、前記
膨張弁9におけると同様なダイヤフラム装置19
を別設し、該ダイヤフラム装置19に第1スイツ
チ15を配設した点だけが異り、他はすべて前記
第1実施例と同様である。 上記構成になる各実施例において、その作用を
次に一括して述べると、まず上記それぞれのスイ
ツチが、どのような場合に閉となるか記載してみ
ると次のようになる。 (1) 第1スイツチ15が閉となるとき、 冷凍負荷が極めて大なる場合。 圧縮機起動時にエバポレータ内の圧力が急
激に下つた場合。 冷凍回路内の冷媒量が不足した場合。 (2) 第2スイツチ16が閉となるとき、 冷凍負荷が小さく低圧側圧力すなわち膨張
弁出口側ないしはエバポレータ内の圧力が低
下した場合。このとき前記第2スイツチ16
の作動点を、たとえば0Kg/cm2Gと設定して
おく。 冷凍回路内の冷媒量が不足した場合。 (3) 第3スイツチ17が閉となるとき、 圧縮機の停止時、高圧側圧力すなわち膨張
弁入口側ないしはコンデンサ内の圧力が低下
した場合。このとき前記第3スイツチ17の
作動点を、たとえば7Kg/cm2Gと設定してお
く。 冷凍回路内の冷媒量が不足した場合。 (4) 第4スイツチ18が閉となるとき、 圧縮機の停止時において、高圧側および低
圧側の圧力差が無くなつた場合。 冷凍回路内の冷媒量が不足して、高圧側の
圧力が上昇しなくなつた場合。このとき前記
第4スイツチ18の作動点を、たとえば7
Kg/cm2の差圧に設定しておく。 そして、このような各スイツチの作動状況下に
おいて、前述の各実施例について、圧縮機2の
種々の運転状態における上記各スイツチの作動状
態および前記励磁回路の短絡回路の導通状態を、
まとめて記述すると第1表のようになる。ただし
該第1表において、上記各スイツチに関しては、
閉状態のときは〇印で、開状態のときは×印で表
示し、前記短絡に関しては、導通状態のときは〇
印で、非導通状態のときは×印で表示するものと
する。
The present invention relates to a compressor protection device, and particularly to a protection device for preventing insufficient lubrication of the compressor due to insufficient refrigerant in a refrigeration circuit including the compressor, and promoting extension of the life of the compressor. Regarding equipment. For example, in a vehicle air conditioner, the compressor for compressing the refrigerant circulating in the refrigeration circuit is
Lubricating oil is required to lubricate each sliding part, but in response to the recent demands for lighter weight and higher performance, oil pumps for forced lubrication have been abolished.
It has become common practice to skillfully guide refrigerant containing lubricating oil to each sliding part within the compressor to provide lubrication. However, with this lubrication technology, if the refrigerant leaks due to damage to the pipes or insufficient sealing of each sealing part, and the absolute amount of refrigerant in the refrigeration circuit becomes insufficient, the refrigerant is removed as an intermediary. As a result, the amount of lubricating oil delivered to each sliding part of the compressor becomes insufficient, which accelerates the wear of each sliding part, and in the worst case, damages the compressor due to seizure, etc. This would have caused an accident. In addition, when the air conditioner is used for cooling, if there is a shortage of refrigerant in the refrigeration circuit, the operator can detect this as a phenomenon in which the cooling capacity has decreased, so the compressor should not be operated after that. If the air conditioner is not used for cooling, but only for dehumidification, the operator may no longer be able to operate the refrigeration circuit. Unable to detect the lack of refrigerant inside, the compressor eventually breaks down. However, as in the former case, even if it were possible to avoid compressor damage accidents, the wear of each sliding part would inevitably accelerate, which would significantly reduce the durability of the compressor. It lowers the Therefore, in order to eliminate the above-mentioned drawbacks, the warning device is activated by a switch that closes when the expansion valve conventionally installed in the middle of the refrigeration circuit reaches its maximum opening, or the warning device is activated by the activation of the switch. Then,
A configuration has been proposed in which the excitation circuit of the electromagnetic clutch for transmitting driving force to the compressor is short-circuited, and the fuse installed in the circuit is cut, thereby forcibly stopping the operation of the compressor. When the compressor is started, the expansion valve may be at its maximum opening for a relatively short time at the beginning, so a delay device is used to prevent the protection device from operating for the short time. This was the current situation. However, this conventional device still has the following drawbacks. As mentioned above, the expansion valve reaches its maximum opening when the compressor is started, but the response of the thermosensor cylinder is relatively slow, so a relatively long delay device is required, and even during continuous operation. When the refrigeration load becomes extremely large and the expansion valve reaches its maximum opening, the protection device is activated even though there is a sufficient amount of refrigerant in the refrigeration circuit. Ta. That is,
In such cases, unnecessary inspections and unnecessary replacement of the fuse for the excitation circuit of the electromagnetic clutch are required each time, which is extremely complicated and uneconomical. In view of the above-mentioned drawbacks, the present invention provides a compressor protection device that operates only when two types of abnormalities are detected in the refrigeration circuit, and that operates only when the amount of refrigerant in the refrigeration circuit is truly insufficient. It was done for that purpose. The present invention will be explained in detail below based on the illustrated embodiments. In the figure, reference numeral 1 denotes, for example, a vehicle running engine which serves as a drive source for a compressor 2, and the engine 1 and the compressor 2 are connected by a belt 4 via an electromagnetic clutch 3. The electromagnetic clutch 3
An excitation circuit is formed in which the excitation coil is connected to a power supply 6 via a fuse 5, and an ON-OFF switch (not shown) and a temperature detection switch are installed in the excitation circuit and can be operated from the driver's seat. A switch (not shown) controls the operation of the electromagnetic clutch 3 and thus the compressor 2. The discharge side of the compressor 2 is connected to a condenser 7, followed by a liquid receiver 8, an expansion valve 9, an evaporator 10 and a compressor 2.
A refrigeration circuit is formed by sequentially connecting the suction side of the The expansion valve 9 is configured so that a temperature sensing cylinder 11 disposed near the outlet of the evaporator 10 detects the temperature of the refrigerant in the pipe line, and the fluid pressure inside the temperature sensing cylinder 11 changes accordingly, and the pressure equalizing pipe 12 The opening degree of the valve 14 is adjusted by the movement of the diaphragm 13, which is displaced by the pressure difference between the pressure of the refrigerant in the conduit near the outlet of the evaporator 10, and the optimal refrigerant flow rate according to the refrigeration load is obtained. It is composed of In a known refrigeration circuit configured as described above, the first embodiment of the present invention shown in FIG. A second switch 1 that closes when the pressure on the outlet side of 9 or inside the evaporator 10 (low pressure side refrigeration circuit pressure) falls below a set value.
6 are connected in series to constitute a circuit A that short-circuits the excitation circuit. It should be noted that when the short circuit A becomes conductive, an excessive current flows and the fuse 5 blows, the excitation circuit becomes open, and the compressor becomes unable to operate. Here, the first switch 15 is composed of a contact 15a attached to the diaphragm 13 and a contact 15b attached to the expansion valve body, and these two contacts are insulated by an insulating material 15c.
When the diaphragm 13 is pushed down to the lower end and the expansion valve 9 reaches its maximum opening, the two contacts can come into contact with each other and are electrically connected. Further, the second switch 16 has a switch body 16a that introduces the refrigerant pressure on the outlet side of the expansion valve 9 or in the evaporator 10, and contacts 16b and 16c arranged in the switch body 16a are connected to the switch body 16a. When the contact piece 16e attached to the tip of the bellows body 16d disposed inside comes into contact with the bellows body 16d, a conductive state is established. At this time, bellows body 1
The inside of 6d is hermetically isolated from the fluid in the outer circumference (the refrigerant on the outlet side of the expansion valve 9 or in the evaporator 10), and is in a direct air state or a constant pressure state, and as a result, the fluid pressure in the outer circumference (the above-mentioned refrigerant pressure), thereby expanding and contracting the contact piece 16.
e moves forward and backward toward the contacts 16b and 16c.
That is, as the pressure of the refrigerant decreases, the contact piece 16e advances toward the contacts 16b, 16c, and when the pressure falls below the set value, the contact piece 16e and the contacts 16b, 16c come into contact with each other. The contacts 16b and 16c become conductive. In the second embodiment of the present invention shown in FIG.
A third switch 17 having the same configuration as the second switch 16 in the first embodiment is connected in series with the second switch 16 which closes when the pressure in the inlet side or the condenser 7 (pressure in the high pressure side refrigeration circuit) falls below a set value. A circuit A is configured which is connected to the excitation circuit and short-circuits the excitation circuit. The third switch 17 is slightly different from the second switch 16 in that it operates in response to changes in pressure on the inlet side of the expansion valve 9 or in the condenser 7, and all other configurations are the same as in the first embodiment. The same is true. In the third embodiment of the present invention shown in FIG. 3, a first switch 15 similar to the first embodiment that closes when the expansion valve 9 reaches its maximum opening, and A fourth switch 18 that closes when the pressure difference on the outlet side (the pressure difference between the high pressure side and the low pressure side of the refrigeration circuit) becomes less than a set value is connected in series to form a circuit A that short-circuits the excitation circuit. has been done. Here, the fourth switch 18 is a switch body 1 having a cylinder 18b in which a piston 18a can slide.
8c, and at both ends of the cylinder 18b,
Fluid pressures are introduced at the inlet and outlet sides of the expansion valve 9, respectively. Contact points 18d and 18e are disposed at the end of the cylinder 18b on the side where fluid pressure is applied on the inlet side of the expansion valve 9, and the contacts 18d and 18e are provided by a spring 18f.
A contact piece 18g disposed at the tip of the piston 18a biased in the direction 18e contacts the contacts 18d, 1
It is possible to contact 8e. In other words, the spring 1
By appropriately adjusting the biasing force of 8f, when the pressure difference between the inlet side and the outlet side of the expansion valve 9 becomes less than the set value, the contact piece 18g moves to the contact point 18.
d, 18e, these contacts 18d, 18e
becomes conductive. In the fourth embodiment of the present invention shown in FIG. 4, the first embodiment closes when the pressure in the outlet side of the expansion valve 9 or in the evaporator 10 (pressure in the low pressure side refrigeration circuit) falls below a set value. and a second switch 16 similar to that of the third embodiment, which is closed when the pressure difference between the inlet side and the outlet side of the expansion valve 9 (the pressure difference between the high pressure side and the low pressure side of the refrigeration circuit) becomes equal to or less than a set value. A fourth switch 18 similar to that in the example is connected in series to constitute a circuit A that short-circuits the excitation circuit, and the rest is the same as in each of the above embodiments. The fifth embodiment of the present invention shown in FIG. 5 is a modification of the first embodiment, in which a diaphragm device 19 similar to that in the expansion valve 9 is
The only difference is that a first switch 15 is provided separately and a first switch 15 is provided to the diaphragm device 19, and everything else is the same as the first embodiment. In each of the embodiments having the above configuration, the functions thereof will be collectively described below. First, in what cases each of the above-mentioned switches will be closed will be described as follows. (1) When the refrigeration load is extremely large when the first switch 15 is closed. If the pressure inside the evaporator drops suddenly when the compressor is started. When the amount of refrigerant in the refrigeration circuit is insufficient. (2) When the second switch 16 closes, the refrigeration load is small and the pressure on the low pressure side, that is, the pressure on the expansion valve outlet side or inside the evaporator, decreases. At this time, the second switch 16
The operating point of is set to 0 Kg/cm 2 G, for example. When the amount of refrigerant in the refrigeration circuit is insufficient. (3) When the third switch 17 is closed, when the compressor is stopped, the pressure on the high pressure side, that is, the pressure on the expansion valve inlet side or in the condenser, decreases. At this time, the operating point of the third switch 17 is set to, for example, 7 kg/cm 2 G. When the amount of refrigerant in the refrigeration circuit is insufficient. (4) When the fourth switch 18 closes, the pressure difference between the high pressure side and the low pressure side disappears when the compressor is stopped. When the amount of refrigerant in the refrigeration circuit is insufficient and the pressure on the high pressure side no longer increases. At this time, the operating point of the fourth switch 18 is set to 7, for example.
Set to a differential pressure of Kg/cm 2 . Under such operating conditions of each switch, for each of the above-mentioned embodiments, the operating condition of each of the switches and the conduction state of the short circuit of the excitation circuit in various operating conditions of the compressor 2 are as follows:
When described together, it becomes as shown in Table 1. However, in Table 1, regarding each of the above switches,
A closed state is indicated by a circle, an open state is indicated by a cross, and regarding the short circuit, a conductive state is indicated by a circle, and a non-conductive state is indicated by a cross.

【表】 第1表から明らかなように、圧縮機2の種々の
運転状態において、冷凍回路内に必要な量の冷媒
が存在する場合には、前記短絡回路Aが導通状態
となることは無いが、冷凍回路内の冷媒の量が不
足した場合には、前記短絡回路Aが必ず導通状態
となつて、ヒユーズ5が溶断し、その結果前記電
磁クラツチ3の励磁回路は遮断されて、圧縮機2
はその運転が直ちに停止され、このままでの圧縮
機2の再運転は不可能となる。その後は冷媒の漏
洩箇所を修理するかして冷媒を補充してから、ヒ
ユーズ5を取換えれば、通常の圧縮機の運転が可
能である。ただし上記の実施例のうち第1実施例
と第5実施例においては、起動時に第1スイツチ
15の接点15a,15bが接触して導通状態と
なる場合が有るため、前記短絡回路A中に遅延装
置を挿入して、起動時の短時間の間だけ前記短絡
回路Aが導通状態となるのを阻止する必要が有
る。 なお、上記実施例においてはいずれも、冷凍回
路中における2箇所の異常を検知した結果、電磁
クラツチ3の励磁回路を短絡させ、それによつて
ヒユーズ5を溶断して前記励磁回路を遮断し、圧
縮機2の運転を不可能とするように構成したもの
について述べたが、前記短絡回路Aを単に、警告
ブザーや警告ランプ等の警告装置を作動させるた
めの冷媒量不足警告回路におき替えても、本発明
の実施は可能である。 上述のごとく本発明によれば、冷凍回路中にお
いて2箇所の異常を検知したときに初めて、圧縮
機の保護装置が作動するため、冷凍回路中の冷媒
量が不足した場合だけを正確に検知することがで
き、それによつて無駄な点検・整備が不要とな
り、煩雑な維持・管理および不経済さから解放さ
れて、冷媒圧縮機の耐久性を向上させることがで
きるという効果を有しており、さらに上述の第2
〜第4の実施例のものにおいては、何ら遅延装置
を必要とすること無く、起動時に偶然にも前記保
護装置が作動することは無いため、安価にかつ確
実性の高い圧縮機の保護装置を得ることができる
という効果をも有している。
[Table] As is clear from Table 1, under various operating conditions of the compressor 2, if the required amount of refrigerant is present in the refrigeration circuit, the short circuit A will not become conductive. However, if the amount of refrigerant in the refrigeration circuit is insufficient, the short circuit A will always become conductive, the fuse 5 will melt, and as a result, the excitation circuit of the electromagnetic clutch 3 will be cut off, and the compressor 2
The operation of the compressor 2 is immediately stopped, and it is impossible to restart the compressor 2 in this state. After that, the compressor can be operated normally by repairing the refrigerant leak or replenishing the refrigerant, and then replacing the fuse 5. However, in the first and fifth embodiments among the above-mentioned embodiments, the contacts 15a and 15b of the first switch 15 may come into contact and become conductive during startup, so there may be a delay during the short circuit A. It is necessary to insert a device to prevent said short circuit A from becoming conductive for a short period of time during start-up. In each of the above embodiments, as a result of detecting abnormalities at two locations in the refrigeration circuit, the excitation circuit of the electromagnetic clutch 3 is short-circuited, thereby blowing out the fuse 5 to cut off the excitation circuit, and the compression Although we have described a configuration that makes it impossible to operate machine 2, it is also possible to simply replace the short circuit A with a refrigerant shortage warning circuit for activating a warning device such as a warning buzzer or warning lamp. , it is possible to implement the invention. As described above, according to the present invention, the compressor protection device is activated only when two abnormalities are detected in the refrigeration circuit, so that only the case where the amount of refrigerant in the refrigeration circuit is insufficient can be accurately detected. This has the effect of eliminating the need for unnecessary inspections and maintenance, freeing the user from complicated maintenance and management and uneconomical costs, and improving the durability of the refrigerant compressor. Furthermore, the second
- In the fourth embodiment, there is no need for any delay device and the protection device will not be accidentally activated during startup, so it is possible to provide a low cost and highly reliable compressor protection device. It also has the effect that it can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示したもので、第1図は
第1実施例を、第2図は第2実施例を、第3図は
第3実施例を、第4図は第4実施例を、そして第
5図は第5実施例をそれぞれ示す回路図である。 2…圧縮機、3…電磁クラツチ、5…ヒユー
ズ、9…膨張弁、15…第1スイツチ、16…第
2スイツチ、17…第3スイツチ、18…第4ス
イツチ、A…短絡回路。
The figures show embodiments of the present invention, and Fig. 1 shows the first embodiment, Fig. 2 shows the second embodiment, Fig. 3 shows the third embodiment, and Fig. 4 shows the fourth embodiment. FIG. 5 is a circuit diagram showing a fifth embodiment. 2... Compressor, 3... Electromagnetic clutch, 5... Fuse, 9... Expansion valve, 15... First switch, 16... Second switch, 17... Third switch, 18... Fourth switch, A... Short circuit.

Claims (1)

【特許請求の範囲】 1 圧縮機の吐出側と連通されコンデンサ等を含
んで膨張弁の入口側に通じる高圧側冷凍回路と、
前記膨張弁の出口側と連通されエバポレータ等を
含んで前記圧縮機の吸入側に通じる低圧側冷凍回
路とを含み、駆動力を圧縮機へ伝達するための電
磁クラツチと、該電磁クラツチの作動を支配し、
かつ回路中にヒユーズを有する励磁回路とを具備
した冷凍装置において、前記低圧側冷凍回路内の
圧力が設定値以下となつたとき閉となるスイツ
チ、前記高圧側冷凍回路内の圧力が設定値以下と
なつたとき閉となるスイツチおよび冷凍回路の高
圧側と低圧側の圧力差が設定値以下となつたとき
閉となるスイツチのいずれか1つと、膨張弁最大
開度時に閉となるスイツチとを、前記励磁回路を
短絡する回路中に直列に配設して短絡回路を構成
したことを特徴とする圧縮機の保護装置。 2 圧縮機の吐出側と連通されコンデンサ等を含
んで膨張弁の入口側に通じる高圧側冷凍回路と、
前記膨張弁の出口側と連通されエバポレータ等を
含んで前記圧縮機の吸入側に通じる低圧側冷凍回
路とを含み、駆動力を圧縮機へ伝達するための電
磁クラツチと、該電磁クラツチの作動を支配し、
かつ回路中にヒユーズを有する励磁回路とを具備
した冷凍装置において、前記低圧側冷凍回路内の
圧力が設定値以下となつたとき閉となるスイツチ
と、膨張弁最大開度時に閉となるスイツチまたは
膨張弁最大開度時に閉となるが圧縮機起動時のみ
短絡回路の閉成を遅延させる遅延装置と組合わさ
れたスイツチとを、前記励磁回路を短絡する回路
中に直列に配設して短絡回路を構成したことを特
徴とする圧縮機の保護装置。 3 圧縮機の吐出側と連通されコンデンサ等を含
んで膨張弁の入口側に通じる高圧側冷凍回路と、
前記膨張弁の出口側と連通されエバポレータ等を
含んで前記圧縮機の吸入側に通じる低圧側冷凍回
路とを含み、駆動力を圧縮機へ伝達するための電
磁クラツチと、該電磁クラツチの作動を支配し、
かつ回路中にヒユーズを有する励磁回路とを具備
した冷凍装置において、前記低圧側冷凍回路内の
圧力が設定値以下となつたとき閉となるスイツチ
と、冷凍回路の高圧側と低圧側の圧力差が設定値
以下となつたとき閉となるスイツチとを、前記励
磁回路を短絡する回路中に直列に配設して短絡回
路を構成したことを特徴とする圧縮機の保護装
置。
[Claims] 1. A high-pressure side refrigeration circuit that communicates with the discharge side of the compressor, includes a condenser, etc., and communicates with the inlet side of the expansion valve;
a low pressure side refrigeration circuit communicating with the outlet side of the expansion valve and including an evaporator and the like and leading to the suction side of the compressor, an electromagnetic clutch for transmitting driving force to the compressor, and an electromagnetic clutch for controlling the operation of the electromagnetic clutch. rule,
and a refrigeration system equipped with an excitation circuit having a fuse in the circuit, a switch that closes when the pressure in the low pressure side refrigeration circuit falls below a set value, and the pressure in the high pressure side refrigeration circuit falls below the set value. one switch that closes when A protection device for a compressor, characterized in that the excitation circuit is arranged in series in a short-circuiting circuit to form a short-circuit circuit. 2. A high-pressure side refrigeration circuit that communicates with the discharge side of the compressor, includes a condenser, etc., and leads to the inlet side of the expansion valve;
a low pressure side refrigeration circuit communicating with the outlet side of the expansion valve and including an evaporator and the like and leading to the suction side of the compressor, an electromagnetic clutch for transmitting driving force to the compressor, and an electromagnetic clutch for controlling the operation of the electromagnetic clutch. rule,
and a refrigeration system equipped with an excitation circuit having a fuse in the circuit, a switch that closes when the pressure in the low-pressure refrigeration circuit falls below a set value, and a switch that closes when the expansion valve is at its maximum opening, or A short circuit is created by arranging in series in the circuit that shorts the excitation circuit a switch combined with a delay device that closes when the expansion valve is at its maximum opening but delays the closing of the short circuit only when the compressor is started. A compressor protection device characterized by comprising: 3. A high-pressure side refrigeration circuit that communicates with the discharge side of the compressor, includes a condenser, etc., and leads to the inlet side of the expansion valve;
A low-pressure refrigeration circuit that communicates with the outlet side of the expansion valve and includes an evaporator and the like and leads to the suction side of the compressor, an electromagnetic clutch for transmitting driving force to the compressor, and an electromagnetic clutch for controlling the operation of the electromagnetic clutch. rule,
and a refrigeration system equipped with an excitation circuit having a fuse in the circuit, a switch that closes when the pressure in the low-pressure side refrigeration circuit falls below a set value, and a pressure difference between the high-pressure side and the low-pressure side of the refrigeration circuit. A protection device for a compressor, characterized in that a switch that closes when the excitation circuit is below a set value is arranged in series in a circuit that short-circuits the excitation circuit to form a short-circuit circuit.
JP16149578A 1978-12-26 1978-12-26 Protector for compressor Granted JPS5587880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16149578A JPS5587880A (en) 1978-12-26 1978-12-26 Protector for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16149578A JPS5587880A (en) 1978-12-26 1978-12-26 Protector for compressor

Publications (2)

Publication Number Publication Date
JPS5587880A JPS5587880A (en) 1980-07-03
JPS6342176B2 true JPS6342176B2 (en) 1988-08-22

Family

ID=15736147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16149578A Granted JPS5587880A (en) 1978-12-26 1978-12-26 Protector for compressor

Country Status (1)

Country Link
JP (1) JPS5587880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248241A (en) * 1989-03-23 1990-10-04 Katsuzo Nomura Aromatizing method of laminated body and foil yarn

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640948Y2 (en) * 1987-04-30 1994-10-26 三菱重工業株式会社 Controller for refrigeration equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248241A (en) * 1989-03-23 1990-10-04 Katsuzo Nomura Aromatizing method of laminated body and foil yarn

Also Published As

Publication number Publication date
JPS5587880A (en) 1980-07-03

Similar Documents

Publication Publication Date Title
CA1183502A (en) Unloading control system for helical screw compressor refrigeration system
CN100441873C (en) Scroll compressor with hot oil temperature responsive relief of back pressure chamber
US4265091A (en) Refrigerant compressor protecting device
US2981076A (en) Refrigerating apparatus
US4403921A (en) Multi-cylinder variable delivery compressor
ITMI20060553A1 (en) REGULATION SYSTEM OF THE EFFLUSED CAPACITY OF A COMPRESSOR AND REFRIGERATION CYCLE PLANT
US7293965B2 (en) Limiter device for variable displacement compressor
US2234488A (en) Compressor unloading valve mechanism
EP1174295B1 (en) Control method for suppressing head pressure spikes in a vehicle air conditioning system
JPS6342176B2 (en)
CN1993554B (en) Capacity variable type rotary compressor and driving method thereof and driving method for air conditioner having the same
EP1186840B1 (en) A method and a system for monitoring the state of filling of a motor-vehicle air-conditioning system
JP2824289B2 (en) Oil recovery unit for oil-cooled compressor
JPH0755618B2 (en) Refrigeration cycle controller
EP0137731A2 (en) Method and system of control for a cluthless variable displacement cooling system
JPH0218462Y2 (en)
JP3182956B2 (en) Clutchless swinging swash plate type variable displacement compressor
US4325222A (en) Device responsive to unusual temperature change in refrigerant compressor
JPH06307721A (en) Refrigerating-air-conditioning equipment
JPS61135953A (en) Idling-speed control apparatus
US2038176A (en) Compressor unit
JPS6357890A (en) Control device for rotary compressor
JPH0639104Y2 (en) Automotive air conditioner
JPS5815639B2 (en) Turbo compressor surging automatic escape device
JPS59231189A (en) Open type refrigerant compressor