JPS6342167B2 - - Google Patents

Info

Publication number
JPS6342167B2
JPS6342167B2 JP57053287A JP5328782A JPS6342167B2 JP S6342167 B2 JPS6342167 B2 JP S6342167B2 JP 57053287 A JP57053287 A JP 57053287A JP 5328782 A JP5328782 A JP 5328782A JP S6342167 B2 JPS6342167 B2 JP S6342167B2
Authority
JP
Japan
Prior art keywords
heat
duct
evaporator
solar
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57053287A
Other languages
Japanese (ja)
Other versions
JPS58148331A (en
Inventor
Nobuo Abe
Takahiro Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Jutaku Sangyo KK
Original Assignee
Toshiba Jutaku Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Jutaku Sangyo KK filed Critical Toshiba Jutaku Sangyo KK
Priority to JP57053287A priority Critical patent/JPS58148331A/en
Publication of JPS58148331A publication Critical patent/JPS58148331A/en
Publication of JPS6342167B2 publication Critical patent/JPS6342167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、太陽熱の取得により固体吸着材に吸
着する冷媒を脱離した後これを凝縮液化し、この
液化冷媒を固体吸着材の冷却により吸収蒸発し、
その蒸発潜熱により得た冷熱で居室の冷房作用を
行い、太陽熱取得により得た暖気が居室の暖房作
用が可能な太陽熱利用空気調和装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention involves desorbing a refrigerant adsorbed on a solid adsorbent by acquiring solar heat, condensing it into a liquid, and absorbing this liquefied refrigerant by cooling the solid adsorbent. evaporate,
The present invention relates to an air conditioner using solar heat, which is capable of cooling a living room with the cold heat obtained from the latent heat of evaporation, and heating the living room with warm air obtained by acquiring solar heat.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

通常用いられる空気調和装置は、冷媒である、
たとえばフロンガスを圧縮、凝縮、膨張、蒸発の
順に循環し、いわゆるヒートポンプ式の冷凍サイ
クルを構成することにより、冷、暖房運転の切換
えが可能である。圧縮作用を行う圧縮機は、電動
機部を一体に備え、電気エネルギによつて駆動さ
れる。このため特に夏季などは上記電気エネルギ
の消費量が多大となり、電力事情を左右する程に
なつている。そこで近時、他の動力源をもつて圧
縮作用を行わせるための研究開発が盛んである。
たとえば光電式太陽電池を用いて太陽エネルギを
電気エネルギに変換する手段、あるいはランキン
サイクル機関のごとく太陽エネルギを機械エネル
ギに変換し、これで圧縮機を駆動する手段などが
ある。しかるにこれらは、高度なエネルギ濃縮技
術あるいは複雑な太陽追跡技術なしでは充分な効
果を得ることができず、高効率化にはなお時間が
必要である。
Usually used air conditioners are refrigerant,
For example, switching between cooling and heating operation is possible by configuring a so-called heat pump type refrigeration cycle by circulating fluorocarbon gas in the order of compression, condensation, expansion, and evaporation. A compressor that performs a compression action is integrally equipped with an electric motor section and is driven by electric energy. For this reason, the consumption of the above-mentioned electrical energy becomes large, especially during the summer, and has reached the point where it affects the electric power situation. Therefore, recently there has been a lot of research and development into using other power sources to perform the compression action.
Examples include means for converting solar energy into electrical energy using photoelectric solar cells, and means for converting solar energy into mechanical energy such as a Rankine cycle engine, which drives a compressor. However, these methods cannot be fully effective without advanced energy concentrating technology or complex solar tracking technology, and it will take time to achieve high efficiency.

また圧縮機自体複雑な機構であり製造コストが
高く、圧縮効率を向上させるための種々の工夫が
なされているが既に限界に近い。冷媒を断熱膨張
させる機構も、圧縮状態に合せた正確なマツチン
グをとらなければならず調整手間がかかる。長期
の使用に亘ればガス不足になるので適宜補充する
必要があり、保守に手間がかかる。その他種々の
不具合があるので、冷凍サイクルそのものの見直
しがなされ、これに代る冷暖房手段の出現化が要
望されている。
Moreover, the compressor itself is a complicated mechanism and its manufacturing cost is high, and various efforts have been made to improve compression efficiency, but they are already close to their limits. The mechanism that adiabatically expands the refrigerant also requires accurate matching according to the compression state, which takes time and effort. If the gas is used for a long period of time, it will run out of gas, so it will be necessary to replenish it from time to time, making maintenance time-consuming. Since there are various other problems, the refrigeration cycle itself has been reviewed, and there is a demand for alternative heating and cooling means.

ところで近時、特に米国において固体吸着材の
一種である「ゼオライト」が注目され、これを用
いた冷凍実験がなされるようになつた。ゼオライ
トは、水蒸気、アンモニア、炭酸ガス、フレオン
のごとき冷却用気体を多量に吸着できる性質を有
する。ただ水の蒸発熱は他の一般の気体より大で
あるので、ゼオライト−水−組合せが最も効率的
である。ゼオライトによる冷凍システムは、天然
産チヤバサイトあるいはクリノプチロライトを固
体吸着材に、また水蒸気を冷媒として用いられ
る。すなわち太陽熱を吸収したゼオライトは、こ
こに吸着していた水分を脱離(放出する)。水分
は凝縮器に導びかれて凝縮液化し、水となつて貯
溜される。夜間等、太陽熱を取得できなくなりゼ
オライトが冷却されると、上記水の吸着作用が始
まる。水は蒸発し、水蒸気に変つてゼオライトに
吸収される。蒸発にともなつて周囲から蒸発潜熱
を奪い、冷凍作用を得る。この場合、太陽熱を取
得できない時間のみ冷凍作用が可能であるが、た
とえば蓄冷槽を付加することにより、昼間の冷房
作用が可能である。
By the way, ``zeolite'', a type of solid adsorbent, has recently attracted attention, especially in the United States, and refrigeration experiments using it have begun to be conducted. Zeolite has the property of being able to adsorb large amounts of cooling gases such as water vapor, ammonia, carbon dioxide, and Freon. However, since the heat of vaporization of water is greater than that of other common gases, the zeolite-water combination is the most efficient. Zeolite-based refrigeration systems use naturally produced chaabasite or clinoptilolite as a solid adsorbent and water vapor as a refrigerant. In other words, zeolite absorbs solar heat and desorbs (releases) the water that was adsorbed there. The moisture is led to the condenser, where it is condensed and liquefied, becoming water and being stored. When the zeolite cools down, such as during the night when solar heat cannot be obtained, the water adsorption effect begins. The water evaporates, turns into water vapor, and is absorbed by the zeolite. As it evaporates, it absorbs the latent heat of vaporization from the surrounding area, producing a freezing effect. In this case, the cooling effect is possible only during the time when solar heat cannot be obtained, but by adding a cold storage tank, for example, the cooling effect during the daytime is possible.

したがつて、冷凍サイクルのごとき複雑な圧縮
機構や、微妙なマツチングをとる必要がないとと
もに動力源が不要で極めて簡単な構成ですむ。保
守に手間がかからず、ランニングコストがわずか
で廉価に提供できるなどの効果がある。
Therefore, there is no need for a complicated compression mechanism such as a refrigeration cycle or delicate matching, and there is no need for a power source, resulting in an extremely simple configuration. It has the advantage of requiring little maintenance, low running costs, and can be provided at a low price.

このようにシステムを利用して冷房作用を得る
ことができるが、研究段階のため我が国の家屋に
適合するような具体的構成は未だ全く示されてお
らず、しかも暖房作用の併用は考えられていない
ので利用効率が低い。
Although it is possible to obtain a cooling effect using this system, as it is still at the research stage, no specific configuration suitable for Japanese houses has yet been proposed, and furthermore, it is not considered that it can be used in combination with a heating effect. Since there is no such thing, the utilization efficiency is low.

〔発明の目的〕[Purpose of the invention]

本発明は、太陽エネルギを年間を通じて利用
し、効率的な冷房作用を行うとともに暖房作用が
可能であり、かつ冷、暖房時とも廉価なランニン
グコストを得、使用範囲の拡大化を図れる太陽熱
利用空気調和装置を提供しようとするものであ
る。
The present invention utilizes solar energy throughout the year, provides efficient cooling and heating, and provides low running costs for both cooling and heating, allowing for an expanded range of use. It attempts to provide a harmonizing device.

〔発明の概要〕[Summary of the invention]

本発明は太陽熱を取得する固体吸着材を用いて
冷熱を蓄冷し、この冷熱を必要時に居室へ供給し
て冷房作用をなし、太陽熱を取得する集熱ダクト
板を用いて暖気を必要時に居室へ供給し暖房作用
をなすようにしたものである。
The present invention stores cold heat using a solid adsorbent that acquires solar heat, supplies this cold heat to the living room when necessary to perform an air conditioning effect, and uses a heat collection duct plate that acquires solar heat to transfer warm air to the living room when necessary. It is designed to provide a heating effect.

〔発明の実施例〕 以下本発明の一実施例を図面にもとづいて説明
する。第1図ないし第3図は太陽熱利用装置を示
す。1は集熱筐体であり、これは上面(開口部)
を強化ガラス板2とたとえばポリカポネートフイ
ルムなどの耐候性合成フイルム3とを重ね合せて
閉塞した矩形薄函状体である。この内部の底面に
は断熱材であるグラスウール4が敷設され、長手
方向の両側面に沿つて木材やグラスウールなどの
断熱材5,5が設けられる。上記グラスウール4
上には断熱材であるガラスマツト6を介して長手
方向とは直交する方向に断面波形に曲成された集
熱ダクト板7が設けられる。この集熱ダクト板7
の表面は太陽熱の吸収効率を良くするために選択
吸収膜処理が施こされる。集熱筐体1の長手方向
両端面で上記集熱ダクト板7対向部位は開口して
いて、複数の集熱筐体1を長手方向に沿つて隣設
したとき互いの開口部8aが連通するようになつ
ている。集熱ダクト板7上には複数本の固体吸着
材充填体8……(以下充填体という。)が長手方
向とは直交する方向に並設される。この充填体8
は一端部が閉塞されるガラス管や金属管などであ
り、内部には約1〜5m/mφの固体吸着材である
ゼオライト粒子9が充填される。他端部は開放し
ていてフイルタ10が嵌合している。各充填体8
……の閉成側端部は支持金具11を介して断熱材
5または集熱筐体1に支持され、他端部は長手方
向に沿つて設けられたチヤンバ12に連通する。
このチヤンバ12の一端部底面には集熱筐体1の
外底面に延出する冷媒管13が接続される。集熱
筐体1の外底面において冷媒管13は長手方向に
沿つていて、ここに多数枚のフイン14……を狭
小の間隙を存して備えた凝縮器15が設けられ
る。さらに冷媒管13は下方へ折曲され、蒸発器
16に連通する。この蒸発器16は周面を断熱材
で被包される密閉容器であり、内部にはコイル状
の熱交換器17が収容される。そして、充填体
8、チヤンバ12、冷媒管13、凝縮器15及び
蒸発器16はそれぞれ気密状に接続され、これら
の内部は真空に保持されている。なお上記凝縮器
15の周囲は集熱筐体1の底面に取付けられた導
風板18に囲繞される。この導風板18は凝縮器
15の軸方向である集熱筐1の長手方向に沿つて
設けられ、さらにこの下面に上記蒸発器16を固
定する取付具19が設けられる。したがつて集熱
筐体1、凝縮器15および蒸発器16は一体ユニ
ツト化される。
[Embodiment of the Invention] An embodiment of the present invention will be described below based on the drawings. Figures 1 to 3 show a solar heat utilization device. 1 is the heat collection case, which is the top surface (opening)
It is a rectangular thin box-shaped body in which a reinforced glass plate 2 and a weather-resistant synthetic film 3 such as a polycarbonate film are overlapped and closed. Glass wool 4, which is a heat insulating material, is laid on the bottom surface of this interior, and heat insulating materials 5, 5, such as wood or glass wool, are provided along both sides in the longitudinal direction. Above glass wool 4
A heat collecting duct plate 7 having a corrugated cross section in a direction perpendicular to the longitudinal direction is provided on the top through a glass mat 6 which is a heat insulating material. This heat collection duct plate 7
The surface is treated with a selective absorption film to improve the absorption efficiency of solar heat. The opposing portions of the heat collecting duct plates 7 are open on both longitudinal end faces of the heat collecting casing 1, and when a plurality of heat collecting casings 1 are arranged next to each other along the longitudinal direction, their openings 8a communicate with each other. It's becoming like that. A plurality of solid adsorbent packing bodies 8 (hereinafter referred to as packing bodies) are arranged in parallel on the heat collecting duct plate 7 in a direction perpendicular to the longitudinal direction. This filling body 8
is a glass tube, metal tube, etc. with one end closed, and the inside is filled with zeolite particles 9, which are solid adsorbents, and have a diameter of about 1 to 5 m/m. The other end is open and the filter 10 is fitted therein. Each filling body 8
... are supported by the heat insulating material 5 or the heat collecting casing 1 via the support fitting 11, and the other end communicates with a chamber 12 provided along the longitudinal direction.
A refrigerant pipe 13 extending to the outer bottom surface of the heat collecting case 1 is connected to the bottom surface of one end of the chamber 12 . The refrigerant pipes 13 extend in the longitudinal direction on the outer bottom surface of the heat collecting casing 1, and a condenser 15 having a large number of fins 14 with narrow gaps therein is provided there. Furthermore, the refrigerant pipe 13 is bent downward and communicates with the evaporator 16. This evaporator 16 is a closed container whose peripheral surface is covered with a heat insulating material, and a coil-shaped heat exchanger 17 is housed inside. The filling body 8, the chamber 12, the refrigerant pipe 13, the condenser 15, and the evaporator 16 are each connected in an airtight manner, and their interiors are maintained in a vacuum. Note that the condenser 15 is surrounded by a baffle plate 18 attached to the bottom surface of the heat collecting case 1. The baffle plate 18 is provided along the longitudinal direction of the heat collecting case 1, which is the axial direction of the condenser 15, and a fitting 19 for fixing the evaporator 16 is further provided on the lower surface of the baffle plate 18. Therefore, the heat collecting case 1, the condenser 15 and the evaporator 16 are integrated into an integrated unit.

このようにして構成される太陽熱利用装置をた
とえば第4図に示すように空気調和装置の冷暖房
システムとして用いる。すなわち家屋の外面側で
ある屋根20上に複数台の装置S……を配置す
る。なお説明すれば、屋根20の傾斜に集熱筐体
1の長手方向を沿わせ、かつ互いの開口部8aが
連通するよう端面を密着する。各装置Sには、凝
縮器15および蒸発器16が一体ユニツト化され
ているから、これらは屋根20内に突出する。据
付けはごく容易である。それぞれの蒸発器16…
…内の熱交換器17は配管Pを介して直列に、ま
た並列またはリバースリターン方式に接続され、
蓄冷槽21および循環ポンプ22と連通して蓄冷
サイクルを構成する。上記蓄冷槽21は図示しな
い居室に配置され放冷器と配管を介して連通す
る。一方、傾斜最下端側の集熱筐体1端面には入
口側チヤンバ23が、かつ傾斜最上端側の集熱筐
体1端面には出口側チヤンバ24がそれぞれ接続
される。上記入口側、出口側チヤンバ23,24
とも図示しないセンサにより制御されるダンパ
a、ダンパbを備え、かつダクト25,26を介
して空気式コレクタ用蓄熱槽27に連通する。上
記ダクト25は分岐して、一端が外部に開口し、
ダンパcを備えた入口ダクト28が接続される。
上記ダクト26には給湯用熱交換器29が収容さ
れ、これは給湯用タンク30およびポンプ31と
給湯サイクルを構成するように連通する。さらに
このダクト26には集熱フアン32が収容される
とともに一端部がダクト25と連通するダクト3
3が接続され、これらの分岐部には、すなわちダ
クト26側にはダンパdが、またダクト25側に
はダンパeがそれぞれ設けられる。なお上記出口
側チヤンバ24には一端部が外部に連通する放出
ダクト34が接続され、これらの分岐部にはダン
パfが設けられる。上記蓄熱槽27には各居室に
連通する供給ダクト35と戻りダクト36が接続
される。上記供給ダクト35に送風用フアン37
が設けられる。また供給ダクト35と戻りダクト
36の蓄熱槽27にはダンパg,hがそれぞれ設
けられる。
The solar heat utilization device constructed in this manner is used, for example, as a heating and cooling system for an air conditioner, as shown in FIG. That is, a plurality of devices S... are arranged on the roof 20, which is the outer surface of the house. In other words, the longitudinal direction of the heat collecting casing 1 is aligned with the slope of the roof 20, and the end faces are brought into close contact so that the openings 8a communicate with each other. Each device S has a condenser 15 and an evaporator 16 integrated into one unit, so that they protrude into the roof 20. Installation is very easy. Each evaporator 16...
The heat exchangers 17 in... are connected in series via piping P, or in parallel or reverse return mode,
It communicates with the cold storage tank 21 and the circulation pump 22 to form a cold storage cycle. The cold storage tank 21 is placed in a living room (not shown) and communicates with a cooler through piping. On the other hand, an inlet chamber 23 is connected to the end surface of the heat collecting casing 1 at the lowest inclined end, and an outlet chamber 24 is connected to the end surface of the heat collecting casing 1 at the uppermost inclined end. The above inlet side and outlet side chambers 23 and 24
Both are provided with a damper a and a damper b which are controlled by a sensor (not shown), and communicate with a heat storage tank 27 for an air collector via ducts 25 and 26. The duct 25 is branched and one end is opened to the outside.
An inlet duct 28 with a damper c is connected.
A hot water supply heat exchanger 29 is accommodated in the duct 26, and communicates with a hot water supply tank 30 and a pump 31 to form a hot water supply cycle. Further, a heat collecting fan 32 is accommodated in the duct 26, and a duct 3 whose one end communicates with the duct 25
3 are connected to each other, and a damper d is provided on the duct 26 side, and a damper e is provided on the duct 25 side at these branch portions. Note that a discharge duct 34 whose one end communicates with the outside is connected to the outlet side chamber 24, and a damper f is provided at a branch portion of these ducts. A supply duct 35 and a return duct 36 communicating with each living room are connected to the heat storage tank 27. A ventilation fan 37 is installed in the supply duct 35.
will be provided. Further, dampers g and h are provided in the heat storage tanks 27 of the supply duct 35 and the return duct 36, respectively.

つぎに上記実施例の作用について説明する。夏
季の昼間など太陽光が照射する間は、強化ガラス
板2と耐候性合成フイルム3を介して照射する太
陽光を充填体8が受ける。これに充填されるゼオ
ライト粒子9は太陽熱を吸収し、吸着していた水
分が脱離する。この水分は冷媒管13を介して凝
縮器15に導びかれ、ここで導風板18を導通さ
れる空気と熱交換して凝縮液化する。水分は完全
に液体(水)に変り、蒸発器16に集溜する。ゼ
オライト粒子9の吸着効率は高いから、太陽熱を
取得している間は継続して水分を脱離する。した
がつて蒸発器16内の水量は時間の経過とともに
増大する。
Next, the operation of the above embodiment will be explained. During sunlight irradiation, such as during the daytime in summer, the filling body 8 receives the sunlight irradiated through the tempered glass plate 2 and the weather-resistant synthetic film 3. The zeolite particles 9 filled in this absorb solar heat, and the adsorbed water is released. This moisture is led to the condenser 15 via the refrigerant pipe 13, where it exchanges heat with the air flowing through the baffle plate 18 and is condensed and liquefied. The moisture completely changes to liquid (water) and collects in the evaporator 16. Since the adsorption efficiency of the zeolite particles 9 is high, water is continuously desorbed while solar heat is being obtained. Therefore, the amount of water in the evaporator 16 increases over time.

太陽光が照射しない、たとえば夜間等になる
と、ゼオライト粒子9の太陽光取得はなくなり、
これからの水分の脱離はない。逆にその性質上、
蒸発器16に集溜する水分を吸収することにな
る。水分は蒸発し冷媒管13を介してゼオライト
粒子9に吸着される。水分は蒸発器16で蒸発す
る際、蒸発潜熱を奪つて蒸発器16内温度を0℃
以下にする。このとき循環ポンプ22を駆動すれ
ば、熱交換器17は冷却され蓄冷槽21内にこの
中に封入する気体や液体などによつて冷気または
冷水、冷媒などを蓄積する。昼間など必要に応じ
て蓄冷槽21に連通した放冷器に冷熱を循環すれ
ば、この暖房作用が可能となる。上記蓄冷状態は
太陽光が照射していない間継続される。再び太陽
光が照射すれば、上述のごとく水分がゼオライト
粒子9から脱離することとなる。
When sunlight is not irradiated, for example at night, the zeolite particles 9 no longer acquire sunlight,
There will be no further desorption of water. On the contrary, due to its nature,
The moisture collected in the evaporator 16 will be absorbed. The water evaporates and is adsorbed by the zeolite particles 9 via the refrigerant pipe 13. When water evaporates in the evaporator 16, it takes away the latent heat of vaporization and lowers the temperature inside the evaporator 16 to 0°C.
Do the following. At this time, if the circulation pump 22 is driven, the heat exchanger 17 is cooled and cold air, cold water, refrigerant, etc. are stored in the cold storage tank 21 by the gas, liquid, etc. sealed therein. This heating effect can be achieved by circulating cold heat to a cooler connected to the cold storage tank 21 as needed, such as during the day. The above-mentioned cold storage state continues while sunlight is not irradiating. If the zeolite particles 9 are irradiated with sunlight again, water will be desorbed from the zeolite particles 9 as described above.

夏季における送風制御状態は第6図に示すよう
になる。(具体的構造については第4図参照)す
なわち夏季の昼間など太陽熱を取得できる間は、
ダンパa、ダンパbを開放し、ダンパcを閉じダ
ンパdを口側、ダンパeを口側に位置し、ダンパ
fを閉成する。集熱フアン32および給湯サイク
ルのポンプ31を駆動する。したがつてダクト2
5,26,33内などの空気は入口側チヤンバ2
3を介して各装置S……の集熱ダクト板7……に
沿つて導通する。これら集熱ダクト板7……は太
陽熱を吸収しているから、導通する空気は温度上
昇して暖気に変る。そして出口側チヤンバ24、
ダクト26、出口ダクト33を介して再び各装置
にもどり、これら内を循環する。ダクト26を導
通する際、熱交換器29と熱交換してこれを加熱
する。したがつて給湯用タンク30内の水を温水
に変え得る。なおダンパa,bはセンサによつて
開度を制御され、充填体8……の温度が一定にな
るよう保持される。このような状態を第6図Aに
概略的に示す。
The air blowing control state in summer is as shown in FIG. (See Figure 4 for the specific structure.) In other words, during the daytime in summer when solar heat can be obtained,
Damper a and damper b are opened, damper c is closed, damper d is located on the mouth side, damper e is located on the mouth side, and damper f is closed. The heat collection fan 32 and the pump 31 of the hot water supply cycle are driven. Therefore duct 2
The air inside 5, 26, 33 etc. is inlet side chamber 2.
3, conduction is established along the heat collection duct plates 7 of each device S. Since these heat collecting duct plates 7... absorb solar heat, the temperature of the conducting air increases and turns into warm air. and the exit side chamber 24,
It returns to each device via the duct 26 and the outlet duct 33 and circulates therein. When the duct 26 is made conductive, it exchanges heat with the heat exchanger 29 to heat it. Therefore, the water in the hot water supply tank 30 can be changed to hot water. The opening degrees of the dampers a and b are controlled by sensors, and the temperature of the filling bodies 8 is kept constant. Such a situation is schematically shown in FIG. 6A.

夏季の夜間など太陽熱を取得できない間は、ダ
ンパa,b,cを開放し、ダンパd,eはロ側、
ダンパfを開放する。入口ダクト28に導びかれ
る外気は集熱ダクト板7……に沿つて導通し充填
体8……を冷却する。そして風圧によつて放出ダ
クト34から外部へ放出される。集熱フアン32
とポンプ31は停止し、循環ポンプ22は駆動す
る。上述のごとくの冷凍作用がなされ、蓄冷槽2
1に冷気が蓄積される。この冷気を昼間になつた
ら居室へ循環して冷房作用を行う。この状態を第
6図Bに概略的に示す。
When solar heat cannot be obtained, such as at night in summer, dampers a, b, and c are open, and dampers d and e are on the b side.
Open the damper f. The outside air introduced into the inlet duct 28 is conducted along the heat collecting duct plates 7 and cools the filling bodies 8. Then, it is discharged to the outside from the discharge duct 34 due to wind pressure. Heat collection fan 32
Then, the pump 31 stops and the circulation pump 22 is driven. The freezing effect as described above is performed, and the cold storage tank 2
Cold air accumulates in 1. During the daytime, this cold air is circulated to the living room to provide air conditioning. This state is schematically shown in FIG. 6B.

冬季など、冷房作用が不要の場合は第7図に示
すように制御する。昼間など太陽熱を取得できる
間は、ダンパa,bとも開放し、ダンパcを閉成
するとともにダンパd,eとのイ側に変え、ダン
パfは閉成する。循環ポンプ22は停止、集熱フ
アン32およびポンプ31を駆動する。システム
内に滞溜する外気は集熱ダクト板7を導通する際
暖められ、蓄熱槽27へ導びかれて蓄熱される。
ゼオライト粒子9は太陽熱を蓄熱でき、たとえ太
陽光が照射しない間があつても上記外気を加熱す
る。暖気は熱交換器29を加熱して温水を作る。
この状態を第7図Aに示す。
When the cooling effect is not required, such as during winter, control is performed as shown in FIG. While solar heat can be obtained, such as during the daytime, both dampers a and b are opened, damper c is closed and moved to the side opposite to dampers d and e, and damper f is closed. The circulation pump 22 is stopped, and the heat collection fan 32 and pump 31 are driven. The outside air accumulated in the system is warmed as it passes through the heat collecting duct plate 7, and is led to the heat storage tank 27 where it is stored.
The zeolite particles 9 can store solar heat and heat the outside air even if there is a period when sunlight is not irradiated. The warm air heats the heat exchanger 29 to produce hot water.
This state is shown in FIG. 7A.

太陽熱を取得できない夜間等においては、ダン
パa,b,cおよびfを閉成し、ダンパd,fを
ロ側に位置し、循環ポンプ22、集熱フアン32
およびポンプ31を停止し、ダンパg,hを開放
して送風用フアン37を駆動する。したがつて蓄
熱槽27から暖気が引出され、供給ダクト35を
介して各居室へ導びかれ、この暖房作用を行う。
熱交換後の暖気は戻りダクト36を介して蓄熱槽
27へ循環する。この状態を第7図Bに示す。
At night, when solar heat cannot be obtained, dampers a, b, c and f are closed, dampers d and f are placed on the b side, and the circulation pump 22 and heat collection fan 32 are closed.
Then, the pump 31 is stopped, the dampers g and h are opened, and the ventilation fan 37 is driven. Therefore, warm air is drawn out from the heat storage tank 27 and guided to each room through the supply duct 35 to perform this heating effect.
The warm air after heat exchange is circulated to the heat storage tank 27 via the return duct 36. This state is shown in FIG. 7B.

〔発明の効果〕〔Effect of the invention〕

本発明は、太陽熱を利用して冷房作用と暖房作
用とを得ることができ、ランニングコストの低減
化を図り、極めて経済的な空気調和を行える。し
かも簡単な構成で、耐久性のある装置を提供でき
る。
INDUSTRIAL APPLICATION This invention can obtain a cooling effect and a heating effect by utilizing solar heat, reduces running costs, and performs extremely economical air conditioning. Moreover, it is possible to provide a durable device with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は太陽
熱利用空気調和装置一部の切欠した平面図、第2
図はその縦断正面図、第3図は同じく縦断側面
図、第4図は太陽熱利用空気調和装置の概略的構
成図、第5図は冷凍作用説明図、第6図A,Bは
夏季における制御説明図、第7図A,Bは冬季に
おける制御説明図である。 8……固体吸着材(ゼオライト)充填体、7…
…集熱ダクト板、1……集熱筐体、13……冷媒
管、15……凝縮器、16……蒸発器、17……
熱交換器、21……蓄冷槽、27……蓄熱槽。
The drawings show one embodiment of the present invention, and FIG. 1 is a partially cutaway plan view of a solar air conditioning system, and FIG.
The figure is a longitudinal front view, Fig. 3 is a longitudinal side view, Fig. 4 is a schematic diagram of the solar air conditioning system, Fig. 5 is an explanatory diagram of refrigeration, and Fig. 6 A and B are controls in summer. Explanatory diagrams, FIGS. 7A and 7B are explanatory diagrams of control in winter. 8...Solid adsorbent (zeolite) packing, 7...
... Heat collection duct plate, 1 ... Heat collection case, 13 ... Refrigerant pipe, 15 ... Condenser, 16 ... Evaporator, 17 ...
Heat exchanger, 21... Cold storage tank, 27... Heat storage tank.

Claims (1)

【特許請求の範囲】[Claims] 1 家屋の外面側に配置され太陽熱を受ける固体
吸着材充填体および集熱ダクト板を収容する集熱
筐体と、この集熱筐体内の上記固体吸着材充填体
に冷媒管を介して連通する凝縮器および蒸発器
と、この蒸発器内に収容され蒸発器内の冷熱と熱
交換する熱交換器と、この熱交換器と配管を介し
て連通し冷熱を蓄冷して上記家屋内の居室に供給
する蓄冷槽と、上記集熱ダクトとダクトを介して
連通し集熱ダクトにおける太陽熱取得により得た
暖気を蓄熱し上記居室へ案内する蓄熱槽とを具備
したことを特徴とする太陽熱利用空気調和装置。
1. A heat collection casing that is placed on the outside of the house and houses a solid adsorbent filling body that receives solar heat and a heat collection duct plate, and communicates with the solid adsorption material filling body in this heat collection casing via a refrigerant pipe. A condenser and an evaporator, a heat exchanger housed in the evaporator and exchanging heat with cold heat in the evaporator, and communicating with the heat exchanger through piping to store the cold heat and supply it to the room in the house. A solar heat-utilizing air conditioner characterized by comprising a cold storage tank for supplying heat, and a heat storage tank that communicates with the heat collection duct via the duct to store warm air obtained by acquiring solar heat in the heat collection duct and guide it to the living room. Device.
JP57053287A 1982-03-31 1982-03-31 Air conditioner utilizing solar heat Granted JPS58148331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053287A JPS58148331A (en) 1982-03-31 1982-03-31 Air conditioner utilizing solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053287A JPS58148331A (en) 1982-03-31 1982-03-31 Air conditioner utilizing solar heat

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57029899A Division JPS58148369A (en) 1982-02-26 1982-02-26 Refrigerator utilizing solar heat

Publications (2)

Publication Number Publication Date
JPS58148331A JPS58148331A (en) 1983-09-03
JPS6342167B2 true JPS6342167B2 (en) 1988-08-22

Family

ID=12938505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053287A Granted JPS58148331A (en) 1982-03-31 1982-03-31 Air conditioner utilizing solar heat

Country Status (1)

Country Link
JP (1) JPS58148331A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7878192B2 (en) * 2006-11-22 2011-02-01 Theodore Edward Larsen Adjustable solar collector and method of use
CN101476784B (en) * 2009-01-20 2011-08-17 郭建国 Flat plate integration type adsorbing refrigerating/heating apparatus
JP5205353B2 (en) * 2009-09-24 2013-06-05 株式会社日立製作所 Heat pump power generation system

Also Published As

Publication number Publication date
JPS58148331A (en) 1983-09-03

Similar Documents

Publication Publication Date Title
Wang et al. Adsorption refrigeration—an efficient way to make good use of waste heat and solar energy
Dieng et al. Literature review on solar adsorption technologies for ice-making and air-conditioning purposes and recent developments in solar technology
US4584842A (en) Solar refrigeration
US20050262720A1 (en) Energy efficient sorption processes and systems
Best et al. Solar refrigeration and cooling
US20090211276A1 (en) System and method for managing water content in a fluid
US4269170A (en) Adsorption solar heating and storage system
US4272268A (en) Chemical heat pump
Dadi et al. Solar energy as a regeneration heat source in hybrid solid desiccant–vapor compression cooling system–A review
CN1131359C (en) Adsorption air water-intaking equipment
WO2008114266A2 (en) Apparatus and method for solar cooling and air conditioning
Mohammed et al. Desiccants enabling energy-efficient buildings: A review
JPS6342167B2 (en)
JPS6224213Y2 (en)
JPS6225647Y2 (en)
Jani Use of renewable solar energy in desiccant assisted cooling techniques
Oliveira Solar powered sorption refrigeration and air conditioning
Abdelgaied et al. Performance improvement of solar-assisted air-conditioning systems by using an innovative configuration of a desiccant dehumidifier and thermal recovery unit
KR101888553B1 (en) Hybrid cooling and heating system using solar heat with thermochemical heat storage tank and a method of cooling and heating using the same
JPS58148371A (en) Refrigerator utilizing solar heat
JPS58148369A (en) Refrigerator utilizing solar heat
Rona Solar air conditioning system
Robison Desiccant cooling
Mattarolo Solar powered air conditioning systems: a general survey
Sahmarani et al. Proposal for an Adsorption Solar-Driven Air-Conditioning Unit for Public Offices