JPS6225647Y2 - - Google Patents

Info

Publication number
JPS6225647Y2
JPS6225647Y2 JP1982046275U JP4627582U JPS6225647Y2 JP S6225647 Y2 JPS6225647 Y2 JP S6225647Y2 JP 1982046275 U JP1982046275 U JP 1982046275U JP 4627582 U JP4627582 U JP 4627582U JP S6225647 Y2 JPS6225647 Y2 JP S6225647Y2
Authority
JP
Japan
Prior art keywords
heat
heat collecting
condenser
evaporator
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982046275U
Other languages
Japanese (ja)
Other versions
JPS58148574U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982046275U priority Critical patent/JPS58148574U/en
Publication of JPS58148574U publication Critical patent/JPS58148574U/en
Application granted granted Critical
Publication of JPS6225647Y2 publication Critical patent/JPS6225647Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野) 本考案は、太陽熱の取得により固体吸着材に吸
着する冷媒を脱離した後これを凝縮液化し、この
液化冷媒を固体吸着材の冷却により吸収蒸発し、
その蒸発潜熱により冷凍作用が可能な太陽熱利用
冷凍装置に関する。
[Detailed description of the invention] [Technical field of the invention] This invention desorbs the refrigerant adsorbed to a solid adsorbent by acquiring solar heat, condenses it into a liquid, and absorbs this liquefied refrigerant by cooling the solid adsorbent. evaporate,
The present invention relates to a solar thermal refrigeration device capable of performing a refrigeration action using the latent heat of evaporation.

〔考案の技術的背景とその問題点〕[Technical background of the invention and its problems]

通常用いられる冷凍装置は、冷媒である、たと
えばフロンガスを圧縮、凝縮、膨張、蒸発の順に
循環し、いわゆる冷凍サイクルを構成する。圧縮
作用を行う圧縮機は、電動機部を一体に備え、電
気エネルギによつて駆動される。このため特に夏
季などは上記電気エネルギの消費量が多大とな
り、電力事情を左右する程になつている。そこで
近時、他の動力源をもつて圧縮作用を行わせるた
めの研究開発が盛んである。たとえば光電式太陽
電池を用いて太陽エネルギを電気エネルギに変換
する手段、あるいはランキンサイクル機関のごと
く太陽エネルギを機械エネルギに変換し、これで
圧縮機を駆動する手段などがある。しかるにこれ
らは、高度なエネルギ濃縮技術あるいは複雑な太
陽追跡技術なしでは充分な効果を得ることができ
ず、高効率化にはなお時間が必要である。
A commonly used refrigeration system circulates a refrigerant, such as fluorocarbon gas, in the order of compression, condensation, expansion, and evaporation, forming a so-called refrigeration cycle. A compressor that performs a compression action is integrally equipped with an electric motor section and is driven by electric energy. For this reason, the consumption of the above-mentioned electrical energy becomes large, especially during the summer, and has reached the point where it affects the electric power situation. Therefore, recently there has been a lot of research and development into using other power sources to perform the compression action. Examples include means for converting solar energy into electrical energy using photoelectric solar cells, and means for converting solar energy into mechanical energy such as a Rankine cycle engine, which drives a compressor. However, these methods cannot be fully effective without advanced energy concentrating technology or complex solar tracking technology, and it will take time to achieve high efficiency.

また圧縮機自体複雑な機構であり製造コストが
高く、圧縮効率を向上させるための種々の工夫が
なされているが即に限界に近い。冷媒を断熱膨張
される機構も、圧縮状態に合せた正確なマツチン
グをとらなければならず調整手間がかかる。長期
の使用に亘ればガス不足になるので適宜補充する
必要があり、保守に手間がかかる。その他種々の
不具合があるので、冷凍サイクルそのものの見直
しがなされ、これに代る冷凍手段の出現化が要望
されている。
Furthermore, the compressor itself is a complicated mechanism and its manufacturing cost is high, and although various efforts have been made to improve compression efficiency, they are quickly reaching their limits. The mechanism that adiabatically expands the refrigerant also requires accurate matching according to the compression state, which requires adjustment and effort. If the gas is used for a long period of time, it will run out of gas, so it will be necessary to replenish it from time to time, making maintenance time-consuming. Since there are various other problems, the refrigeration cycle itself has been reviewed, and there is a demand for alternative refrigeration means.

ところで近時、特に米国において固体吸着材の
一種である「ゼオライト」が注目され、これを用
いた冷凍実験がなされるようになつた。ゼオライ
トは、水蒸気、アンモニア、炭酸ガス、フレオン
のごとき冷却用気体を多量に吸着できる性質を有
する。ただ水の蒸発熱は他の一般の気体より大で
あるので、ゼオライト−水の組合せが最も効率的
である。ゼオライトによる冷凍システムは、天然
産チヤバサイトあるいはクリノプチロライトを固
体吸着材に、また水蒸気を冷媒として用いられ
る。すなわち太陽熱を吸収したゼオライトは、こ
こに吸着していた水分を脱離(放出)する。水分
は凝縮器に導びかれて凝縮液化し、水となつて貯
溜される。夜間等、太陽熱を取得できなくなりゼ
オライトが冷却されると、上記水の吸着作用が始
まる。水は蒸発し、水蒸気に変つてゼオライトに
吸収される。蒸発にともなつて周囲から蒸発潜熱
を奪い、冷凍作用を得る。この場合、太陽熱を取
得できない時間のみ冷凍作用が可能であるが、た
とえば蓄冷槽を付加することにより、昼間の冷房
作用が可能である。
By the way, ``zeolite'', a type of solid adsorbent, has recently attracted attention, especially in the United States, and refrigeration experiments using it have begun to be conducted. Zeolite has the property of being able to adsorb large amounts of cooling gases such as water vapor, ammonia, carbon dioxide, and Freon. However, since the heat of vaporization of water is greater than that of other common gases, the combination of zeolite and water is the most efficient. Zeolite-based refrigeration systems use naturally produced chaabasite or clinoptilolite as a solid adsorbent and water vapor as a refrigerant. In other words, zeolite absorbs solar heat and desorbs (releases) the water that has been adsorbed there. The moisture is led to the condenser, where it is condensed and liquefied, becoming water and being stored. When the zeolite cools down, such as during the night when solar heat cannot be obtained, the water adsorption effect begins. The water evaporates, turns into water vapor, and is absorbed by the zeolite. As it evaporates, it absorbs the latent heat of vaporization from the surrounding area, producing a freezing effect. In this case, the cooling effect is possible only during the time when solar heat cannot be obtained, but by adding a cold storage tank, for example, the cooling effect during the daytime is possible.

したがつて、冷凍サイクルのごとき複雑な圧縮
機構や、微妙なマツチングをとる必要がないとと
もに動力源が不要で極めて簡単な構成ですむ。保
守に手間がかからず、ランニングコストがわずか
で廉価に提供できるなどの効果がある。
Therefore, there is no need for a complicated compression mechanism such as a refrigeration cycle or delicate matching, and there is no need for a power source, resulting in an extremely simple configuration. It has the advantage of requiring little maintenance, low running costs, and can be provided at a low price.

このようにシステムを利用して冷房作用を得る
ことができるが、研究段階のため我が国の家屋に
適合するような具体的構成は未だ全く示されてお
らず、製品化が待たれている。
Although it is possible to obtain a cooling effect using this system, as it is still in the research stage, no specific configuration suitable for Japanese houses has yet been proposed, and commercialization is awaited.

〔考案の目的〕[Purpose of invention]

本考案は、廉価でランニングコストが低く、効
率的な冷凍作用を得る太陽熱利用冷凍装置を提供
しようとするものである。
The present invention aims to provide a solar thermal refrigeration system that is inexpensive, has low running costs, and provides efficient refrigeration.

〔考案の概要〕[Summary of the idea]

本考案は、集熱筺体内に集熱ダクトおよび太陽
熱を受ける固体吸着材と多数の金属粒やフアイバ
状金属からなる金属性伝熱子とを充填した充填体
を配設し、上記集熱ダクトに開口部を連通し、上
記充填体に冷媒管を介して凝縮器および蒸発器を
連通し、上記集熱筺体の底部に設けた導風板で上
記凝縮器を囲繞するとともに上記蒸発器を吊持す
るようにしたものである。
The present invention includes a heat collecting duct, a filling body filled with a solid adsorbent that receives solar heat, and a metallic heat transfer element made of a large number of metal grains or fiber-like metals, and a heat collecting duct arranged inside a heat collecting housing. A condenser and an evaporator are connected to the packing body through a refrigerant pipe, and a baffle plate provided at the bottom of the heat collecting case surrounds the condenser and suspends the evaporator. It was designed to hold.

〔考案の実施例〕[Example of idea]

以下本考案の一実施例を図面にもとづいて説明
する。第1図ないし第3図は太陽熱利用冷凍装置
を示す。1は集熱筐体であり、これは上面(開口
部)を強化ガラス板2とたとえばポリカポネート
フイルムなどの耐候性合成フイルム3とを重ね合
せて閉塞した矩形薄函状体である。この内部の底
面には断熱材であるグラスウール4が敷設され、
長手方向の両側面に沿つて木材やグラスウールな
どの断熱材5,5が設けられる。上記グラスウー
ル4上には断熱材であるガラスマツト6を介して
長手方向とは直交する方向に断面波形に曲成され
た集熱ダクト板7が設けられる。この集熱ダクト
板7の表面は太陽熱の吸収効率を良くするために
選択吸収膜処理が施こされる。集熱筐体1の長手
方向両端面で上記集熱ダクト板7対向部位は開口
していて、複数の集熱筐体1を長手方向に沿つて
隣接したとき互いの開口部8aが連通するように
なつている。集熱ダクト板7上には複数本の充填
体8…が長手方向とは直交する方向に並設され
る。この充填体8は一端部が閉塞されるガラス管
や金属管などであり、内部には約1〜5m/mφ
の固体吸着材であるゼオライト粒子9と金属性伝
熱子Aである多数の金属粒aやフアイバ状金属b
が混在して充填される。他端部は開放していてフ
イルタ10が嵌合している。各充填体8…の閉成
側端部は支持金具11を介して断熱材5または集
熱筐体1に支持され、他端部は長手方向に沿つて
設けられたチヤンバ12に連通する。このチヤン
バ12の一端部底面には集熱筐体1の外底面に延
出する冷媒管13が接続される。集熱筐体1の外
底面において冷媒管13は長手方向に沿つてい
て、ここに多数枚のフイン14…を狭小の間隙を
存して備えた凝縮器15が設けられる。さらに冷
媒管13は下方へ折曲され、蒸発器16に連通す
る。この蒸発器16は周面を断熱材で被包される
密閉容器であり、内部にはコイル状の熱交換器1
7が収容される。そして、充填体8、チヤンバ1
2、冷媒管13、凝縮器15及び蒸発器16はそ
れぞれ気密状に接続され、これらの内部は真空に
保持されている。なお上記凝縮器15の周囲は集
熱筐体1の底面に取付けられた導風板18に囲繞
される。この導風板18は凝縮器15の軸方向で
ある集熱筐体1の長手方向に沿つて設けられ、さ
らにこの下面に上記蒸発器16を固定する取付具
19が設けられる。したがつて集熱筐体1、凝縮
器15および蒸発器16は一体ユニツト化され
る。
An embodiment of the present invention will be described below based on the drawings. Figures 1 to 3 show a solar thermal refrigeration system. Reference numeral 1 denotes a heat collecting case, which is a rectangular thin box whose upper surface (opening) is closed by overlapping a tempered glass plate 2 and a weather-resistant synthetic film 3 such as a polycarbonate film. Glass wool 4, which is a heat insulating material, is laid on the bottom of this interior.
Insulating materials 5, 5 such as wood or glass wool are provided along both sides in the longitudinal direction. A heat collecting duct plate 7 is provided on the glass wool 4, with a glass mat 6 serving as a heat insulating material interposed therebetween, which is curved in a corrugated cross-section in a direction perpendicular to the longitudinal direction. The surface of the heat collecting duct plate 7 is treated with a selective absorption film to improve the absorption efficiency of solar heat. The opposing portions of the heat collecting duct plates 7 are open on both end faces in the longitudinal direction of the heat collecting casings 1, so that when a plurality of heat collecting casings 1 are placed adjacent to each other along the longitudinal direction, the openings 8a of the heat collecting duct plates 7 communicate with each other. It's getting old. A plurality of filling bodies 8 are arranged on the heat collecting duct plate 7 in a direction perpendicular to the longitudinal direction. This filling body 8 is a glass tube or a metal tube with one end closed, and the inside has a diameter of about 1 to 5 m/m.
Zeolite particles 9, which are solid adsorbents, and numerous metal particles a, which are metallic heat transfer elements A, and fiber-like metal b
are mixed and filled. The other end is open and the filter 10 is fitted therein. The closing side end of each filling body 8 is supported by the heat insulating material 5 or the heat collecting case 1 via the support fitting 11, and the other end communicates with a chamber 12 provided along the longitudinal direction. A refrigerant pipe 13 extending to the outer bottom surface of the heat collecting case 1 is connected to the bottom surface of one end of the chamber 12 . The refrigerant pipes 13 extend in the longitudinal direction on the outer bottom surface of the heat collecting case 1, and a condenser 15 having a large number of fins 14 with narrow gaps therein is provided there. Furthermore, the refrigerant pipe 13 is bent downward and communicates with the evaporator 16. The evaporator 16 is a closed container whose circumferential surface is covered with a heat insulating material, and a coil-shaped heat exchanger 1 is installed inside the evaporator 16.
7 is accommodated. Then, the filling body 8, the chamber 1
2. The refrigerant pipe 13, the condenser 15, and the evaporator 16 are each connected in an airtight manner, and their interiors are maintained in a vacuum. Note that the condenser 15 is surrounded by a baffle plate 18 attached to the bottom surface of the heat collecting case 1. The baffle plate 18 is provided along the longitudinal direction of the heat collection case 1, which is the axial direction of the condenser 15, and a fitting 19 for fixing the evaporator 16 is further provided on the lower surface of the baffle plate 18. Therefore, the heat collecting case 1, the condenser 15 and the evaporator 16 are integrated into an integrated unit.

このようにして構成される太陽熱利用冷凍装置
をたとえば第4図に示すように冷房システムとし
て用いる。すなわち家屋の屋根20上に複数台の
装置S…を配置する。なお説明すれば、屋根20
の傾斜に集熱筐体1の長手方向を沿わせ、かつ互
いの開口部8aが連通するよう端面を密着する。
各装置Sには、凝縮器15および蒸発器16が一
体ユニツト化されているから、これらは屋根20
内に突出する。据付けはごく容易である。それぞ
れの蒸発器16…内の熱交換器17は配管Pを介
して直列に、または並列またはリバースリターン
方式に接続するとよく、蓄冷槽21および循環ポ
ンプ22と連通して蓄冷サイクルを構成する。上
記蓄冷槽21は図示しない居室に配置された放冷
器と、循環ポンプ23を設けた配管を介して連通
する。
A solar thermal refrigeration system configured in this manner is used as a cooling system, for example, as shown in FIG. That is, a plurality of devices S... are arranged on the roof 20 of a house. To explain, the roof 20
The longitudinal direction of the heat collecting case 1 is aligned with the slope of the heat collecting case 1, and the end faces are brought into close contact with each other so that the openings 8a of the heat collecting case 1 are in communication with each other.
Each device S has a condenser 15 and an evaporator 16 integrated into one unit, so these can be connected to the roof 20.
protrude inward. Installation is very easy. The heat exchangers 17 in the respective evaporators 16 may be connected in series, in parallel, or in a reverse return manner via piping P, and communicate with the cold storage tank 21 and the circulation pump 22 to form a cold storage cycle. The cold storage tank 21 communicates with a cooler disposed in a living room (not shown) via piping provided with a circulation pump 23.

つぎに上記実施例の作用について説明する。夏
季の昼間など太陽光が照射する間は、強化ガラス
板2と耐候性合成フイルム3を介して照射する太
陽光を充填体8が受ける。これに充填されるゼオ
ライト粒子9は太陽熱を吸収し、吸着していた水
分が脱離する。このとき金属粒a…やフアイバ状
金属bは太陽熱を蓄え、かつゼオライト粒子9に
伝熱する。したがつて太陽熱は直接間接にゼオラ
イト粒子9に伝り、水分の脱離効果が良い。水分
は冷媒管13を介して凝縮器15に導びかれ、こ
こで導風板18を導通される空気と熱交換して凝
縮液化する。水分は完全に液体(水)に変り、蒸
発器16に集溜する。ゼオライト粒子9の吸着効
率は高いから、太陽熱を取得している間は継続し
て水分を脱離する。したがつて蒸発器16内の水
量は時間の経過とともに増大する。
Next, the operation of the above embodiment will be explained. During sunlight irradiation, such as during the daytime in summer, the filling body 8 receives the sunlight irradiated through the tempered glass plate 2 and the weather-resistant synthetic film 3. The zeolite particles 9 filled in this absorb solar heat, and the adsorbed water is released. At this time, the metal particles a... and the fiber-like metal b store solar heat and transfer the heat to the zeolite particles 9. Therefore, solar heat is directly and indirectly transmitted to the zeolite particles 9, resulting in a good moisture removal effect. The moisture is led to the condenser 15 via the refrigerant pipe 13, where it exchanges heat with the air passed through the baffle plate 18 and is condensed and liquefied. The moisture completely changes to liquid (water) and collects in the evaporator 16. Since the adsorption efficiency of the zeolite particles 9 is high, water is continuously desorbed while solar heat is being obtained. Therefore, the amount of water in the evaporator 16 increases over time.

太陽光が照射しない、たとえば夜間等になる
と、ゼオライト粒子9の太陽光取得はなくなり、
これからの水分の脱離はない。逆にその性質上、
蒸発器16に集溜する水分を吸収することにな
る。水分は蒸発し冷媒管13を介してゼオライト
粒子9に吸着される。水分は蒸発器16で蒸発す
る際、蒸発潜熱を奪つて蒸発器16内温度を0℃
以下にする。金属粒aやフアイバ状金属bはゼオ
ライト粒子9を冷却し、この水分吸着作用を促進
する。このとき循環ポンプ22を駆動すれば、熱
交換器17は冷却され蓄冷槽21内にこの中に封
入する気体や液体などによつて冷気または冷水、
冷媒などを蓄積する。昼間など必要に応じて循環
ポンプ23を駆動し蓄冷槽21に連通した放冷器
に冷気を循環すれば、この冷房作用が可能とな
る。上記蓄冷状態は太陽光が照射していない間継
続される。再び太陽光が照射すれば、上述のごと
く水分がゼオライト粒子9から脱離することとな
る。
When sunlight is not irradiated, for example at night, the zeolite particles 9 no longer acquire sunlight,
There will be no further desorption of water. On the contrary, due to its nature,
The moisture collected in the evaporator 16 will be absorbed. The water evaporates and is adsorbed by the zeolite particles 9 via the refrigerant pipe 13. When water evaporates in the evaporator 16, it takes away the latent heat of vaporization and lowers the temperature inside the evaporator 16 to 0°C.
Do the following. The metal particles a and the fiber-like metal b cool the zeolite particles 9 and promote this water adsorption effect. At this time, if the circulation pump 22 is driven, the heat exchanger 17 is cooled, and the gas or liquid sealed in the cool storage tank 21 generates cold air or cold water.
Accumulates refrigerant, etc. This cooling effect can be achieved by driving the circulation pump 23 as needed during the day and circulating cold air to the cooler connected to the cold storage tank 21. The above-mentioned cold storage state continues while sunlight is not irradiating. If the zeolite particles 9 are irradiated with sunlight again, water will be desorbed from the zeolite particles 9 as described above.

〔考案の効果〕[Effect of idea]

本考案は、集熱筺体内に集熱ダクトを配設する
とともに、固体吸着材および多数の金属粒やフア
イバ状金属からなる金属性伝熱子を充填する充填
体を配設し、上記充填体を凝縮器および蒸発器に
冷媒管を介して連通し、集熱筺体底部に導風板を
設けて凝縮器を外部風が通り易いように囲繞し、
かつこれに蒸発器を吊持したので、太陽熱の集熱
効率が向上するとともに固体吸着材に対する太陽
熱の伝熱に優れ、この水分吸着脱離作用がその充
填場所に拘りなく均一で円滑化できる。しかも構
造が簡単で廉価に提供でき、ランニングコストが
低い効率の良い冷凍作用を得るという効果を奏す
る。
In the present invention, a heat collection duct is disposed inside a heat collection case, and a packing body filled with a solid adsorbent and a metallic heat transfer element made of a large number of metal particles or fiber metal is disposed. is connected to the condenser and evaporator via a refrigerant pipe, and a baffle plate is provided at the bottom of the heat collection housing to surround the condenser so that external air can easily pass through.
In addition, since the evaporator is suspended from this, the solar heat collection efficiency is improved, and the solar heat is excellently transferred to the solid adsorbent, and this water adsorption/desorption action can be uniform and smooth regardless of the filling location. Moreover, it has a simple structure, can be provided at a low price, and has the effect of providing efficient refrigeration with low running costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す太陽熱利用冷
凍装置の一部切欠した平面図、第2図はその縦断
正面図、第3図は同じく縦断側面図、第4図は冷
房作用説明図である。 1…集熱筺体、8a…開口部、7…集熱ダクト
板、9…固体吸着材(ゼオライト)、a…金属
粒、b…フアイバ状金属、A…金属性伝熱子、8
…充填体、12…チヤンバ、13…冷媒管、15
…凝縮器、16…蒸発器、18…導風板。
Fig. 1 is a partially cutaway plan view of a solar refrigeration system showing an embodiment of the present invention, Fig. 2 is a longitudinal sectional front view thereof, Fig. 3 is a longitudinal sectional side view thereof, and Fig. 4 is an explanatory diagram of cooling action. It is. DESCRIPTION OF SYMBOLS 1... Heat collection housing, 8a... Opening part, 7... Heat collection duct plate, 9... Solid adsorbent (zeolite), a... Metal particles, b... Fiber-shaped metal, A... Metal heat transfer element, 8
...Filling body, 12...Chamber, 13...Refrigerant pipe, 15
... Condenser, 16... Evaporator, 18... Air guide plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 上面開口部がガラス板などの透明部材で閉塞さ
れる断熱構造の集熱筺体と、この集熱筺体の内底
部に配設され集熱筺体の側面に開口する開口部に
連通する集熱ダクト板と、この集熱ダクト板の上
面に所定間隔を存して配設されそれぞれ太陽熱を
受ける固体吸着材および多数の金属粒やフアイバ
状金属からなる金属性伝熱子を充填する複数本の
充填体と、これら充填体の一端開口部が連通する
集熱筺体内に設けられるチヤンバと、このチヤン
バに一端部が接続され中途部は集熱筺体底面から
突出しかつ底部に沿つて延出される冷媒管と、こ
の冷媒管の中途部に設けられる凝縮器および端部
に設けられる蒸発器と、上記集熱筺体の底部に凝
縮器に沿つて外部風を導くよう凝縮器を囲繞する
とともに上記蒸発器を吊持する導風板とを具備し
たことを特徴とする太陽熱利用冷凍装置。
A heat collecting casing with a heat insulating structure whose top opening is closed with a transparent member such as a glass plate, and a heat collecting duct plate arranged at the inner bottom of the heat collecting casing and communicating with the opening opening on the side of the heat collecting casing. and a plurality of packing bodies arranged at predetermined intervals on the upper surface of the heat collecting duct plate and each filled with a solid adsorbent that receives solar heat and a metallic heat transfer element made of a large number of metal particles or fiber metal. a chamber provided in the heat collection housing with which the openings at one ends of these filling bodies communicate; and a refrigerant pipe whose one end is connected to the chamber and whose midway part protrudes from the bottom surface of the heat collection housing and extends along the bottom. A condenser is provided in the middle of the refrigerant pipe, an evaporator is provided at the end of the refrigerant pipe, and the bottom of the heat collection housing surrounds the condenser so as to guide external air along the condenser, and the evaporator is suspended. 1. A solar thermal refrigeration device characterized by comprising a baffle plate having a
JP1982046275U 1982-03-31 1982-03-31 Solar thermal refrigeration equipment Granted JPS58148574U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982046275U JPS58148574U (en) 1982-03-31 1982-03-31 Solar thermal refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982046275U JPS58148574U (en) 1982-03-31 1982-03-31 Solar thermal refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS58148574U JPS58148574U (en) 1983-10-05
JPS6225647Y2 true JPS6225647Y2 (en) 1987-06-30

Family

ID=30057276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982046275U Granted JPS58148574U (en) 1982-03-31 1982-03-31 Solar thermal refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS58148574U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129333A (en) * 1977-04-15 1978-11-11 Ai Chiyaanebu Deimitaa System for absorbing and accumulating low grade heat energy
JPS53131557A (en) * 1977-04-21 1978-11-16 Agency Of Ind Science & Technol Regenerative tank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129333A (en) * 1977-04-15 1978-11-11 Ai Chiyaanebu Deimitaa System for absorbing and accumulating low grade heat energy
JPS53131557A (en) * 1977-04-21 1978-11-16 Agency Of Ind Science & Technol Regenerative tank

Also Published As

Publication number Publication date
JPS58148574U (en) 1983-10-05

Similar Documents

Publication Publication Date Title
KR930008821B1 (en) Refrigerating system
Wang et al. Adsorption refrigeration—an efficient way to make good use of waste heat and solar energy
Dieng et al. Literature review on solar adsorption technologies for ice-making and air-conditioning purposes and recent developments in solar technology
US4584842A (en) Solar refrigeration
Fan et al. Review of solar sorption refrigeration technologies: Development and applications
US5237827A (en) Apparatus for cyclic production of thermal energy by plural adsorption stations and methods
US20090211276A1 (en) System and method for managing water content in a fluid
Li et al. A solar‐powered ice‐maker with the solid adsorption pair of activated carbon and methanol
JPH0328659B2 (en)
JPH02504424A (en) Intermittent solar ammonia absorption cycle refrigeration equipment
CN1131359C (en) Adsorption air water-intaking equipment
Mohammed et al. Desiccants enabling energy-efficient buildings: A review
CN113123406A (en) Portable air water taking device
JPS6225647Y2 (en)
Meunier Sorption solar cooling
US2692483A (en) Refrigeration unit utilizing solar energy
JPS6224213Y2 (en)
CN105032115A (en) Water absorption using insulated housing
JPS6342167B2 (en)
WO2008135990A2 (en) Method and system for cooling by using solar energy
CN1131358C (en) Solar energy adsorption type air moisture drawing mechanism
JPS58148371A (en) Refrigerator utilizing solar heat
JPS58148372A (en) Refrigerator utilizing solar heat
Ahmed et al. Experimental performance evaluation of a modified solar ice-maker powered by solar energy
JPS58148369A (en) Refrigerator utilizing solar heat