JPS6341988B2 - - Google Patents

Info

Publication number
JPS6341988B2
JPS6341988B2 JP54094465A JP9446579A JPS6341988B2 JP S6341988 B2 JPS6341988 B2 JP S6341988B2 JP 54094465 A JP54094465 A JP 54094465A JP 9446579 A JP9446579 A JP 9446579A JP S6341988 B2 JPS6341988 B2 JP S6341988B2
Authority
JP
Japan
Prior art keywords
oxygen
electrode
oxygen gas
gas
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54094465A
Other languages
Japanese (ja)
Other versions
JPS5620175A (en
Inventor
Tadayasu Mitsumata
Tsutomu Iwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9446579A priority Critical patent/JPS5620175A/en
Publication of JPS5620175A publication Critical patent/JPS5620175A/en
Publication of JPS6341988B2 publication Critical patent/JPS6341988B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、水素ガスの発生がなく、連続的に酸
素ガスを供給できる保守容易な酸素ガス発生器に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an easy-to-maintain oxygen gas generator that does not generate hydrogen gas and can continuously supply oxygen gas.

酸素ガスは、空気中に約21%含まれていて、大
気全体としては自然界の因果関係により、ほとん
ど一定に保たれている。ところが、大都市あるい
はもつと小さな単位としては、たとえば、部屋な
どの小単位でみると、必ずしも常に酸素は21%含
まれているとは限らない。とくに、燃料を燃やし
て暖房し、排気ガスを部屋外に出さない場合、ま
た多くの人数が長時間にわたり小さな部屋に閉じ
こもる会議室などでは、酸素濃度は15%程度まで
減少することがある。
Air contains approximately 21% oxygen gas, and the atmosphere as a whole remains almost constant due to natural causes and effects. However, if you look at a large city or even a small unit, such as a room, the oxygen content may not always be 21%. In particular, when heating is done by burning fuel and exhaust gas is not released outside the room, or in conference rooms where many people are confined in a small room for long periods of time, the oxygen concentration can drop to around 15%.

このような場合、通常換気によつて減少した酸
素ガスを供給するが、外気の寒いとき、また逆に
暑いとき、あるいは騒音があるときなどは問題が
残る。そこで、酸素ガスを補給する他の方法とし
て、酸素ボンベを利用することがまず考えられ
る。ところが、酸素ボンベは高圧、高重量で取り
扱いにくく、酸素放出量のコントロールの自動化
が複雑であり、使用後は交換を要するなどの欠点
がある。その他の酸素ガスを発生させる方法とし
て化学薬品を加熱したり、反応させたりすること
も考えられるが、この方法では一般に酸素発生量
が少ない。
In such cases, reduced oxygen gas is normally supplied through ventilation, but problems remain when the outside air is cold, hot, or noisy. Therefore, as another method of replenishing oxygen gas, the first consideration is to use an oxygen cylinder. However, oxygen cylinders have drawbacks such as being difficult to handle due to their high pressure and weight, the automation of controlling the amount of oxygen released is complicated, and the need to replace them after use. Other methods of generating oxygen gas include heating or reacting chemicals, but these methods generally generate a small amount of oxygen.

また別な方法として、水の電気分解が考えら
れ、この原理に基づく酸素発生器が一部で市販さ
れている。ところが、通常陰極に電気化学的放電
容量のない電極を用いるので、この電極から水素
ガスが発生し、したがつて陽極から発生する酸素
ガスと混合する欠点がある。この対策として、両
電極間にガス不透過性セパレータを設けて分離す
る方法が採用されている。しかし、水素ガスは、
家庭内、建物内で取り扱いが難しく、場合によつ
ては爆発の危険性が残されている。一方、陰極か
らの水素ガスの発生を回避するために、燃料電池
の正極に当たる空気拡散電極を用いることが提案
されている。この方法では、水素の発生は原理上
ないので、上記のような問題点はない。ところ
が、ガス拡散電極の特性、寿命、コストおよびア
ルカリ電解液の場合には、空気中に含まれている
炭酸ガスによる電解液の汚染などがあり、一層の
改良が要求されている。
Another method is water electrolysis, and some oxygen generators based on this principle are commercially available. However, since an electrode without electrochemical discharge capacity is usually used as the cathode, there is a drawback that hydrogen gas is generated from this electrode and mixed with oxygen gas generated from the anode. As a countermeasure to this problem, a method has been adopted in which a gas-impermeable separator is provided between the two electrodes to separate them. However, hydrogen gas
They are difficult to handle in homes and buildings, and in some cases there remains a risk of explosion. On the other hand, in order to avoid generation of hydrogen gas from the cathode, it has been proposed to use an air diffusion electrode that corresponds to the positive electrode of the fuel cell. In principle, this method does not generate hydrogen, so there is no problem as described above. However, further improvements are required in the characteristics, lifespan, and cost of gas diffusion electrodes, and in the case of alkaline electrolytes, due to contamination of the electrolytes by carbon dioxide gas contained in the air.

また他の例として、たとえばカドミウム極は、
充電初期、中期には水素発生がないことを利用
し、カドミウム極を予め放電状態とし、このカド
ミウム極と充放電容量を持たない不溶性の酸素ガ
ス発生用の対極の間に、カドミウム極が陰分極と
なるように直流電流を通す原理の酸素ガス発生器
も既に提案されている。しかし、この装置では、
カドミウム極の充電が完了すると水素ガスが発生
するので、それ以前に中断する必要があり、連続
的に作動させることは不可能である。また、あと
何リツトルの酸素を発生させることができるかと
いう残存放出能力を予測することも困難であり、
これらの点についてさらに改良する必要がある。
As another example, for example, a cadmium pole is
Taking advantage of the fact that there is no hydrogen generation in the early and middle stages of charging, the cadmium electrode is placed in a discharged state in advance, and the cadmium electrode is cathodically polarized between this cadmium electrode and a counter electrode for generating insoluble oxygen gas that has no charge/discharge capacity. An oxygen gas generator based on the principle of passing a direct current so that the following is already proposed has already been proposed. However, with this device,
Hydrogen gas is generated when the cadmium electrode is fully charged, so it must be stopped before that point and cannot be operated continuously. It is also difficult to predict the remaining release capacity, which is how many liters of oxygen can be generated.
Further improvements are needed in these respects.

本発明は、上記に代わる新しい形式の酸素ガス
発生器に関するもので、水素ガスの発生がなく、
連続的に作動できる保守容易な酸素ガス発生器を
提供するものである。
The present invention relates to a new type of oxygen gas generator that replaces the above, and does not generate hydrogen gas.
The present invention provides an oxygen gas generator that can be operated continuously and is easy to maintain.

本発明は、酸素ガスを吸収し、かつ電気化学的
に再生できる鉛電極を酸素吸収電極として用いる
ことを特徴とする。この再生可能な電極は、空気
極のようなガス拡散電極ではないので漏液の心配
はなく、また貴金属触媒を用いないので安価であ
るなどの特徴も有している。とくに、鉛電池用負
極の鉛電極と硫酸を含むゲル状固形電解質を組み
合わせることにより、炭酸ガスによる悪影響と漏
液が回避できるので、実用性の高い酸素ガス発生
器となる。
The present invention is characterized in that a lead electrode that absorbs oxygen gas and can be electrochemically regenerated is used as an oxygen absorbing electrode. This renewable electrode is not a gas diffusion electrode like an air electrode, so there is no need to worry about leakage, and it also has features such as being inexpensive because it does not use a noble metal catalyst. In particular, by combining the lead electrode of the negative electrode for a lead battery with a gel-like solid electrolyte containing sulfuric acid, the adverse effects of carbon dioxide gas and leakage can be avoided, resulting in a highly practical oxygen gas generator.

このゲル状電解質は、一般に密閉型鉛電池に用
いられているように、水分の少ないゲル状とする
ことにより、この中を自由にガスが流通できるよ
うになる。これを用いれば、電極全体で酸素ガス
を吸収できる。また、濃硫酸は吸湿性であるの
で、ある程度まで水分が蒸発すると、硫酸濃度は
必然的に濃くなり、したがつて吸湿性を発揮して
雰囲気から水分を補給することになる。このた
め、ゲル状電解質中の水分はほぼ一定となり、保
守は不要である利点がある。
This gel electrolyte is made into a gel with low water content, as is generally used in sealed lead batteries, so that gas can freely flow through it. If this is used, oxygen gas can be absorbed by the entire electrode. Further, since concentrated sulfuric acid is hygroscopic, when water evaporates to a certain extent, the sulfuric acid concentration inevitably increases, and therefore exhibits hygroscopicity and replenishes water from the atmosphere. Therefore, the water content in the gel electrolyte is almost constant, and there is an advantage that no maintenance is required.

以下、本発明をその実施例により説明する。 Hereinafter, the present invention will be explained with reference to examples thereof.

図は酸素ガス発生器の概略断面図を示し、1は
大きさ10×12cm、厚さ約2mmの多孔性鉛電極より
酸素吸収極、2は鉛板からなる対極、3は両電極
間に直流電流を流すための電源であり、交流を整
流して約2Vの直流電圧とする定電圧電源である。
4はポリ塩化ビニル製の外箱である。5は隔膜
で、たとえばスルホン基を有する厚さ0.2mmのカ
チオン交換膜のように両電極間のガスの流通を阻
止するが、イオン電導度を有するものを用い、対
極2で発生した酸素ガスを、ガス吸収電極側へ移
行するのを阻止する。6は外箱に設けた窓部であ
り、ここから空気中に含まれている酸素ガスが入
り、電極1で吸収され、電源3からの電流によつ
て電極1は再生される。このとき、電極2から発
生する酸素ガスは酸素放出口7から放出される。
The figure shows a schematic cross-sectional view of an oxygen gas generator, where 1 is an oxygen absorbing electrode made of a porous lead electrode with a size of 10 x 12 cm and a thickness of about 2 mm, 2 is a counter electrode made of a lead plate, and 3 is a direct current between both electrodes. It is a power supply that allows current to flow, and is a constant voltage power supply that rectifies alternating current to create a direct current voltage of approximately 2V.
4 is an outer box made of polyvinyl chloride. 5 is a diaphragm that blocks the flow of gas between the two electrodes, such as a cation exchange membrane with a thickness of 0.2 mm that has a sulfone group, but is made of a membrane with ionic conductivity that allows the oxygen gas generated at the counter electrode 2 to be , to prevent the gas from migrating to the gas absorption electrode side. 6 is a window provided in the outer box, through which oxygen gas contained in the air enters, is absorbed by the electrode 1, and the electrode 1 is regenerated by the current from the power source 3. At this time, oxygen gas generated from the electrode 2 is released from the oxygen release port 7.

8は硫酸を含むゲル状固形電解質であり、
Na2SiO3分55重量%の水ガラスと濃硫酸とを容積
比1:1の割合で混合したものからできている。
ゲル状固形電解質を構成する水ガラスの代わり
に、ケイ酸ゲル、デン粉、ゼラチン、寒天、ポリ
ビニルアルコールなどを用いることもできる。
8 is a gel-like solid electrolyte containing sulfuric acid,
It is made of a mixture of 55 % by weight water glass and concentrated sulfuric acid in a volume ratio of 1:1.
Silicic acid gel, starch, gelatin, agar, polyvinyl alcohol, etc. can also be used instead of water glass constituting the gel-like solid electrolyte.

9は窓部6を閉塞した多孔性膜であり、酸素ガ
スの流通を妨げることなく、電極1の機械的強度
を補強する役目をする。
Reference numeral 9 denotes a porous membrane that closes the window portion 6, and serves to reinforce the mechanical strength of the electrode 1 without interfering with the flow of oxygen gas.

つぎに、常温下、大気中の雰囲気のもとでの、
この酸素ガス発生器の動作原理を説明する。人間
の通常の生活環境のもとで、この酸素ガス発生器
を作動させることが可能であり、大気中(空気
中)の酸素が、窓部6から入るように窓を開く
と、電極1は化学反応により(1)式または(2)式のよ
うに酸素ガスを吸収する。
Next, at room temperature and in the atmosphere,
The operating principle of this oxygen gas generator will be explained. It is possible to operate this oxygen gas generator under a normal human living environment, and when the window is opened so that oxygen in the atmosphere (in the air) enters through the window part 6, the electrode 1 Oxygen gas is absorbed by chemical reaction as shown in equation (1) or equation (2).

2Pb+O2→2PbO …(1) 2Pb+O2+2H++SO4 2-→PbO.PbSO4+H2O.
…(2) そして電極1を負、対極2を正にして両電極間
に約2.0Vの電圧を印加すると、酸素吸収反応が
(1)式の場合、次式の電気化学的還元反応により再
生される。
2Pb+O 2 →2PbO …(1) 2Pb+O 2 +2H + +SO 4 2- →PbO.PbSO 4 +H 2 O.
...(2) Then, when electrode 1 is negative and counter electrode 2 is positive and a voltage of about 2.0V is applied between both electrodes, the oxygen absorption reaction occurs.
In the case of formula (1), it is regenerated by the electrochemical reduction reaction of the following formula.

2PbO+4e→2Pb+2O2- …(3) 一方、対極2では(4)式により(1)式と同量の酸素
ガスを発生する。
2PbO+4e→2Pb+2O 2 -...(3) On the other hand, at the counter electrode 2, the same amount of oxygen gas as in equation (1) is generated by equation (4).

2O2-→O2+4e …(4) なお、酸素ガス吸収反応が(2)式による場合に
は、同様に(5),(6)式で酸素ガスを発生できる。
2O 2- →O 2 +4e ...(4) If the oxygen gas absorption reaction is based on equation (2), oxygen gas can be generated similarly using equations (5) and (6).

PbO・PbSO4+H2O+4e→2Pb+2H++SO4 2-
+2O2- …(5) 2O2-→O2+4e …(6) 結局のところ、空気中の酸素ガスは、この装置
により電気化学的に選択的に吸収、収集され、こ
れと同量の純酸素ガスが放出口から出てくること
になる。したがつて、酸素吸収口を部屋外とし、
酸素放出口を部屋内となるように酸素発生器を設
置すれば、外気に酸素がある限り自動的に、連続
的に部屋内に供給される。なお、この装置の作動
を中止したいときは、窓部を閉じるか、あるいは
印加電圧用の電源を切ればよい。
PbO・PbSO 4 +H 2 O+4e→2Pb+2H + +SO 4 2-
+2O 2- …(5) 2O 2- →O 2 +4e …(6) Ultimately, oxygen gas in the air is electrochemically selectively absorbed and collected by this device, and the same amount of pure oxygen gas is absorbed and collected by this device. Oxygen gas will come out from the outlet. Therefore, the oxygen absorption port should be placed outside the room.
If the oxygen generator is installed so that the oxygen outlet is inside the room, oxygen will be automatically and continuously supplied into the room as long as there is oxygen in the outside air. If you want to stop the operation of this device, you can close the window or turn off the power supply for the applied voltage.

以上のような酸素ガス発生器により、450mlの
純酸素が1時間当たり発生した。なお、このとき
の鉛電極の再生電流は約1Aであつた。さらに発
生量を増大させるには、ポンプにより外気を強制
的に本装置内に導入し、しかも、多孔質鉛電極の
細孔を空気が流れるようにすればよい。
With the oxygen gas generator as described above, 450 ml of pure oxygen was generated per hour. Note that the reproduction current of the lead electrode at this time was about 1A. In order to further increase the amount generated, outside air may be forcibly introduced into the apparatus using a pump, and the air may be allowed to flow through the pores of the porous lead electrode.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例の酸素ガス発生装置の縦
断面図である。 1…酸素吸収電極、2…対極、3…電源、5…
隔膜、7…酸素放出口、8…電解質。
The drawing is a longitudinal sectional view of an oxygen gas generator according to an embodiment of the present invention. 1...Oxygen absorption electrode, 2...Counter electrode, 3...Power source, 5...
Diaphragm, 7...oxygen release port, 8...electrolyte.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素ガスを吸収し、かつ電気化学的な還元反
応により再生できる酸素吸収電極、対極、両電極
に接触する電解質、両電極間に介在させたガス不
透過性でイオン透過性の隔膜、および酸素吸収電
極側を負にして両電極間に直流電圧を印加する電
源装置を備え、酸素吸収電極を空気と接触させ、
対極側から酸素ガスを発生させるように構成した
酸素ガス発生器であつて、前記酸素吸収電極が鉛
電極であり、電解質が硫酸を含むゲル状固形電解
質であることを特徴とした酸素ガス発生器。
1. An oxygen-absorbing electrode that absorbs oxygen gas and can be regenerated by an electrochemical reduction reaction, a counter electrode, an electrolyte in contact with both electrodes, a gas-impermeable but ion-permeable diaphragm interposed between both electrodes, and oxygen Equipped with a power supply device that applies a DC voltage between both electrodes with the absorption electrode side negative, the oxygen absorption electrode is brought into contact with air,
An oxygen gas generator configured to generate oxygen gas from the counter electrode side, wherein the oxygen absorbing electrode is a lead electrode and the electrolyte is a gel-like solid electrolyte containing sulfuric acid. .
JP9446579A 1979-07-24 1979-07-24 Oxygen gas generator Granted JPS5620175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9446579A JPS5620175A (en) 1979-07-24 1979-07-24 Oxygen gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9446579A JPS5620175A (en) 1979-07-24 1979-07-24 Oxygen gas generator

Publications (2)

Publication Number Publication Date
JPS5620175A JPS5620175A (en) 1981-02-25
JPS6341988B2 true JPS6341988B2 (en) 1988-08-19

Family

ID=14111019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9446579A Granted JPS5620175A (en) 1979-07-24 1979-07-24 Oxygen gas generator

Country Status (1)

Country Link
JP (1) JPS5620175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172091A (en) * 1989-11-30 1991-07-25 Rinnai Corp Remote controller for equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190403A (en) * 1991-06-07 1993-03-02 Atkinson-Mcdougal Corporation Erosion protection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546347B2 (en) * 1974-06-29 1979-03-27

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513414Y2 (en) * 1977-06-15 1980-03-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546347B2 (en) * 1974-06-29 1979-03-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172091A (en) * 1989-11-30 1991-07-25 Rinnai Corp Remote controller for equipment

Also Published As

Publication number Publication date
JPS5620175A (en) 1981-02-25

Similar Documents

Publication Publication Date Title
JP2649700B2 (en) Electrolyte regeneration device for redox flow battery
JPH1064572A (en) Fuel supply system for fuel cell and portable electrical device
JPH04229960A (en) Gas-recycle battery for electoro- chemical system
JPS5832903B2 (en) How to stop a fuel cell
Mahato et al. Some Aspects of Gas Recombination in Lead‐Acid Systems
JP2001093560A (en) Redox (reduction-oxidation) flow battery
Savaskan et al. Further studies of a zinc-air cell employing a packed bed anode part I: discharge
JPS6341988B2 (en)
JPH069143B2 (en) Fuel cell storage method
US3546020A (en) Regenerable fuel cell
US6042964A (en) Thermally regenerative battery with intercalatable electrodes and selective heating means
GB1286173A (en) Rechargeable electrochemical generator arranged to operate with an alkaline electrolyte
DK172972B1 (en) Process for preparing a closed electrochemical cell
JP2001333983A (en) Oxygen supply system
JPH04101358A (en) Double fluid cell
CN110635200A (en) Novel passive miniature metal-air battery
JPS59163770A (en) Method of producing oxygen
GB864457A (en) Improvements relating to hydrogen-oxygen cells particularly for use as electrolysers
US3560260A (en) Method of eliminating gas pressure in batteries by using gas in fuel cell
US3489613A (en) Battery comprising an alkali metal superoxide cathode
CN218886106U (en) Experimental device for zinc-air fuel cell experiment
JPS62278766A (en) Operating method for phosphoric acid fuel cell
CN210778821U (en) Rechargeable sodium-water gas fuel cell unit
JPH0582176A (en) Sealed lead-acid battery
UA43422C2 (en) Electrochemical cell for quantitative determination of oxygen-containing oxidative gases in air