JPS6341781B2 - - Google Patents

Info

Publication number
JPS6341781B2
JPS6341781B2 JP54153933A JP15393379A JPS6341781B2 JP S6341781 B2 JPS6341781 B2 JP S6341781B2 JP 54153933 A JP54153933 A JP 54153933A JP 15393379 A JP15393379 A JP 15393379A JP S6341781 B2 JPS6341781 B2 JP S6341781B2
Authority
JP
Japan
Prior art keywords
deceleration
wheel
signal
brake pressure
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54153933A
Other languages
Japanese (ja)
Other versions
JPS5679044A (en
Inventor
Tetsuo Arikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON EE BII ESU KK
Original Assignee
NIPPON EE BII ESU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON EE BII ESU KK filed Critical NIPPON EE BII ESU KK
Priority to JP15393379A priority Critical patent/JPS5679044A/en
Publication of JPS5679044A publication Critical patent/JPS5679044A/en
Publication of JPS6341781B2 publication Critical patent/JPS6341781B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Description

【発明の詳細な説明】 本発明は、車輪のロツクを防止する車両用アン
チンスキツド装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an antiskid device for a vehicle that prevents wheels from locking.

従来より、この種のアンチスキツド装置は、車
輪速度センサにより車輪の回輪速度を検出し、車
輪の減速度が所定の減速度基準値以上になるか、
又は、車輪のスリツプ率が所定の値以上になる
と、車輪のブレーキ装置に供給されるブレーキ圧
力を低下させ、車輪の減速度が上記減速度基準値
より小さくなるか、又はスリツプ率が所定の値以
上のときでも車輪が加速し始めると、ブレーキ圧
力が上昇するようにしている。
Conventionally, this type of anti-skid device detects the rotational speed of a wheel using a wheel speed sensor, and determines whether the deceleration of the wheel exceeds a predetermined deceleration reference value.
Alternatively, when the slip rate of the wheel exceeds a predetermined value, the brake pressure supplied to the brake device of the wheel is reduced so that the deceleration of the wheel becomes smaller than the deceleration reference value, or the slip rate reaches the predetermined value. Even in these cases, when the wheels start to accelerate, the brake pressure is increased.

しかし、この従来のアンチスキツド装置におい
ては、車輪の減速度が所定の減速度基準値以上に
なると、スリツプ率に関係なくブレーキ圧力を低
下させるため、車輪の回転速度が路面条件により
過渡的に急変し、減速度が減速度基準値を超えた
ときにも、ブレーキ圧力が低下し、ブレーキ力の
不足をきたす危険性があつた。また、車輪のスリ
ツプ率が所定の基準値以上になるとブレーキ圧力
を弛めるのであるが、車輪の減速度の大きさに関
係なく一定の低下速度でブレーキ圧力を弛めるた
め車輪の減速度が大きいときには、ブレーキ圧力
の低下速度が不足して車輪のスリツプ率が大きく
なり、また、車輪の減速度が小さいときにはブレ
ーキ圧力の低下速度が過大となつてブレーキ圧力
を必要以上に低下させるという欠点があつた。
However, in this conventional anti-skid device, when the deceleration of the wheels exceeds a predetermined deceleration reference value, the brake pressure is reduced regardless of the slip ratio, so the rotational speed of the wheels suddenly changes transiently depending on the road surface conditions. Even when the deceleration exceeded the deceleration reference value, there was a risk that the brake pressure would decrease and the braking force would be insufficient. Also, when the slip rate of the wheels exceeds a predetermined reference value, the brake pressure is released, but since the brake pressure is released at a constant rate of decrease regardless of the magnitude of the wheel deceleration, when the wheel deceleration is large, There is a drawback that the speed at which the brake pressure decreases is insufficient, resulting in a high wheel slip rate, and when the deceleration of the wheels is small, the rate at which the brake pressure decreases becomes excessive, causing the brake pressure to drop more than necessary.

また特開昭49−132468号公報には、路面と車輪
との摩擦係数μの大きさに応じてブレーキ圧力の
低下割合及び上昇割合を可変にするものが記載さ
れているが、車輪速度の減衰もしくは回復は摩擦
係数μにのみ起因するものではない。すなわち、
車輪速度の減衰もしくは回復はそのときのブレー
キトルクによつても大きく異なる。従つてその従
来技術に示すように摩擦係数μをパラメータとし
てブレーキ圧力の低下割合及び上昇割合を可変に
しただけでは、摩擦係数μが同一の条件下でも、
例えばブレーキトルクが過大で実際には更にブレ
ーキ圧力の低下割合を大きくしなければ車輪が大
きくスリツプする場合でも、ブレーキ圧力の低下
割合が一定であるためにブレーキ圧力の低下が不
足し、車輪は大きくスリツプし車両は不安定とな
る。また、ブレーキトルクが小さく実際にはブレ
ーキ圧力の低下割合を大きくする必要がない場合
でも、従来のものではブレーキ圧力の低下割合が
一定であるためにブレーキ圧力の低下が過大とな
り制動距離が伸びてしまう。またブレーキ圧力上
昇時にも同様の欠点がある。
Furthermore, Japanese Patent Application Laid-open No. 49-132468 describes a system that makes the rate of decrease and rate of increase in brake pressure variable depending on the magnitude of the friction coefficient μ between the road surface and the wheels, but the wheel speed attenuation Alternatively, the recovery is not only due to the friction coefficient μ. That is,
Attenuation or recovery of wheel speed also varies greatly depending on the brake torque at that time. Therefore, as shown in the prior art, if the friction coefficient μ is used as a parameter to vary the rate of decrease and increase in brake pressure, even if the friction coefficient μ is the same,
For example, even if the brake torque is too high and the wheels will actually slip significantly unless the rate of decrease in brake pressure is increased, the rate of decrease in brake pressure is constant, so the decrease in brake pressure is insufficient, and the wheels will slip significantly. The vehicle slips and becomes unstable. In addition, even if the brake torque is small and there is no need to increase the rate of decrease in brake pressure, in conventional systems, the rate of decrease in brake pressure is constant, so the decrease in brake pressure is excessive and the braking distance is extended. Put it away. A similar drawback occurs when the brake pressure increases.

本発明は、上記欠点に鑑みなされたものであつ
て、車輪の回転速度に比例する車輪速度信号を発
生する車輪速度演算器と、前記車輪速度信号を微
分し、前記車輪の加減速度に比例する加減速度信
号を発生する加減速度演算器と、前記車輪速度信
号と車体速度に比例する車体速度信号とよりスリ
ツプ率信号を得るスリツプ率比較器と、前記スリ
ツプ率信号が発生すると前記車輪のブレーキ装置
に供給するブレーキ圧力を制御する圧力制御弁と
を備え、所定のパラメータに基づいて前記ブレー
キ圧力の上昇速度及び低下速度を可変にする車両
用アンチスキツド装置において、前記パラメータ
を前記加減速度信号とし、前記スリツプ率が所定
の値以上のとき前記加減速度信号の大きさに応じ
て前記ブレーキ圧力の上昇速度及び低下速度を可
変に切換える切換装置を有するようにしそれによ
つて、車輪のブレーキ圧力を最適に制御するよう
にした車両用アンチスキツド装置を提供すること
を目的とする。
The present invention has been made in view of the above drawbacks, and includes a wheel speed calculator that generates a wheel speed signal that is proportional to the rotational speed of the wheel, and a wheel speed calculator that differentiates the wheel speed signal and generates a signal that is proportional to the acceleration/deceleration of the wheel. an acceleration/deceleration calculator that generates an acceleration/deceleration signal; a slip rate comparator that obtains a slip rate signal from the wheel speed signal and a vehicle body speed signal proportional to the vehicle body speed; and a brake device for the wheel when the slip rate signal is generated. and a pressure control valve for controlling brake pressure supplied to the vehicle, the anti-skid device for a vehicle is configured to vary the rate of increase and decrease of the brake pressure based on a predetermined parameter, the parameter being the acceleration/deceleration signal, and the brake pressure being supplied to the vehicle. A switching device is provided that variably switches the rate of increase and decrease of the brake pressure according to the magnitude of the acceleration/deceleration signal when the slip rate is equal to or higher than a predetermined value, thereby optimally controlling the brake pressure of the wheels. An object of the present invention is to provide an anti-skid device for a vehicle.

すなわち、路面と車輪との摩擦係数μやブレー
キトルク等により総合的に決まる車輪の加減速度
信号によつてブレーキ圧力の低下割合及び上昇割
合を可変とするものである。
That is, the rate of decrease and rate of increase in brake pressure is made variable by the acceleration/deceleration signal of the wheels, which is determined comprehensively by the coefficient of friction μ between the road surface and the wheels, the brake torque, and the like.

以下、本発明の一実施例について図面に従つて
詳しく説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

制御回路のブロツク線図を示す第1図におい
て、車輪速度センサ1は、車輪又は車輪と共に回
転するプロペラシヤフト等に取付けられ、車輪の
回転速度に比例したパルス信号を発生する。この
パルス信号は、車録速度演算器2に伝達され、車
輪の回転速度に比例した車輪速度信号Vに変換さ
れる。
In FIG. 1 showing a block diagram of a control circuit, a wheel speed sensor 1 is attached to a wheel or a propeller shaft that rotates with the wheel, and generates a pulse signal proportional to the rotational speed of the wheel. This pulse signal is transmitted to the vehicle record speed calculator 2 and converted into a wheel speed signal V proportional to the rotational speed of the wheels.

この車輪速度信号Vは加減速度演算器3に伝達
される。加減速度演算器3は、車輪速度信号Vを
微分し、車輪の加・減速度に比例する加・減速度
信号V〓を出力する。この加・減速度信号V〓の符号
は、車輪が加速状態にあるときは+、減速状態に
あるときには−である。
This wheel speed signal V is transmitted to the acceleration/deceleration calculator 3. The acceleration/deceleration calculator 3 differentiates the wheel speed signal V and outputs an acceleration/deceleration signal V≦ proportional to the acceleration/deceleration of the wheel. The sign of this acceleration/deceleration signal V〓 is + when the wheel is in an acceleration state, and - when the wheel is in a deceleration state.

減算器4は、加・減速度信号V〓及び所定の加速
度に相当する一定置V〓。を受け、一定値V〓。から
加・減速度信号V〓を減算した値(V〓。−V〓)を出力
する。従つて、減算器4の出力信号(V〓。−V〓)
は、加減速度演算器3の加速度信号が減少し、減
速度信号が増大するに従つて大きな値となる。
A subtracter 4 outputs an acceleration/deceleration signal V〓 and a constant value V〓 corresponding to a predetermined acceleration. and a constant value V〓. Outputs the value (V〓.−V〓) obtained by subtracting the acceleration/deceleration signal V〓 from. Therefore, the output signal of subtractor 4 (V〓.−V〓)
becomes a larger value as the acceleration signal of the acceleration/deceleration calculator 3 decreases and the deceleration signal increases.

車体速度演算器5は、車輪速度信号演算器2か
らの車輪速度信号V、及び車体の減速度を検出す
る検出器51からの車体減速度信号−αを受け、
通常時は車輪速度信号Vと同じ値を出力し、車輪
速度信Vの減少率が所定の値以上になると車体の
減速度に応じた減少率で低下する車体速度信号E
を出力する。
The vehicle speed calculator 5 receives the wheel speed signal V from the wheel speed signal calculator 2 and the vehicle deceleration signal -α from the detector 51 that detects the deceleration of the vehicle.
Under normal conditions, the same value as the wheel speed signal V is output, and when the rate of decrease in the wheel speed signal V exceeds a predetermined value, the vehicle body speed signal E decreases at a rate of decrease corresponding to the deceleration of the vehicle body.
Output.

この車体速度信号Eは、減衰器6に伝達され、
一定の割合(η)、例えば95%に減縮される。
This vehicle speed signal E is transmitted to the attenuator 6,
It is reduced to a certain percentage (η), for example 95%.

比較器7は、車輪速度演算器2からの車輪速度
信号Vと減衰器7からの出力信号η・Eを受け、
車輪速度信号Vが車体速度信号Eの所定の割合
η・E以下になるとスリツプ率制御信号Sを発生
する、すなわち、比較器7の出力信号はHにな
る。
The comparator 7 receives the wheel speed signal V from the wheel speed calculator 2 and the output signal η·E from the attenuator 7,
When the wheel speed signal V becomes less than a predetermined ratio η·E of the vehicle speed signal E, a slip rate control signal S is generated, that is, the output signal of the comparator 7 becomes H.

スイツチ8は、減算器4からの出力信号(V〓。
−V〓)を受け、比較器7の出力信号、すなわちス
リツプ率制御信号SがHのとき、増巾器9に信号
(V〓。−V〓)を伝達する。
The switch 8 receives the output signal (V〓) from the subtracter 4.
-V〓), and when the output signal of the comparator 7, that is, the slip rate control signal S, is H, a signal (V〓.-V〓) is transmitted to the amplifier 9.

増巾器9は、スイツチ8を介して伝達される減
算器4の出力信号(V〓。−V〓)に比例した電両I
を後述する圧力制御弁のソレノイド10に供給す
る。
The amplifier 9 outputs an electric voltage I proportional to the output signal (V〓.-V〓) of the subtracter 4 transmitted via the switch 8.
is supplied to a solenoid 10 of a pressure control valve to be described later.

次に、圧力制御弁を含むブレーキ圧力制御装置
について、第2図に従つて説明する。
Next, a brake pressure control device including a pressure control valve will be explained with reference to FIG.

全体が20で示される圧力制御弁は、供給口2
1、送出口22及び排出口23を備え、供給口2
1は配管24を介してマスタシリンダ25に、送
出口22は配管26を介して、車輪のブレーキ装
置27のホイルシリンダ28に、排出口23は配
管29を介してリザーバ30に接続している。そ
して、排出口23よりリザーバ30に排出された
ブレーキ液は適当な手段によつて駆動されるポン
プ31により配管24に戻される。
The pressure control valve, indicated generally at 20, has a supply port 2
1, equipped with a delivery port 22 and a discharge port 23, and a supply port 2
1 is connected to a master cylinder 25 via a pipe 24, the outlet 22 is connected to a wheel cylinder 28 of a wheel brake device 27 via a pipe 26, and the discharge port 23 is connected to a reservoir 30 via a pipe 29. The brake fluid discharged from the discharge port 23 into the reservoir 30 is returned to the pipe 24 by a pump 31 driven by an appropriate means.

圧力制御弁20のハウジング32の両端には、
供給口21を有する蓋部材33、及び送出口2
2、排出口23を有する蓋部材34が螺着され、
その内部にソレノイド10、円筒部材35及び固
定極部材36が装着されている。
At both ends of the housing 32 of the pressure control valve 20,
A lid member 33 having a supply port 21 and a delivery port 2
2. A lid member 34 having a discharge port 23 is screwed on;
A solenoid 10, a cylindrical member 35, and a fixed pole member 36 are installed inside the solenoid 10.

固定極部材36は、図の下方に延びる突起部3
7を有し、その突起部37内には、通路38及び
通路38より大径の嵌合孔39を設けており、嵌
合孔39は複数の小孔41を介して固定極部材3
6の下方に形成される室40に連通している。
The fixed pole member 36 has a projection 3 extending downward in the figure.
7, and a passage 38 and a fitting hole 39 having a larger diameter than the passage 38 are provided in the protrusion 37, and the fitting hole 39 is connected to the fixed pole member 3 through a plurality of small holes 41.
It communicates with a chamber 40 formed below 6.

また、固定極部材36には、室40から供給口
21への流通のみを許容する逆止弁42を備えて
いる。
Furthermore, the fixed pole member 36 is equipped with a check valve 42 that allows flow only from the chamber 40 to the supply port 21 .

蓋部材34は、図の上方に延びる突起部43を
有し、その突起部43内には、底部が排出口23
に連通する嵌合孔44を穿設しており、嵌合孔4
4は複数個の小孔45を介して、蓋部材34の上
部に形成され、送出口22に接続する室46に連
通している。
The lid member 34 has a protrusion 43 that extends upward in the figure, and inside the protrusion 43, the bottom is connected to the discharge port 23.
A fitting hole 44 is bored that communicates with the fitting hole 4.
4 communicates with a chamber 46 formed in the upper part of the lid member 34 and connected to the outlet 22 through a plurality of small holes 45 .

可動極部材47は、円筒部材35内に摺動自在
に挿入され、ばね48により図の下方に付勢され
ると共に内部に供給弁部材49及び排出弁部材5
0を移動可能に収納している。そして、供給弁部
材49は嵌合孔39と嵌合する弁棒51を備え、
排出弁部材50は嵌合孔44と嵌合する弁棒52
を備えている。
The movable pole member 47 is slidably inserted into the cylindrical member 35 and is biased downward in the figure by a spring 48, and has a supply valve member 49 and a discharge valve member 5 inside.
0 is movably stored. The supply valve member 49 includes a valve stem 51 that fits into the fitting hole 39,
The discharge valve member 50 has a valve stem 52 that fits into the fitting hole 44.
It is equipped with

可動極部材47内には制限部材53,54,5
5が固定され、供給弁部材49は制限部材53及
び54により、排出弁部材50は制限部材54及
び55により、その可動範囲が制限されている。
また、両弁部材49及び50の間には弁ばね56
が張設されている。
Limiting members 53, 54, 5 are provided in the movable pole member 47.
5 is fixed, and the movable range of the supply valve member 49 is restricted by restriction members 53 and 54, and the discharge valve member 50 is restricted by restriction members 54 and 55.
Further, a valve spring 56 is provided between both valve members 49 and 50.
is installed.

57,58及び59はシール部材を示し、60
はソレノイド10に電流を供給するリード線を示
す。そして、ソレノイド10に電流が供給されて
いないときには、圧力制御弁20は図に示す状態
にあり、供給弁部材49の弁棒51が嵌合孔39
の底部から最も離れた位置にあり、室40は小孔
41を通して供給口21に連通しており、排出弁
部材50の弁棒52の端部は嵌合孔44の底部に
当接し、排出通路(室46から小孔45、嵌合孔
44を経て排出口23に達する通路)が閉じて室
46は排出口23から遮断されている。ソレノイ
ド10に電流が供給されると、その電流量に応じ
た吸引力が固定極部材36と可動極部材47との
間に作用し、可動極部材47がばね48に抗して
上方に移動する。従つて、まず供給弁部材49の
弁棒51が嵌合孔39内を上方へ移動し、供給口
21と室40とを連通する小孔41の個数が減少
する。すなわち、電流Iの増大に従つて供給通路
(供給口21から通路38、嵌合孔39、小孔4
1を経て室40に達する通路)の開度が小さくな
る。そして、ソレノイド10に供給される電流が
所定の値に達すると、供給弁部材49の弁棒51
が嵌合孔39の底部に当接し、供給口21と室4
0との連通を遮断する。この時、排出弁部材50
の弁棒52の端部は嵌合孔44の底部に当接した
状態に保たれているので排出通路は閉じたままで
ある。
57, 58 and 59 indicate sealing members; 60
indicates a lead wire that supplies current to the solenoid 10. When no current is supplied to the solenoid 10, the pressure control valve 20 is in the state shown in the figure, and the valve stem 51 of the supply valve member 49 is inserted into the fitting hole 39.
The chamber 40 is in communication with the supply port 21 through the small hole 41, and the end of the valve stem 52 of the discharge valve member 50 is in contact with the bottom of the fitting hole 44, and the chamber 40 communicates with the supply port 21 through the small hole 41. (The passage from the chamber 46 to the discharge port 23 via the small hole 45 and the fitting hole 44) is closed, and the chamber 46 is cut off from the discharge port 23. When a current is supplied to the solenoid 10, an attractive force corresponding to the amount of current acts between the fixed pole member 36 and the movable pole member 47, and the movable pole member 47 moves upward against the spring 48. . Therefore, first, the valve stem 51 of the supply valve member 49 moves upward within the fitting hole 39, and the number of small holes 41 that communicate the supply port 21 and the chamber 40 decreases. That is, as the current I increases, the supply passage (from the supply port 21 to the passage 38, the fitting hole 39, the small hole 4
1 to reach the chamber 40). When the current supplied to the solenoid 10 reaches a predetermined value, the valve stem 51 of the supply valve member 49
contacts the bottom of the fitting hole 39, and the supply port 21 and the chamber 4
Cut off communication with 0. At this time, the discharge valve member 50
Since the end of the valve stem 52 remains in contact with the bottom of the fitting hole 44, the discharge passage remains closed.

更に、電流が増大し、可動極部材47が更に上
方に移動し、排出弁部材50のフランジ部が制限
部材55に当接して排出弁部材50が上方に移動
すると、弁棒52が嵌合孔44に対し上方に移動
し、室46を小孔45を介して排出口23に連通
する。この室46を排出口23に連通する小孔4
5の数は電流が大きくなるに従つて多くなる。
Furthermore, when the current increases and the movable pole member 47 moves further upwards, the flange portion of the discharge valve member 50 comes into contact with the restriction member 55 and the discharge valve member 50 moves upward, the valve stem 52 moves into the fitting hole. 44 and communicates the chamber 46 with the outlet 23 through the small hole 45. A small hole 4 that communicates this chamber 46 with the discharge port 23
The number of 5 increases as the current increases.

次に、実施例の作用について、作動線図を示す
第3図を参照して説明する。
Next, the operation of the embodiment will be explained with reference to FIG. 3, which shows an operation diagram.

今、時刻toにおいて、マスタシリンダ25が作
動すると、加圧されたブレーキ液は、配管24を
通つて圧力制御弁20の供給口21に供給され、
通路38、小孔41、室40、室46を通り、送
出口22より配管26を経てブレーキ装置27の
ホイルシリンダ28に供給され、車輪にブレーキ
が作用する。
Now, at time to, when the master cylinder 25 operates, the pressurized brake fluid is supplied to the supply port 21 of the pressure control valve 20 through the pipe 24.
It passes through the passage 38, the small hole 41, the chamber 40, and the chamber 46, and is supplied from the outlet 22 through the pipe 26 to the wheel cylinder 28 of the brake device 27, and brakes the wheels.

そして、ブレーキ圧力Pが上昇し、時刻t1にお
いて、車輪のスリツプ率が所定の値(1−η)に
達し、車輪速度信号Vが車体速度信号Eの所定の
割合η・Eより小さくなると、比較器7の出力信
号がHになりスイツチ8を導通する。すると、一
定値V〓。から加・減速度演算器3の出力信号V〓を
差し引いた信号(V〓。−V〓)が減算器4から増巾
器9に伝達され、その信号に比例した電流が圧力
制御弁20のソレノイド10に供給される。
Then, the brake pressure P increases, and at time t1 , the wheel slip rate reaches a predetermined value (1-η), and when the wheel speed signal V becomes smaller than the predetermined ratio η·E of the vehicle speed signal E, The output signal of comparator 7 becomes H, making switch 8 conductive. Then, the constant value V〓. A signal (V〓.-V〓) obtained by subtracting the output signal V〓 of the acceleration/deceleration calculator 3 from Supplied to solenoid 10.

この時、車輪は減速状態にあり、加・減速度演
算器3の出力は減速度信号であるので、ソレノイ
ド10に供給される電流は排出通路を開くに十分
な値である。そのため、可動極部材47がばね4
8に抗して上方に移動し、供給通路が閉じた後排
出通路が開き、ホイルシリンダ28に供給されて
いるブレーキ液が配管26、送出口22、室4
6、開いている排出通路、排出口23を通つてリ
ザーバ30に排出される。
At this time, the wheel is in a deceleration state and the output of the acceleration/deceleration calculator 3 is a deceleration signal, so the current supplied to the solenoid 10 is of a value sufficient to open the discharge passage. Therefore, the movable pole member 47
8, and after the supply passage closes, the discharge passage opens, and the brake fluid supplied to the wheel cylinder 28 is transferred to the piping 26, the outlet 22, and the chamber 4.
6. It is discharged into the reservoir 30 through the open discharge passage and the discharge port 23.

従つて、ブレーキ圧力Pは低下し始める。しか
し、ブレーキ圧力Pが低下し始めても、車輪の減
速度はなおしばらく増大し続けるので、加減速度
度演算器3の減速度信号が増大し、それに従つて
増巾器9よりソレノイド10に供給される電流が
増大する。従つて可動極部材47は更に上方に移
動し、室46と排出口23とを連通する小孔45
の個数が増加し、ブレーキ圧力Pの低下速度が大
きくなる。
Therefore, the brake pressure P begins to decrease. However, even if the brake pressure P starts to decrease, the deceleration of the wheels continues to increase for a while, so the deceleration signal from the acceleration/deceleration degree calculator 3 increases, and accordingly, the deceleration signal is supplied from the amplifier 9 to the solenoid 10. The current that flows increases. Therefore, the movable pole member 47 moves further upward, and the small hole 45 that communicates the chamber 46 and the discharge port 23 is opened.
The number of brake pressure P increases, and the rate of decrease in brake pressure P increases.

ブレーキ圧力Pの低下により車輪の減速度が減
少に向うと、減速度信号が減少し、従つて減算器
4の出力信号が減少する。そのため、ソレノイド
10の電流が小さくなり、可動極部材47がばね
48のばね力により下方に移動し、排出弁部材5
0の弁棒52が嵌合孔44内に深く嵌入して、室
46と排出口23とを連通する小孔45の個数が
少なくなり、ブレーキ圧力Pの低下速度が小さく
なる。
When the deceleration of the wheels tends to decrease due to a decrease in the brake pressure P, the deceleration signal decreases, and therefore the output signal of the subtractor 4 decreases. Therefore, the current in the solenoid 10 becomes smaller, the movable pole member 47 moves downward due to the spring force of the spring 48, and the discharge valve member 5
0 valve rod 52 is deeply fitted into the fitting hole 44, the number of small holes 45 that communicate the chamber 46 and the discharge port 23 is reduced, and the rate of decrease in the brake pressure P is reduced.

そして、時刻t2において、加・減速度演算器3
の出力信号が零になると、一定値V〓。に比例した
電流がソレノイド10に供給される。すると、可
動極部材47は更に下方に移動し、排出弁部材5
0の弁棒52の端部が嵌合孔44の底部に当接し
排出通路が閉じる。この時、供給通路は閉じてい
るのでブレーキ圧力Pは一定になる。
Then, at time t2 , acceleration/deceleration calculator 3
When the output signal of becomes zero, the constant value V〓. A current proportional to is supplied to the solenoid 10. Then, the movable pole member 47 moves further downward, and the discharge valve member 5
The end of the valve stem 52 of No. 0 comes into contact with the bottom of the fitting hole 44, and the discharge passage is closed. At this time, since the supply passage is closed, the brake pressure P remains constant.

車輪が加速に転じ、加・減速度演算器3の出力
が加速度信号になると、減算器4の出力信号
(V〓。−V〓)が更に減少し、ソレノイド10に供給
される電流は減少する。よつて、可動極部材47
が更に下方に移動し、供給弁部材49の弁棒51
の先端が嵌合孔39の底部から離れ、すなわち、
供給通路が開き、室40が供給口21に連通す
る。そのため、ブレーキ圧力Pが上昇する。この
時の供給通路の開度、すなわち供給口21と室4
0とを連通する小孔41の数は、加速度信号の大
きさに比例して多くなる。従つて、ブレーキ圧力
Pの上昇速度は車輪の加速度に応じて大きくな
る。
When the wheel starts accelerating and the output of the acceleration/deceleration calculator 3 becomes an acceleration signal, the output signal (V〓.-V〓) of the subtractor 4 further decreases, and the current supplied to the solenoid 10 decreases. . Therefore, the movable pole member 47
further moves downward, and the valve stem 51 of the supply valve member 49
The tip of is away from the bottom of the fitting hole 39, that is,
The supply passage opens and the chamber 40 communicates with the supply port 21. Therefore, the brake pressure P increases. The opening degree of the supply passage at this time, that is, the supply port 21 and the chamber 4
The number of small holes 41 communicating with 0 increases in proportion to the magnitude of the acceleration signal. Therefore, the rate of increase in brake pressure P increases in accordance with the acceleration of the wheels.

なお、圧力制御弁20がブレーキ圧力低下位置
からブレーキ圧力上昇位置に変わる時期は、加・
減速度が零のときに限定する必要はなく、車輪の
加速度が例えば0.5gになつたときに設定してもよ
い。
Note that the timing at which the pressure control valve 20 changes from the brake pressure decreasing position to the brake pressure increasing position depends on the application and
It is not necessary to limit the setting to when the deceleration is zero, and it may be set when the acceleration of the wheel reaches, for example, 0.5 g.

車輪速度が回復し、車輪速度信号Vが、時刻t3
において、車体速度信号Eの所定の割合η・Eよ
り大きくなると、比較器7の出力信号SがLにな
り、スイツチ8が遮断し、増巾器9からソレノイ
ド10に供給される電流が零になる。従つて圧力
制御弁20は図の状態に戻り、ホイルシリング2
8のブレーキ圧力Pは上昇する。
The wheel speed recovers and the wheel speed signal V changes at time t 3
When the vehicle speed signal E becomes larger than a predetermined ratio η·E, the output signal S of the comparator 7 becomes L, the switch 8 shuts off, and the current supplied from the amplifier 9 to the solenoid 10 becomes zero. Become. Therefore, the pressure control valve 20 returns to the state shown in the figure, and the foil sill 2
8, the brake pressure P increases.

ブレーキ圧力Pが上昇することにより、車輪の
スリツプ率が再び所定の値(1−η)を超える
と、上述の作動を繰り返し、ブレーキ圧力を最適
に制御する。
When the wheel slip rate again exceeds the predetermined value (1-η) due to an increase in the brake pressure P, the above-described operation is repeated to optimally control the brake pressure.

以上の説明から明らかな通り、本発明は車輪の
スリツプ率が所定の値以上になると車輪の減・加
速度に応じてブレーキ圧力が低下及び上昇するの
で、ブレーキ圧力を最適に制御することができ、
特にスリツプ率が所定の値以上のときのみ、車輪
の加・減速度に応じてブレーキ装置のブレーキ圧
力を低下するので、車輪の過渡的な減速度変化に
よりブレーキ圧力が低下する危険性がない、等、
秀れた効果を奏する。
As is clear from the above explanation, in the present invention, when the slip rate of the wheel exceeds a predetermined value, the brake pressure decreases and increases in accordance with the reduction and acceleration of the wheel, so that the brake pressure can be optimally controlled.
In particular, the brake pressure of the brake device is reduced in accordance with the acceleration/deceleration of the wheels only when the slip rate is above a predetermined value, so there is no risk of the brake pressure decreasing due to transient changes in the deceleration of the wheels. etc,
It produces excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の制御回路のブロツ
ク線図、第2図はブレーキ圧力制御装置の配管を
含む断面図、第3図は作用を示す作動線図であ
る。 1……車輪速度センサ、2……車輪速度演算
器、3……加・減速度演算器、4……減算器、5
……車体速度演算器、7……比較器、8……スイ
ツチ、9……増巾器、10……ソレノイド、20
……圧力制御弁、21……供給口、22……送出
口、23……排出口、25……マスタシリンダ、
27……ブレーキ装置、28……ホイルシリン
ダ、30……リザーバ、31……ポンプ、49…
…供給弁部材、50……排出弁部材。
FIG. 1 is a block diagram of a control circuit according to an embodiment of the present invention, FIG. 2 is a sectional view including piping of a brake pressure control device, and FIG. 3 is an operation diagram showing the operation. 1...Wheel speed sensor, 2...Wheel speed calculator, 3...Acceleration/deceleration calculator, 4...Subtractor, 5
... Vehicle speed calculator, 7 ... Comparator, 8 ... Switch, 9 ... Amplifier, 10 ... Solenoid, 20
...Pressure control valve, 21... Supply port, 22... Outlet port, 23... Discharge port, 25... Master cylinder,
27...Brake device, 28...Wheel cylinder, 30...Reservoir, 31...Pump, 49...
...Supply valve member, 50...Discharge valve member.

Claims (1)

【特許請求の範囲】[Claims] 1 車輪の回転速度に比例する車輪速度信号を発
生する車輪速度演算器と、前記車輪速度信号を微
分し、前記車輪の加減速度に比例する加減速度信
号を発生する加減速度演算器と、前記車輪速度信
号と車体速度に比例する車体速度信号とよりスリ
ツプ率信号を得るスリツプ率比較器と、前記スリ
ツプ率信号が発生すると前記車輪のブレーキ装置
に供給するブレーキ圧力を制御する圧力制御弁と
を備え、所定のパラメータに基づいて前記ブレー
キ圧力の上昇速度及び低下速度を可変にする車両
用アンチスキツド装置において、前記パラメータ
を前記加減速度信号とし、前記スリツプ率が所定
の値以上のとき前記加減速度信号の大きさに応じ
て前記ブレーキ圧力の上昇速度及び低下速度を可
変に切換える切換装置を有することを特微とする
車両用アンチスキツド装置。
1. A wheel speed calculator that generates a wheel speed signal proportional to the rotational speed of the wheel, an acceleration/deceleration calculator that differentiates the wheel speed signal and generates an acceleration/deceleration signal proportional to the acceleration/deceleration of the wheel, and the wheel. A slip rate comparator that obtains a slip rate signal from a speed signal and a vehicle body speed signal proportional to the vehicle body speed, and a pressure control valve that controls the brake pressure supplied to the brake device of the wheel when the slip rate signal is generated. , in a vehicle anti-skid device that varies the rate of rise and fall of the brake pressure based on a predetermined parameter, the parameter is the acceleration/deceleration signal, and when the slip rate is equal to or higher than a predetermined value, the acceleration/deceleration signal changes. An anti-skid device for a vehicle, characterized by comprising a switching device that variably switches the rate of increase and decrease of the brake pressure depending on the magnitude of the brake pressure.
JP15393379A 1979-11-27 1979-11-27 Antiskidding apparatus for vehicle Granted JPS5679044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15393379A JPS5679044A (en) 1979-11-27 1979-11-27 Antiskidding apparatus for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15393379A JPS5679044A (en) 1979-11-27 1979-11-27 Antiskidding apparatus for vehicle

Publications (2)

Publication Number Publication Date
JPS5679044A JPS5679044A (en) 1981-06-29
JPS6341781B2 true JPS6341781B2 (en) 1988-08-18

Family

ID=15573246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15393379A Granted JPS5679044A (en) 1979-11-27 1979-11-27 Antiskidding apparatus for vehicle

Country Status (1)

Country Link
JP (1) JPS5679044A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132468A (en) * 1972-09-18 1974-12-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132468A (en) * 1972-09-18 1974-12-19

Also Published As

Publication number Publication date
JPS5679044A (en) 1981-06-29

Similar Documents

Publication Publication Date Title
US3574417A (en) Full power adaptive braking system for use with a proportional solenoid
KR970001877B1 (en) Anti-lock brake system for a vehicle
US6711488B2 (en) Wheel deceleration-based antiskid brake controller with adaptive deceleration threshold
US5028095A (en) Anti-lock control method and system for a vehicle
US4984164A (en) Anti-lock control method and apparatus for vehicles
US5219210A (en) Brake fluid pressure controller for vehicle
US3524685A (en) Antilock brake control system
SU1373310A3 (en) Pneumatic antiblocking brake system of vehicle
US4155603A (en) Anti-skid vehicle braking systems
US3420256A (en) Reducing valve for front axle brake cylinders
JPS6133737B2 (en)
GB1588858A (en) Skid control system
JPS6341781B2 (en)
US4030759A (en) Pneumatic anti-skid brake system having proportional pressure control means
US4721346A (en) Hydraulic anti-skid braking sytems for vehicles
GB2164110A (en) Controlling hydraulic brakes
JPS6335466B2 (en)
US4111497A (en) Pressure command generator with initial condition logic for adaptive braking system
JPS5828137B2 (en) Tekio Brake Souchi
JPS6341782B2 (en)
US7322660B2 (en) Method for electronically regulating brake-power distribution
US4120539A (en) Adaptive braking system with special control for slippery surfaces
JPS6341332B2 (en)
US4203630A (en) Brake control units
CN113748058B (en) Hydraulic control unit