JPS6341731B2 - - Google Patents

Info

Publication number
JPS6341731B2
JPS6341731B2 JP55182549A JP18254980A JPS6341731B2 JP S6341731 B2 JPS6341731 B2 JP S6341731B2 JP 55182549 A JP55182549 A JP 55182549A JP 18254980 A JP18254980 A JP 18254980A JP S6341731 B2 JPS6341731 B2 JP S6341731B2
Authority
JP
Japan
Prior art keywords
parison
temperature
cooling
mold
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55182549A
Other languages
Japanese (ja)
Other versions
JPS57105321A (en
Inventor
Katashi Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55182549A priority Critical patent/JPS57105321A/en
Publication of JPS57105321A publication Critical patent/JPS57105321A/en
Publication of JPS6341731B2 publication Critical patent/JPS6341731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6427Cooling of preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • B29C2035/1616Cooling using liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は射出した溶融状態のパリソンを離型
可能な状態まで冷却する方法に関するものであ
る。 射出成形した有底のパリソンを直ちに延伸吹込
成形して、びんなどの中空成形品を得る射出延伸
吹込成形法では、延伸吹込成形前にパリソンの温
度調整を行つている。この温度調整は、離型した
ばかりのパリソンにおける温度分布が不均一なた
めに、そのまま直ちに延伸吹込成形を行うと、中
空成形品の肉厚分布も不均一となるからである。 一般に金型内におけるパリソンの冷却は、キヤ
ビテイ型とコアとの両方から行つており、またゲ
ート側が高温であることから、コアを介しての冷
却はゲートに近接したパリソン底部から行うよう
にしている。しかしこの従来法ではパリソン温度
を均一化することができず、離型したばかりのパ
リソンの表面温度を測定すると、中央部の温度が
底部などに比べて6〜8℃高い場合が多い。そこ
でその温度差を減少するために、パリソン中央部
をキヤビテイ型側において他の部分よりも冷却
し、パリソンにおける温度分布の均一化を試みた
が、その効果は全くなかつた。 本発明者は、中央部を他部分よりも冷却したに
もかかわらず、パリソン中央部の温度が低下せ
ず、逆に、さらに温度差が生じ易い傾向にある点
を追求した結果、その原因は冷却に伴うパリソン
の収縮にあることを見出した。 周知のように、金型内に注入した溶融状態の合
成樹脂は、冷却により固化するとともに、冷却速
度に関連して収縮を起す。その収縮率は合成樹脂
によつて異なるが、収縮は全体に及んで成形品は
溶融状態のときよりもコアとの密着性を増す。ま
たキヤビテイ一杯に圧入した合成樹脂が収縮を起
すのであるから、その収縮に応じた分だけキヤビ
テイ容積との間に差が生ずる訳である。この差は
収縮という現象から、当然キヤビテイ型と成形品
との間に生ずるものであり、そこに空隙が生じて
型面から成形品が遊離するということは、コアよ
りもキヤビテイ型からの離型が容易椅であること
からも明らかである。そして発生するであろうそ
の僅かな空隙がキヤビテイ型における冷却を損う
原因であることを本発明者は見出したのである。 本発明者は、通常の手段により金型に射出した
溶融樹脂を、キヤビテイ型とコアとの両方から、
離型可能な温度まで冷却して、肉厚分布が略々均
一なパリソンを成形し、そのパリソンが保有する
温度を赤外線を利用して測定したところ、前述の
ようにパリソン中央部の表面温度が特に高かつ
た。 このパリソンを温度調整してのち延伸吹込みし
て丸底のびんを成形してみたが、底部及び肩部の
伸びは胴部に比べて悪く、延伸部全体の肉厚分布
は不均一であつた。このような肉厚の不均一は、
パリソンにおける保有熱の差によるものであるこ
とは明かであり、成形時に生じた保有熱の差を、
短時間の温度調整により除去することは、特別な
技術がない限り困難とされ、一般的には、温度調
整はパリソンにおける温度差を少くする程度の効
果に止どまる。 そこで本発明者は、パリソン中央部と底部との
温度差をなくすために、キヤビテイ型中央部を、
第1図に示すように、底部及び他の部分よりも冷
却するように、キヤビテイ型1の冷却水路2を型
面に近接させて設け、コア3の冷却水路4は普通
に行われているように、底部から首部へ冷却水が
流出するようにして、パリソン5の冷却を行つた
ところ、離型後のパリソン5における表面温度
は、キヤビテイ型1を均一に冷却したときより
も、パリソン中央部の表面温度が若干高くなり、
パリソン5における温度差を減少させることがで
きなかつた。 パリソン中央部5aを他の部分よりも冷却した
にもかかわらず、他の部分よりも温度が高くなる
のは、他の部分の冷却よりも、パリソン中央部5
aが急冷され、型面と接する表面が固化すると同
時に収縮して、型面から遊離し、この遊離により
型面との間に微細な空隙6が発生し、その空隙6
が一種の断熱層として働くからであり、キヤビテ
イ型1とパリソン中央部5aとにおける熱交換性
が損われて、肉厚内部まで冷却されにくくなるか
らである。 上記のように一段と冷却することによつて、中
央部5aの遊離が著しくなることは、有底のパリ
ソン5にあつては軸方向に収縮しにくいからであ
る。これはパリソン首部と底部とがネツク型或は
コア先端によりそれぞれ押えられた状態にあり、
軸方向の収縮は専ら中央部5aだけとなつて、中
央部5aが矢印方向に引張られる結果であり、空
隙6は一層顕著となつて増々冷却効果が損われる
のである。 したがつて、パリソン中央部5aをキヤビテイ
型1から冷却すればするほど、短時間における冷
却効果が悪くなり、パリソン5における温度は不
均一となる。 しかしながら、パリソン中央部を何等かの方法
をもつて、他の部分よりも冷却しない限り、パリ
ソン温度を均一化することはできず、更には中空
成形品の形状に応じて延伸吹込成形し易いよう
に、成形時においてパリソンの温度分布を自由に
調整することはできないことになる。 上記パリソン中央部5aの冷却低下は、パリソ
ンの収縮による型面からの遊離が原因であること
は先に述べたとおりである。しかし収縮は一方に
おいて遊離なる現象を起すが、他方、すなわち、
コア側に対しては遊離とは逆の密着なる現象をも
起す。 そこで本発明者は、従来よりもコア側による冷
却を強めて、パリソンの強さに略々比例した。こ
のことは、コア側における冷却はパリソンの収縮
に影響されないということである。 さらに本発明者は、コア側からパリソン中央部
の急冷を試みて見た、その結果は、キヤビテイ型
側から急冷した場合と異なつて、他の部分の温度
近くまで低下した。 第2図はその冷却手段を例示したもので、キヤ
ビテイ型11の冷却水路12はパリソン15の延
伸部分を均一に冷却する位置に設け、コア13側
の冷却水路14にパリソン中央部15aを特に他
の部分よりも冷却する手段を施す。 通常コア13の冷却水路14は、コア内に水管
16を挿入し、その水管16とコア13との隙間
により形成されている。そこで上記水管16のパ
リソン中央部15aに当る部分に、所要数の水孔
17を穿設し、水管16の先端、すなわちパリソ
ン底部15bに当る部分と、上記水孔17の両方
から冷却水が流出するように、水管先端の開口を
調整して置く、また水孔17の数及び間隔等はパ
リソン中央部15aの温度に応じて定められる。
また冷却効果を高めるために、コア中央部の内壁
13aを凹凸面となして冷却面積を増したり、ま
たは図は省略したが、コア中央部を他の部分より
も肉薄にするなどしてもよい。 しかして、上記冷却手段の下にパリソン15の
冷却を行つたところ、中央部の温度は他の部分の
温度近くまで低下し、パリソン15の延伸される
部分における温度分布は、従来の冷却法による場
合と比較して著しく均一化されていた。 またこのパリソン15を温度調整後に延伸吹込
成形したところ、肉厚が均等化した丸底のびんが
得られ、レンズ状に成形され易い底部も従来のも
のに比べて薄肉となり、充分に配向されているこ
とが、落下テストなどから明らかとなつた。 以下その結果を示す。 試験体(ポリエチレンテレフタレートの有底パ
リソン) 全 長 延伸膨脹部分の長さ 肉 厚 116mm 90mm 4mm 上記パリソンを通常の手段により冷却水の温度
8〜9℃とで7.0秒と8.0秒の2通りの冷却を行つ
たところ、離型後の表面温度は下記表1のとおり
であつた。
This invention relates to a method for cooling an injected molten parison to a state where it can be released from the mold. In the injection stretch blow molding method, in which an injection molded parison with a bottom is immediately stretch blow molded to obtain a hollow molded product such as a bottle, the temperature of the parison is adjusted before stretch blow molding. This temperature adjustment is necessary because the temperature distribution in the parison that has just been released from the mold is non-uniform, so if stretch blow molding is performed immediately, the wall thickness distribution of the hollow molded product will also be non-uniform. Generally, the parison in the mold is cooled from both the cavity mold and the core, and since the gate side is hot, cooling via the core is performed from the bottom of the parison near the gate. . However, with this conventional method, it is not possible to make the parison temperature uniform, and when the surface temperature of a parison that has just been released from the mold is measured, the temperature at the center is often 6 to 8° C. higher than at the bottom. In order to reduce this temperature difference, an attempt was made to make the temperature distribution uniform in the parison by cooling the central part of the parison on the cavity mold side more than the other parts, but this had no effect at all. The inventor of the present invention investigated the fact that the temperature of the central part of the parison does not decrease even though the central part is cooled more than other parts, and on the contrary, there is a tendency for a temperature difference to occur even more. It was discovered that this is due to the shrinkage of the parison as it cools. As is well known, a molten synthetic resin injected into a mold solidifies as it cools and shrinks depending on the cooling rate. Although the shrinkage rate differs depending on the synthetic resin, the shrinkage extends throughout the entire molded product, and the molded product has better adhesion to the core than when it is in a molten state. Furthermore, since the synthetic resin press-fitted into the cavity will shrink, a difference in cavity volume will occur corresponding to the shrinkage. This difference naturally occurs between the cavity mold and the molded product due to the phenomenon of shrinkage, and the fact that a gap is created and the molded product comes loose from the mold surface means that the release from the cavity mold is more likely than the core. This is clear from the fact that it is an easy chair. The inventor of the present invention has discovered that the slight void that may occur is the cause of impairing cooling in the cavity mold. The present inventor has discovered that the molten resin injected into the mold by ordinary means is transferred from both the cavity mold and the core.
After cooling to a temperature that allows release from the mold and molding a parison with a substantially uniform wall thickness distribution, we measured the temperature of the parison using infrared rays, and found that the surface temperature at the center of the parison was as described above. It was especially expensive. After adjusting the temperature, this parison was stretch-blown to form a round-bottomed bottle, but the elongation of the bottom and shoulders was worse than that of the body, and the thickness distribution of the entire stretched part was uneven. Ta. This kind of uneven wall thickness is caused by
It is clear that this is due to the difference in heat retention in the parison, and the difference in heat retention that occurred during molding can be
It is difficult to remove them by short-term temperature adjustment unless special techniques are used, and temperature adjustment generally only has an effect of reducing the temperature difference in the parison. Therefore, in order to eliminate the temperature difference between the center part and the bottom part of the parison, the inventor created a cavity-shaped center part.
As shown in Fig. 1, the cooling channel 2 of the cavity mold 1 is provided close to the mold surface so as to be cooled more than the bottom and other parts, and the cooling channel 4 of the core 3 is installed as usual. When the parison 5 was cooled by allowing the cooling water to flow from the bottom to the neck, the surface temperature of the parison 5 after being released from the mold was higher in the center of the parison than when the cavity mold 1 was uniformly cooled. The surface temperature of the will become slightly higher,
It was not possible to reduce the temperature difference in parison 5. Even though the central part 5a of the parison is cooled more than other parts, the temperature of the central part 5a of the parison becomes higher than that of the other parts.
a is rapidly cooled, and the surface in contact with the mold surface solidifies and at the same time contracts and is released from the mold surface, and this release creates minute voids 6 between the mold surface and the void 6.
This is because the heat exchangeability between the cavity mold 1 and the parison central portion 5a is impaired, making it difficult to cool down to the thick inside. The reason why the central portion 5a becomes considerably loose due to further cooling as described above is because the bottomed parison 5 is difficult to shrink in the axial direction. This is in a state where the neck and bottom of the parison are held down by a net type or the tip of the core, respectively.
The contraction in the axial direction occurs only in the central portion 5a, and this is the result of the central portion 5a being pulled in the direction of the arrow, and the void 6 becomes more pronounced, further impairing the cooling effect. Therefore, the more the parison central portion 5a is cooled from the cavity mold 1, the worse the cooling effect becomes in a short period of time, and the temperature in the parison 5 becomes non-uniform. However, unless the central part of the parison is cooled in some way compared to other parts, it is not possible to make the parison temperature uniform, and furthermore, depending on the shape of the hollow molded product, stretch blow molding may be easier. Furthermore, it is not possible to freely adjust the temperature distribution of the parison during molding. As mentioned above, the decrease in cooling of the central part 5a of the parison is caused by the parison being released from the mold surface due to shrinkage. However, while contraction causes the phenomenon of liberation on the one hand, on the other hand, i.e.
On the core side, a phenomenon called adhesion, which is the opposite of release, also occurs. Therefore, the inventor of the present invention strengthened the cooling by the core side more than before, so that the cooling was approximately proportional to the strength of the parison. This means that the cooling on the core side is not affected by parison shrinkage. Furthermore, the present inventor attempted to rapidly cool the central part of the parison from the core side, and the result was that the temperature decreased to near the temperature of other parts, unlike when rapidly cooling from the cavity mold side. FIG. 2 shows an example of the cooling means, in which the cooling channel 12 of the cavity mold 11 is provided at a position to uniformly cool the extended portion of the parison 15, and the cooling channel 14 on the core 13 side is provided with a central portion 15a of the parison. Provide a means to cool the area. Normally, the cooling water channel 14 of the core 13 is formed by inserting a water pipe 16 into the core and forming a gap between the water pipe 16 and the core 13 . Therefore, a required number of water holes 17 are bored in the part of the water pipe 16 that corresponds to the parison center part 15a, and the cooling water flows out from both the tip of the water pipe 16, that is, the part that corresponds to the parison bottom 15b, and the water hole 17. The openings at the tips of the water tubes are adjusted so that the water tubes are placed in the same manner as possible, and the number and spacing of the water holes 17 are determined depending on the temperature of the parison central portion 15a.
In order to enhance the cooling effect, the inner wall 13a at the center of the core may be made uneven to increase the cooling area, or the center of the core may be made thinner than other parts, although this is not shown. . When the parison 15 is cooled using the above-mentioned cooling means, the temperature in the central part drops to near the temperature in other parts, and the temperature distribution in the stretched part of the parison 15 is different from that of the conventional cooling method. It was significantly more uniform compared to the previous case. Furthermore, when this parison 15 was stretch-blow molded after temperature adjustment, a round-bottom bottle with uniform wall thickness was obtained, and the bottom part, which is easily formed into a lens shape, was thinner than the conventional one, and was well oriented. It has become clear from drop tests that this is the case. The results are shown below. Test specimen (bottomed parison of polyethylene terephthalate) Total length Length of stretched and expanded portion Wall thickness 116 mm 90 mm 4 mm The above parison was cooled by normal means with cooling water at a temperature of 8 to 9 degrees Celsius in two ways: 7.0 seconds and 8.0 seconds. When this was carried out, the surface temperature after release from the mold was as shown in Table 1 below.

【表】 次に冷却水温度及び冷却時間を同じくして、第
2図に示す手段により、パリソン中央部の冷却を
行つた。離型後の表面温度は下記表2のとおりで
あり、中央部の表面温度が低下した。
[Table] Next, the central part of the parison was cooled by the means shown in FIG. 2 while keeping the cooling water temperature and cooling time the same. The surface temperature after mold release is as shown in Table 2 below, and the surface temperature at the center decreased.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はキヤビテイ型側よりパリソン中央部を
冷却する場合を示す金型の断面図、第2図はこの
発明に係る冷却方法を示す金型の断面図である。 11……キヤビテイ型、12……冷却水路、1
3……コア、14……冷却水路、15……パリソ
ン、15a……パリソン中央部、15b……パリ
ソン底部、16……水管、17……水孔。
FIG. 1 is a cross-sectional view of a mold showing the case where the central part of the parison is cooled from the cavity mold side, and FIG. 2 is a cross-sectional view of the mold showing a cooling method according to the present invention. 11...Cavity type, 12...Cooling channel, 1
3...Core, 14...Cooling channel, 15...Parison, 15a...Parison center, 15b...Parison bottom, 16...Water pipe, 17...Water hole.

Claims (1)

【特許請求の範囲】[Claims] 1 コア周囲に射出成形した金型内のパリソンを
離型可能な温度まで冷却するにあたり、パリソン
中央部をコア側から他の部分よりも冷却して、パ
リソン温度を調整することを特徴とする金型内に
おけるパリソン冷却方法。
1. In cooling the parison in the mold injection molded around the core to a temperature at which it can be released from the mold, the parison temperature is adjusted by cooling the central part of the parison from the core side more than the other parts. Method of cooling the parison in the mold.
JP55182549A 1980-12-23 1980-12-23 Method for cooling parison in mold Granted JPS57105321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55182549A JPS57105321A (en) 1980-12-23 1980-12-23 Method for cooling parison in mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55182549A JPS57105321A (en) 1980-12-23 1980-12-23 Method for cooling parison in mold

Publications (2)

Publication Number Publication Date
JPS57105321A JPS57105321A (en) 1982-06-30
JPS6341731B2 true JPS6341731B2 (en) 1988-08-18

Family

ID=16120220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55182549A Granted JPS57105321A (en) 1980-12-23 1980-12-23 Method for cooling parison in mold

Country Status (1)

Country Link
JP (1) JPS57105321A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1285113C (en) * 1986-08-11 1991-06-25 John J. Granata Method and apparatus for injection blow molding pet containers
DE69415143T2 (en) * 1993-07-30 1999-07-22 Nissei Asb Machine Co Ltd METHOD, DEVICE AND TOOL FOR INJECTION MOLDING A PREFORM
FR2790219B1 (en) * 1999-02-25 2001-05-18 Andre David PROCESS AND DEVICE FOR VULCANIZING RUBBER HOSES OR THE LIKE
CN103350466B (en) * 2013-05-21 2015-07-08 宁波君灵模具技术有限公司 Mold cooling system
JP6254699B2 (en) * 2014-07-11 2017-12-27 日精エー・エス・ビー機械株式会社 Hollow container injection blow molding method and injection blow molding apparatus
KR20230107703A (en) 2019-03-20 2023-07-17 닛세이 에이. 에스. 비 기카이 가부시키가이샤 Method for manufacturing resin container, blow molding apparatus, blow molding mold, and temperature adjustment mold

Also Published As

Publication number Publication date
JPS57105321A (en) 1982-06-30

Similar Documents

Publication Publication Date Title
US5139724A (en) Method and apparatus for injection moulding blanks
US8021596B2 (en) Method for injection stretch blow molding
US4381275A (en) Stabilized core injection molding of plastic
US5364585A (en) Injection orientation blow molding method
KR950011094A (en) Preform molding method in injection stretch blow molding
BR112012002821B1 (en) METHOD FOR MOLDING A LARGE RETURNABLE CONTAINER, LARGE RETURNABLE CONTAINER MOLDING EQUIPMENT, AND BLOWING MOLD
US4347209A (en) Method for molding elongated parisons
JPS6341731B2 (en)
US3483288A (en) Method of molding a thermoplastic article to obtain preferred directional physical properties
JP3255485B2 (en) Blow molding machine
US20040262818A1 (en) Injection stretch blow molding method of a cylindrical narrow mouth container and a container
CA1220911A (en) Method for the temperature control of parison in injection stretching blow molding method
JPH10128839A (en) Method for controlling temperature at lower side of neck portion during pre-form molding, and core mold
JPH08300460A (en) Preform molding method in injection stretching blow molding
JP3330677B2 (en) Molding method and molding apparatus
JPS58168531A (en) Injection stretch blow molding of two-layered bottle
US4072737A (en) Method for production of hollow articles from injection molded preforms using insulated runner system
JPWO2021206082A5 (en)
GB1297506A (en)
JP3924069B2 (en) Stretch blow molding method and stretch blow molded article
US6555046B1 (en) Injection stretch blow molding method
JPH0465214A (en) Method and device for adjusting cooling temperature of preforme
JPH0465215A (en) Method and device for adjusting cooling temperature of preform
JPS5917939B2 (en) Two-layer parison molding method in injection blow molding
JPH043765Y2 (en)