JPS634146B2 - - Google Patents
Info
- Publication number
- JPS634146B2 JPS634146B2 JP10595880A JP10595880A JPS634146B2 JP S634146 B2 JPS634146 B2 JP S634146B2 JP 10595880 A JP10595880 A JP 10595880A JP 10595880 A JP10595880 A JP 10595880A JP S634146 B2 JPS634146 B2 JP S634146B2
- Authority
- JP
- Japan
- Prior art keywords
- blood
- filter
- physiological saline
- measuring
- red blood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 210000004369 blood Anatomy 0.000 claims description 34
- 239000008280 blood Substances 0.000 claims description 34
- 210000003743 erythrocyte Anatomy 0.000 claims description 25
- 238000005259 measurement Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 22
- 239000002504 physiological saline solution Substances 0.000 claims description 14
- 238000004140 cleaning Methods 0.000 claims description 7
- 230000007246 mechanism Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 16
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 3
- 230000004087 circulation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000023589 ischemic disease Diseases 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Description
【発明の詳細な説明】 本発明は赤血球変形能の測定装置に関する。[Detailed description of the invention] The present invention relates to a device for measuring red blood cell deformability.
末梢血管により構成されている微小循環領域に
おいて赤血球は血液中で外力を受けて種々の形に
変形しながら流れている。とくに毛細血管のよう
な赤血球の直径(7〜8μ)に比して半分以下の
直径(3〜5μ)をもつ末梢血管中を血液が流れ
る際には赤血球の変形が不可欠なので、赤血球の
変形し易さ(変形能という)の大きいことは健康
の維持にとつて非常に重要である。各種の疾患ま
たは老化等により赤血球の変形能が低下すると赤
血球は毛細血管を通過しにくくなつて集合ないし
凝集を起こし、組織への酸素および栄養源の供給
に種々の障害をきたしさらに病態を悪化させるこ
とが知られている。 In the microcirculation region constituted by peripheral blood vessels, red blood cells flow while being deformed into various shapes under the influence of external forces in the blood. In particular, deformation of red blood cells is essential when blood flows through peripheral blood vessels such as capillaries, which have a diameter (3 to 5 μ) less than half the diameter of red blood cells (7 to 8 μ). High flexibility (called deformability) is very important for maintaining health. When the deformability of red blood cells decreases due to various diseases or aging, red blood cells become difficult to pass through capillaries and aggregate or aggregate, causing various obstacles to the supply of oxygen and nutrients to tissues and further worsening the disease condition. It is known.
最近とくに赤血球の変形能を改善する薬剤が開
発されるに伴つて、循環器系の疾患の予防、診断
または薬効の試験等において赤血球の変形能を迅
速かつ適確に測定する必要性が高まつている。赤
血球の変形能を測定する主な従来方法としては次
のものがある。 Recently, with the development of drugs that improve the deformability of red blood cells, there is an increasing need to quickly and accurately measure the deformability of red blood cells in the prevention and diagnosis of circulatory system diseases, testing of drug efficacy, etc. ing. The main conventional methods for measuring the deformability of red blood cells include:
A マイクロフイルター法
孔の大きさが3〜8μのマイクロフイルター
に陰圧又は陽圧を加え、赤血球を通過させて単
位時間に通過する赤血球の量または単位容量が
通過する時間を測定する。A. Microfilter method Negative pressure or positive pressure is applied to a microfilter with a pore size of 3 to 8μ, red blood cells are passed through the filter, and the amount of red blood cells passing per unit time or the time it takes for a unit volume to pass is measured.
B マイクロピペツト法
内径3μ程度のマイクロピペツトに一定の陰
圧をかけピペツトの中に入る1個の赤血球の吸
引量または逆に1個の赤血球が吸込まれるのに
必要な陰圧を測定する。B. Micropipette method A constant negative pressure is applied to a micropipette with an inner diameter of approximately 3 μm, and the amount of suction of one red blood cell into the pipette, or conversely, the negative pressure required for one red blood cell to be sucked into the pipette is measured. do.
C レーザー回折法
回転粘度計に赤血球を入れて回転させ、これ
にレーザー光線をあてて、得られる回折像の形
の変化の程度により変形能を測定する。C. Laser diffraction method A red blood cell is placed in a rotational viscometer and rotated, and a laser beam is applied to the red blood cell, and the deformability is measured by the degree of change in the shape of the obtained diffraction image.
これらの測定法にはいずれも一長一短がある
が、簡便性、測定時間が短いこと、および経費等
を総合的に考慮するとマイクロフイルター法が最
も有利な方法であるということができる。 All of these measurement methods have advantages and disadvantages, but the microfilter method can be said to be the most advantageous method when considering simplicity, short measurement time, cost, etc.
従来用いられているマイクロフイルター法を第
1図および第2図に従つて説明すると次の通りで
ある。 The conventionally used microfilter method will be explained below with reference to FIGS. 1 and 2.
1mlの注入器1にフイルターを収納したホルダ
ー2を接続し、血液試料を入れ手動吸引器7の操
作により生ぜしめた吸引圧を減圧保留容器(5)およ
びタツプ4を通してホルダー2に作用させること
により血液をフイルター中に通過せしめ、そして
生じた液を液受器3に受ける。吸引圧の程度
は、手動吸引器7と減圧保留容器5との間に挿入
されたマノメーター6での水柱の高さ(例えば20
cm)により測定および調整される。ホルダー2の
内部は第2図に示されるようにクランプリング
8、デツドスペース10を設けたキヤツプ9、フ
イルター11、支持グリツド12および排出ノズ
ルを備えたベース13から成り、自由に各部分に
分解しうるようになつている。 A holder 2 containing a filter is connected to a 1 ml syringe 1, a blood sample is placed therein, and the suction pressure generated by operating the manual aspirator 7 is applied to the holder 2 through the vacuum holding container (5) and the tap 4. Blood is passed through the filter, and the resulting liquid is received in a liquid receiver 3. The degree of suction pressure is determined by the height of the water column (for example, 20
cm) measured and adjusted. The interior of the holder 2 consists of a clamp ring 8, a cap 9 with a dead space 10, a filter 11, a support grid 12 and a base 13 with a discharge nozzle, as shown in FIG. 2, and can be freely disassembled into various parts. It's becoming like that.
このような装置を使用して一定量(ふつうは1
ml)の血液試料が一定吸引圧下(例えば−20cm水
柱)でフイルターを通過するのに要する時間を測
定することによつて赤血球の変形能を知るのであ
るが、このような従来法においては
(イ) フイルターを通しての血液の流れが均一でな
く、また各操作が手動で行なわれるために人為
的誤差が大きい、
(ロ) 操作に熟練するまでかなりの時間を要する、
(ハ) 操作(測定)者の相違による測定値のばらつ
きが大きくしかも再現性が悪い、
(ニ) 1検体あたりの所要測定時間が長いため、
多数の検体を効率よく短時間で処理できない等
の欠点があり、広く実用化されるには到らなかつ
た。 Using such a device, a fixed amount (usually 1
The deformability of red blood cells is determined by measuring the time it takes for a blood sample (ml) to pass through a filter under constant suction pressure (e.g. -20 cm water column). ) The flow of blood through the filter is not uniform, and each operation is performed manually, resulting in large human errors. (B) It takes a considerable amount of time to become proficient in the operation. (C) The operator (measuring) (d) The measurement time required for each sample is long, making it impossible to efficiently process a large number of samples in a short period of time. I couldn't reach it.
マイクロフイルター法における一番の問題点
は、注入された血液がホルダー部内のデツドスペ
ース10中に完全に充満されず、また血液の有す
る粘性のためにフイルター表面およびホルダー内
部に気泡が生じそれが血液の円滑な流れを妨げ
て、結果的に測定値の再現性に悪い影響を与えて
いた。 The biggest problem with the microfilter method is that the injected blood does not completely fill the dead space 10 in the holder, and the viscosity of the blood causes air bubbles to form on the filter surface and inside the holder, which causes the blood to evaporate. This obstructed the smooth flow, resulting in a negative impact on the reproducibility of measured values.
本発明者は、マイクロフイルター法における上
述の欠点を回避し、簡便な操作による正確かつ効
率の良い赤血球変形能測定方法について鋭意工夫
を重ねた結果、ホルダー内に血液を通過せしめる
に際してフイルターを生理食塩液で血液の通過前
に洗浄することにより気泡の生成を防止しかつこ
の操作を血液の流下による変形能の測定工程と組
合せ、その上各工程の切替を自動化しうるように
した方法およびそれを実施するための装置を完成
するに到つたものである。 The inventor of the present invention avoided the above-mentioned drawbacks of the microfilter method, and as a result of making extensive efforts to develop an accurate and efficient method for measuring red blood cell deformability using simple operations, the inventors have discovered that when blood is passed through the holder, the filter is replaced with physiological saline. A method that prevents the formation of air bubbles by washing the blood with a liquid before passing through it, combines this operation with a step of measuring deformability by flowing blood, and also automates the switching of each step. We have now completed a device to carry out the project.
次に本発明方法およびその装置の一例を示す第
3図について説明する。 Next, FIG. 3 showing an example of the method and apparatus of the present invention will be explained.
本発明の装置は大別して測定部、生理食塩液供
給部、吸引圧付加機構、そしてこれら各部分間を
流れる液の方向を各工程に応じて切替えるための
電磁弁部およびそれの制御部から構成されてい
る。 The device of the present invention is broadly divided into a measuring section, a physiological saline supply section, a suction pressure applying mechanism, and a solenoid valve section for switching the direction of liquid flowing between these sections according to each process, and its control section. has been done.
測定部はこの種の装置にふつうに用いられる注
入器21およびフイルター22を収納したホルダ
ー23より成り、注入器21の上端は好ましくは
注入器と嵌合しうる蓋付きの吸引ノズル管24と
連結および取外しが自由にできるようにされてい
る。またホルダー23は、その下端に液の流入お
よび流出のための口があり、さらに測定部はその
全部又は一部を恒温ジヤケツト25で覆つて測定
中に恒温が保てるようにされている。測定は血液
量の変化すなわち液面の低下を肉眼または光電的
に観察することによりなされる。 The measuring part consists of a holder 23 containing a syringe 21 and a filter 22, which are commonly used in this type of device, and the upper end of the syringe 21 is preferably connected to a suction nozzle tube 24 with a lid that can fit with the syringe. and can be freely removed. Further, the holder 23 has an opening at its lower end for inflowing and outflowing the liquid, and the measuring section is further covered in whole or in part with a constant temperature jacket 25 so as to maintain a constant temperature during measurement. Measurements are made by visually or photoelectrically observing changes in blood volume, ie, decreases in liquid level.
生理食塩液供給部は生理食塩液タンク26とそ
れを体温またはそれに近い温度に保持するための
恒温器27から成り、この恒温器はホルダー部の
恒温ジヤケツト25と共通の熱媒体循環系により
操作されるが、場合により別の循環系でそれぞれ
単独に制御されてもよい。 The physiological saline supply section consists of a physiological saline tank 26 and a constant temperature chamber 27 for maintaining it at or near body temperature, and this constant temperature chamber is operated by a common heat medium circulation system with the constant temperature jacket 25 of the holder section. However, in some cases, each may be independently controlled by a separate circulatory system.
吸引機構は吸引圧一定のアスピレーター28と
電磁弁を介して接続されしかも底部に排出管29
を有する液留30、および可変吸引圧のアスピレ
ーター31、これに接続された引圧バツフアー3
2、圧力計33および底部に排出管を有する液留
34から成つている。 The suction mechanism is connected to an aspirator 28 with a constant suction pressure via a solenoid valve, and has a discharge pipe 29 at the bottom.
a liquid distillate 30 having a variable suction pressure, an aspirator 31 with variable suction pressure, and a suction buffer 3 connected thereto.
2. It consists of a pressure gauge 33 and a liquid distillate 34 with a discharge pipe at the bottom.
これら各部分は三方電磁弁A,B,C,Dおよ
び二方電磁弁E,Fおよびそれらの間を連通して
いる管路によつて接続されている。 These parts are connected by three-way solenoid valves A, B, C, and D, two-way solenoid valves E and F, and a pipe communicating between them.
フイルターを通過する血液の通過速度を光電的
に測定する態様においてはこれらの他に注入器か
らホルダー中を流下する血液の液面を自動的に検
出するためにホルダー注入器の周囲に光源部3
5、受光素子36および計時装置(図示せず)等
の組合せから成る光電検知装置が設けられていて
もよい。また必要に応じてこれをプリントや画像
として表示、記録するための装置と接続すること
もできる。 In the embodiment in which the speed of blood passing through the filter is photoelectrically measured, in addition to these, a light source unit 3 is installed around the holder injector in order to automatically detect the liquid level of blood flowing down from the injector into the holder.
5. A photoelectric detection device consisting of a combination of a light receiving element 36 and a timing device (not shown) may be provided. It can also be connected to a device for displaying or recording it as a print or image, if necessary.
次に本発明方法を第3図に例示した装置を用い
た場合について操作工程順に説明する。 Next, the method of the present invention will be explained in order of operation steps using the apparatus illustrated in FIG.
1 洗浄第1工程
フイルターホルダー23にフイルター22をセ
ツトする。これに注入器21を接続する。注入器
21の上端を吸引ノズル24と接続し、電磁バル
ブA,B,Fを開きかつE,Cを閉じることによ
り定圧アスピレーター28の最大吸引圧力が液留
30および吸引ノズル24を通して注入器21お
よびホルダー23にかかり、この作用でタンク2
6から恒温器27により所定の温度(ふつうは体
温)に維持された生理食塩液がフイルター22を
通して注入器21中に吸上げられる。これによつ
てフイルター中の気泡および前の測定工程で残留
した血液が除去される。1. First cleaning step: Set the filter 22 on the filter holder 23. A syringe 21 is connected to this. By connecting the upper end of the syringe 21 with the suction nozzle 24 and opening the electromagnetic valves A, B, and F and closing E and C, the maximum suction pressure of the constant pressure aspirator 28 is applied to the syringe 21 and the suction nozzle 24 through the liquid reservoir 30 and the suction nozzle 24. It hangs on the holder 23, and this action causes the tank 2 to
6, physiological saline maintained at a predetermined temperature (usually body temperature) by a thermostat 27 is drawn up into the syringe 21 through the filter 22. This removes air bubbles in the filter and blood remaining from previous measurement steps.
2 洗浄第2工程
バルブ操作回路を切替えることにより、電磁弁
A,C,D,Eを開き、Fを閉じ、Bを大気に開
放すると、定圧アスピレーター28の吸引圧は全
部液留34にかかり、注入器21内に存在する生
理食塩液は下降し、液留34に流入する。この際
生理食塩液をホルダー内に満たしたままにし、次
の測定工程でホルダー内に空気が封入されないよ
うにするのが好ましい。なお、洗浄第1工程と第
2工程とは、必要に応じて2〜3回繰返す。2. Second cleaning step By switching the valve operation circuit, solenoid valves A, C, D, and E are opened, F is closed, and B is released to the atmosphere. All the suction pressure of the constant pressure aspirator 28 is applied to the liquid reservoir 34. The saline present in the syringe 21 descends and flows into the reservoir 34 . At this time, it is preferable to leave the holder filled with physiological saline to prevent air from being trapped in the holder in the next measurement step. Note that the first cleaning step and the second cleaning step are repeated 2 to 3 times as necessary.
3 測定工程
電磁弁C,Fを閉じ、検体血液を満たした注入
器21をホルダーに接触した状態で電磁弁D,E
を開くと吸引圧可変アスピレーター31の吸引圧
が液留34にかかり、血液は注入器21内を流下
し、フイルターを通じて液留34に流れ込む。圧
力計33により、測定した一定吸引圧を付加し、
一定容量の血液がフイルターを通過するのに要す
る時間を測定することにより、または一定時間内
に流れる血液の量を測定することにより、赤血球
の変形能が測定される。この際注入器21、ホル
ダー23等の測定部位を恒温ジヤケツトで一定温
度(例えば体温)に保温しておくのが測定誤差を
小さくするために好ましい。3 Measurement process Close solenoid valves C and F, and with the syringe 21 filled with sample blood in contact with the holder, close solenoid valves D and E.
When opened, the suction pressure of the variable suction pressure aspirator 31 is applied to the liquid reservoir 34, and blood flows down inside the syringe 21 and flows into the liquid reservoir 34 through the filter. Adding a constant suction pressure measured by the pressure gauge 33,
The deformability of red blood cells is measured by measuring the time it takes for a given volume of blood to pass through a filter, or by measuring the amount of blood that flows in a given amount of time. At this time, it is preferable to keep the measuring parts such as the syringe 21 and the holder 23 at a constant temperature (for example, body temperature) with a constant temperature jacket in order to reduce measurement errors.
なお、時間および容量の測定は、肉眼による目
盛りの読取り、およびストツプウオツチ等の手動
操作で行なつてもよいが、誤差を少なくしかつ測
定効率を向上するために注入器内の血液の量的変
化を注入器の近くに設けられた光源35および受
光素子36の組合せ等から成る光電検知装置を設
け、これを適宜の時間または容量測定表示装置と
接続して自動的に行なうのが好ましい。またさら
にこれらの自動測定機構を画像またはプリンター
による表示記録装置等と接続することにより、自
動的に記録させるようにし、たとえば従来の装置
では測定できなかつた血液のフイルター通過量の
経時変化をも知ることができ、より精密な測定を
行なうことも可能となる。 Note that time and volume measurements may be performed by reading the scale with the naked eye or by manual operation such as using a stopwatch, but in order to reduce errors and improve measurement efficiency, quantitative changes in the blood in the syringe can be measured. Preferably, this is carried out automatically by providing a photoelectric detection device, such as a combination of a light source 35 and a light receiving element 36, located near the syringe and connecting this to an appropriate time or capacitance measuring and display device. Furthermore, by connecting these automatic measuring mechanisms to a display/recording device using an image or a printer, etc., they can be automatically recorded, and for example, changes over time in the amount of blood passing through a filter, which could not be measured with conventional devices, can be learned. It also becomes possible to perform more precise measurements.
本発明は上述した構成により次のような技術的
利点を有する。 The present invention has the following technical advantages due to the above-described configuration.
1 ホルダーおよびフイルターでの気泡発生を完
全に除去することにより、血液の流れを円滑に
し、測定精度を高めかつ良好な再現性を得るこ
とができる。1. By completely eliminating air bubbles in the holder and filter, blood flow can be made smoother, measurement precision can be increased, and good reproducibility can be obtained.
2 従来全く手動で行なわれていた洗浄および測
定等の操作のかなりの部分が自動化されるので
操作不馴れによる測定誤差の発生を防止でき、
作業が迅速化される。2. Since a large part of the operations such as cleaning and measurement, which were previously performed completely manually, is automated, it is possible to prevent measurement errors due to unfamiliar operation.
Work is done faster.
3 測定誤差が小さくなり、かつ検体血液のロス
が少なくてすむために1回の検体血液所要量が
従来の約半分(0.5ml)ですむ。3. Because measurement errors are reduced and there is less loss of sample blood, the amount of blood sample required for one time is about half (0.5ml) compared to conventional methods.
4 操作が簡便化されかつ測定時間が短縮される
ので、一定時間に多数の検体を処理できる。こ
のことは、とくに赤血球変形能が成人病と深い
関係にあることから、虚血性疾患の予防、早期
診断に役立つ。4. Since the operation is simplified and the measurement time is shortened, a large number of samples can be processed in a fixed period of time. This is particularly useful for the prevention and early diagnosis of ischemic diseases, since red blood cell deformability is closely related to adult diseases.
次に本発明を実施例により説明する。 Next, the present invention will be explained by examples.
第3図に示した配置により0.5mlガラス製注入
器を設置したホルダー(Nuclepore No.
FH013PL0010、GE社製品)内にフイルター
(Nuclepore No.N500CPR01300、GE社製品)を
装着する。生理食塩液は1のプラスチツク製タ
ンクから熱交換器型恒温器により37℃に保たれて
ホルダー内に導入される。液留30,34には
500mlガラス瓶を用い、三方電磁弁A,B,C,
DはUS−M5−37型(中京電機(株)製品)を、二方
テフロン電磁弁E,FはMTV−2−M6(高砂電
工(株)製品)を用いる。アスピレーターとしては電
動コンプレツサー(水循環駆動WP−45型、
100W、6〜7/分)を用い、定吸引圧側は約
−50mmHg、そして可変吸引圧側は約−7.4mmHg
で作動させた。注入器の外側を2個の窓を有する
温水ジヤケツトで囲み、窓を通してフイラメント
ランプ(2.4W、ROYAL H0853型、浜井電球(株)
製品)およびフオトセンサー(18アレイ、P884
型、浜松TV(株)製品)から成る液面検出用受光素
子を組合せた光電測定部を設け、血液が注入器の
所定目盛に達した時フオトセセンサーで液面を検
知し、その出力でデジタルタイマーが作動するよ
うにして時間を測定する。電磁弁および光電測定
の操作はリレー、スイツチ、マイクロコンピユー
ター、電源部等を適宜組合せたコントロールボツ
クスにより行なう。 A holder with a 0.5ml glass syringe installed according to the arrangement shown in Figure 3 (Nuclepore No.
Attach the filter (Nuclepore No.N500CPR01300, GE product) inside the filter (FH013PL0010, GE product). Physiological saline is introduced into the holder from a plastic tank 1, maintained at 37°C by a heat exchanger type incubator. In liquid distillates 30 and 34
Using a 500ml glass bottle, three-way solenoid valves A, B, C,
For D, use US-M5-37 type (manufactured by Chukyo Electric Co., Ltd.), and for two-way Teflon solenoid valves E and F, use MTV-2-M6 (manufactured by Takasago Electric Works, Ltd.). As an aspirator, an electric compressor (water circulation drive WP-45 type,
100W, 6-7/min), the constant suction pressure side is approximately -50mmHg, and the variable suction pressure side is approximately -7.4mmHg.
It was activated with. Surround the outside of the injector with a hot water jacket with two windows, and insert a filament lamp (2.4W, ROYAL H0853 type, Hamai Bulb Co., Ltd.) through the windows.
product) and photo sensor (18 array, P884
A photoelectric measurement unit is equipped with a light-receiving element for liquid level detection consisting of a type (type, product of Hamamatsu TV Co., Ltd.), and when the blood reaches the specified scale of the syringe, the photo sensor detects the liquid level, and the output is measured. Measure the time by activating the digital timer. The electromagnetic valves and photoelectric measurements are operated by a control box that includes a suitable combination of relays, switches, microcomputers, power supplies, etc.
上述の装置を用いて吸引圧約−7.4mmHgにおい
て、健康成人血液の赤血球変形能を測定したとこ
ろ、0.5mlの通過時間は約10〜14秒であつた。な
おフイルターをその都度交換し、注入器へ新しい
血液試料を注入するのみで1時間に約30回の測定
が可能であつた。 When the red blood cell deformability of healthy adult blood was measured using the above-mentioned device at a suction pressure of about -7.4 mmHg, the transit time for 0.5 ml was about 10 to 14 seconds. It was possible to perform about 30 measurements per hour by simply replacing the filter each time and injecting a new blood sample into the syringe.
第1図および第2図は従来のマイクロフイルタ
ーによる赤血球変形能測定装置の概略図であり、
そして第3図は本発明方法および装置の一例であ
る。
Figures 1 and 2 are schematic diagrams of a conventional microfilter-based red blood cell deformability measurement device.
FIG. 3 is an example of the method and apparatus of the present invention.
Claims (1)
速度によつて赤血球の変形能を測定するにあた
り、測定すべき血液の通過前にフイルターを生理
食塩液で充満させそして生理食塩液を排出させる
ことによつてフイルター洗浄することを特徴とす
る、赤血球変形能の測定方法。 2 生理食塩液によるフイルターの洗浄を血液の
流れと逆方向の流れで行なうことを特徴とする特
許請求の範囲第1項記載の方法。 3 フイルターを通過する血液量の変化を光電的
に検出、測定することを特徴とする特許請求の範
囲第1項又は第2項に記載の方法。 4 フイルターを収納したホルダーおよびホルダ
ーに接続された血液注入器から成る測定部、測定
部を洗浄するための生理食塩液供給部、吸引圧付
加機構、前記の測定部、生理食塩液供給部および
吸引圧付加機構のそれぞれの間に挿入された弁、
および生理食塩液により測定部を洗浄する洗浄工
程、注入器からフイルターを通して血液を通過さ
せる測定工程そして残留血液を生理食塩液で流出
させる洗浄排出工程をバルブの操作による吸引圧
付加機構との接続により順次切替えるための制御
部とから成る赤血球変形能測定装置。 5 生理食塩液および測定部の血液を保温するた
めの恒温器を付加的に備えたことを特徴とする特
許請求の範囲第4項記載の装置。 6 フイルターを通過することにより起る血液量
の変化を光電的に測定するための光電検知装置を
測定部に設けたことを特徴とする特許請求の範囲
第4項または第5項記載の装置。[Scope of Claims] 1. In measuring the deformability of red blood cells by the rate of passage of blood through a filter under suction pressure, the filter is filled with a physiological saline solution before the blood to be measured passes through the filter. A method for measuring red blood cell deformability, the method comprising washing a filter by discharging the red blood cell deformability. 2. The method according to claim 1, wherein the filter is washed with physiological saline in a direction opposite to the flow of blood. 3. The method according to claim 1 or 2, characterized in that changes in the amount of blood passing through the filter are photoelectrically detected and measured. 4. A measuring section consisting of a holder housing a filter and a blood injector connected to the holder, a physiological saline supply section for cleaning the measuring section, a suction pressure applying mechanism, the aforementioned measuring section, a physiological saline supply section, and a suction a valve inserted between each of the pressure applying mechanisms;
A cleaning process in which the measurement unit is cleaned with physiological saline, a measurement process in which blood is passed from the syringe through a filter, and a washing and discharge process in which residual blood is drained out with physiological saline are connected to a suction pressure applying mechanism by operating a valve. A red blood cell deformability measuring device comprising a control unit for sequential switching. 5. The apparatus according to claim 4, further comprising a thermostat for keeping the physiological saline solution and the blood in the measuring section warm. 6. The device according to claim 4 or 5, characterized in that the measurement section is provided with a photoelectric detection device for photoelectrically measuring changes in blood volume caused by passing through the filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10595880A JPS5730950A (en) | 1980-08-01 | 1980-08-01 | Measuring method for erythrocyte deformability and device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10595880A JPS5730950A (en) | 1980-08-01 | 1980-08-01 | Measuring method for erythrocyte deformability and device thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5730950A JPS5730950A (en) | 1982-02-19 |
JPS634146B2 true JPS634146B2 (en) | 1988-01-27 |
Family
ID=14421313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10595880A Granted JPS5730950A (en) | 1980-08-01 | 1980-08-01 | Measuring method for erythrocyte deformability and device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5730950A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59961U (en) * | 1982-06-25 | 1984-01-06 | 東亜医用電子株式会社 | Device that measures the characteristics of blood cells |
JPS5989955U (en) * | 1982-12-10 | 1984-06-18 | ミサワホ−ム株式会社 | Building snow melting structure |
JPS62187021U (en) * | 1986-05-16 | 1987-11-28 | ||
JP2671918B2 (en) * | 1991-12-17 | 1997-11-05 | ミサワホーム株式会社 | Roof structure of building |
KR102033147B1 (en) | 2017-11-24 | 2019-10-16 | 한국기계연구원 | Method for additive manufacturing |
JP7243977B2 (en) * | 2019-01-08 | 2023-03-22 | 株式会社梁瀬産業社 | antigen capture device |
-
1980
- 1980-08-01 JP JP10595880A patent/JPS5730950A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5730950A (en) | 1982-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3713328A (en) | Automatic measurement of viscosity | |
US4240408A (en) | Peritoneal dialysis apparatus | |
US3997420A (en) | Automatic analyzer | |
US3449081A (en) | Test kit | |
US2934067A (en) | Blood oxygenating apparatus | |
DK157379B (en) | APPLICATION FOR DETERMINATION OF CLEANER, ISAE BLOOD PLASMA, VISCOSITY AND DENSITY | |
US3982898A (en) | Apparatus for collecting urine sample | |
JPH0477669A (en) | Automatic analyzer | |
JPH04232834A (en) | Method and apparatus for forming cell specimen for inspection | |
JPH0324987B2 (en) | ||
US4884577A (en) | Process and apparatus for measuring blood viscosity directly and rapidly | |
US3865549A (en) | Auto-analytical apparatus and analytical methods | |
US4201470A (en) | Method and apparatus for measurement and registration of the aggregation rate of particles suspended in a liquid | |
US4236988A (en) | Apparatus for measuring ion activities | |
US3639829A (en) | MEASURING INSTRUMENT FOR THE DETERMINATION OF THE PARTIAL PRESSURE OF OXYGEN AND CARBON DIOXIDE AND OF THE pH VALUE OF A BLOOD SAMPLE | |
US3782173A (en) | Viscosimeter | |
DK150803B (en) | PROCEDURE AND APPARATUS FOR TRANSFER OF A LIQUID SAMPLE TO A REACTION VESSEL | |
CA1198970A (en) | Apparatus to evaluate the "erythrayte sedimentation rate" (esr) in several samples | |
JPS634146B2 (en) | ||
CA1122033A (en) | Osmometer for colloid osmometry | |
JPS5848053B2 (en) | Kogakubun Sekiyoueki Oileruyouki | |
GB1603483A (en) | Dialysis apparatus and technique | |
JPS589050A (en) | Method and apparatus for measuring content of endotoxin | |
US3545864A (en) | Apparatus and method for determining gastro-enteral absorption quota | |
JPS5885159A (en) | Testing device of elution |