JPS634140B2 - - Google Patents

Info

Publication number
JPS634140B2
JPS634140B2 JP54110747A JP11074779A JPS634140B2 JP S634140 B2 JPS634140 B2 JP S634140B2 JP 54110747 A JP54110747 A JP 54110747A JP 11074779 A JP11074779 A JP 11074779A JP S634140 B2 JPS634140 B2 JP S634140B2
Authority
JP
Japan
Prior art keywords
hydrogen chloride
absorption liquid
gas
exhaust gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54110747A
Other languages
Japanese (ja)
Other versions
JPS5635049A (en
Inventor
Masaki Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Corp
Original Assignee
DKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp filed Critical DKK Corp
Priority to JP11074779A priority Critical patent/JPS5635049A/en
Publication of JPS5635049A publication Critical patent/JPS5635049A/en
Publication of JPS634140B2 publication Critical patent/JPS634140B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は産業廃棄物等の焼却の際に発生する排
ガス中の塩化水素の濃度を測定する塩化水素測定
装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a hydrogen chloride measuring device that measures the concentration of hydrogen chloride in exhaust gas generated during the incineration of industrial waste.

近年、化学工業の発展に伴い産業廃棄物等の焼
却の際に発生する排ガス中の塩化水素ガスの濃度
は増大する傾向を示しており、特に塩化ビニルの
使用量の増加に伴ないその傾向が顕著であるが、
この塩化水素ガスに起因する焼却炉材の腐蝕及び
大気汚染等の見地からもその濃度を長時間に亘り
連続的に測定する必要がある。
In recent years, with the development of the chemical industry, the concentration of hydrogen chloride gas in the exhaust gas generated when industrial waste is incinerated has shown a tendency to increase, and this trend is particularly increasing with the increase in the amount of vinyl chloride used. Although remarkable,
From the viewpoint of corrosion of incinerator materials and air pollution caused by this hydrogen chloride gas, it is necessary to continuously measure its concentration over a long period of time.

従来、排ガス中の塩化水素の濃度の測定方法と
して、塩化水素ガスが非常に水に溶解し易い性質
を有することを利用し、排ガス中の塩化水素ガス
を吸収液に吸収させた後、この吸収液中に生じた
塩素イオンの濃度を塩素イオン電極を用いて分析
することにより排ガス中の塩化水素ガス濃度を連
続的に測定する方法がある。そしてこの場合、前
記吸収液には塩素イオン電極と組合わせて使用す
る比較電極のジヤンクシヨンポテンシヤルを少な
くし、電極電位を安定化させるために、前記吸収
液にあらかじめPH緩衝液又は中性塩等を若干溶解
させて使用している。しかし、排ガス中の塩化水
素測定装置の連続運転のために、このようなPH緩
衝試薬等を含む吸収液を塩素イオンの混入、汚染
を完全に防止した状態で長期間多量にストツクす
ることは実際上困難であり、またタンクの大きさ
にも制約があるので、従来はせいぜい1〜2週間
程度の自動連続運転しかできず、その保守点検に
多大の労力を要するものであつた。
Conventionally, the concentration of hydrogen chloride in exhaust gas has been measured using the fact that hydrogen chloride gas is highly soluble in water. There is a method of continuously measuring the concentration of hydrogen chloride gas in the exhaust gas by analyzing the concentration of chlorine ions generated in the liquid using a chlorine ion electrode. In this case, in order to reduce the juncture potential of the reference electrode used in combination with the chloride ion electrode and to stabilize the electrode potential, the absorption solution is preliminarily added with a PH buffer solution or a neutral salt, etc. It is used by slightly dissolving it. However, in order to continuously operate a device for measuring hydrogen chloride in exhaust gas, it is not practical to store a large amount of absorption liquid containing such PH buffer reagents for a long period of time while completely preventing contamination and contamination with chlorine ions. In addition, since there are restrictions on the size of the tank, conventional automatic continuous operation could only be performed for about one to two weeks at most, and maintenance and inspection thereof required a great deal of effort.

本発明者はこれらの問題点を解決するものとし
て、すでに吸収液としてPH緩衝試薬又は中性塩等
を溶解していないイオン交換水を用いて排ガス中
の塩化水素測定を行なつた場合、排ガス中の炭酸
ガス、亜硫酸ガス、窒素酸化物等の多量の共存ガ
ス(たとえば、煙道排ガス中には通常炭酸ガスは
約10%程度、亜硫酸ガス及び窒素酸化物は
100ppm程度含有する。)が吸収液に塩化水素とと
もに吸収溶解され、炭酸イオン、亜硫酸イオン、
亜硝酸イオン等の各種のイオンを生ずるため吸収
液の導電率が高くなり、PH緩衝試薬等を用いずと
も安定かつ正確に塩素イオン電極が作動し、良好
に塩素イオン濃度を検出することができると共
に、濃度測定後の吸収液をイオン交換樹脂を用い
て脱イオン化し、これを吸収液として再度循環使
用することにより吸収液の補給がなくても長期間
自動連続運転をすることを可能とした排ガス中塩
化水素測定装置を提案した(特願昭54−66652
号)。
In order to solve these problems, the present inventor has proposed that when measuring hydrogen chloride in exhaust gas using ion-exchanged water in which PH buffer reagent or neutral salts are not dissolved as an absorption liquid, Large amounts of coexisting gases such as carbon dioxide, sulfur dioxide, and nitrogen oxides (for example, flue gas usually contains about 10% carbon dioxide, and sulfur dioxide and nitrogen oxides
Contains about 100ppm. ) is absorbed and dissolved in the absorption liquid together with hydrogen chloride, and carbonate ions, sulfite ions,
Since various ions such as nitrite ions are generated, the conductivity of the absorption liquid becomes high, and the chloride ion electrode operates stably and accurately without using a PH buffer reagent, allowing for good detection of chloride ion concentration. In addition, by deionizing the absorption liquid after concentration measurement using an ion exchange resin and recirculating it as an absorption liquid, it is possible to operate automatically and continuously for long periods of time without replenishing the absorption liquid. Proposed a device for measuring hydrogen chloride in exhaust gas (Patent application 1986-66652)
issue).

本発明者はその後さらに検討した結果、吸収液
としてPH緩衝試薬又は中性塩等を添加していない
通常の水道水や井戸水、又は工業用水等を用いて
排ガス中の塩化水素測定を行なつた場合、これら
の吸収液には殺菌の目的で塩素が添加されている
が、これは残留塩素であり、この濃度は通常1〜
0.5ppmで、しかも塩素イオン電極に応答しない。
さらに排ガス中の塩化水素濃度は通常これよりも
かなり高い(例えば、焼却炉の煙道排ガス中の塩
化水素濃度は普通数百ppm程度である)から、排
ガス中の塩化水素の濃度の測定に際し、吸収液に
水道水等を使用しても実際上測定値に与える残留
塩素の影響は無視することができる。また水道水
は純水と異なり、若干の塩類を溶解しているの
で、通常数百μ/cm程度の導電率を持つ導電性
を有するものであり、さらに前述のように排ガス
中に多量の共存するガスが吸収液に塩化水素と共
に吸収溶解され各種のイオンを生じるため吸収液
の導電性が高くなり、PH緩衝試薬等を用いずとも
安定かつ正確に塩素イオン電極が作動し、良好に
塩素イオン濃度を検出することができることを知
見して本発明を完成するに至つたもので、その目
的とするところは数箇月もの長期間、連続自動運
転が可能な排ガス中塩化水素測定装置を提供する
ことにある。
As a result of further investigation, the inventor of the present invention measured hydrogen chloride in exhaust gas using ordinary tap water, well water, industrial water, etc. to which no PH buffering reagent or neutral salt was added as an absorption liquid. In some cases, chlorine is added to these absorption solutions for the purpose of sterilization, but this is residual chlorine, and this concentration is usually between 1 and 2.
0.5ppm and does not respond to the chlorine ion electrode.
Furthermore, since the concentration of hydrogen chloride in flue gas is usually much higher than this (for example, the concentration of hydrogen chloride in flue gas from an incinerator is usually on the order of several hundred ppm), when measuring the concentration of hydrogen chloride in flue gas, Even if tap water or the like is used as the absorption liquid, the influence of residual chlorine on the measured values can be practically ignored. Also, unlike pure water, tap water has some dissolved salts, so it has conductivity with a conductivity of usually several hundred μ/cm, and as mentioned above, a large amount of salt coexists in exhaust gas. The gas is absorbed and dissolved into the absorption liquid along with hydrogen chloride, producing various ions, which increases the conductivity of the absorption liquid, allowing the chloride ion electrode to operate stably and accurately without using a PH buffer reagent, etc., and effectively absorbing chloride ions. The present invention was completed based on the knowledge that the concentration could be detected, and the purpose is to provide a device for measuring hydrogen chloride in exhaust gas that can be operated continuously and automatically for a long period of several months. It is in.

以下、本発明の一実施例につき図面を参照して
説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図中1は煙突で、その一側壁を開口して煙道内
の排ガスを取り出すための加熱プローブ2が挿入
されており、このプローブ2は加熱サンプリング
チユーブ3を介して吸収管4の排ガス入口部4a
に接続している。なお、5,6はそれぞれ温調器
で、これら加熱プローブ2から吸収管4に至る部
分の内部を通る煙道ガスが冷却されて露点以下と
ならないように区域A,Bがそれぞれ温調器5,
6で制御されるヒーターにより加熱される。ま
た、チユーブ3内の末端側には温度計7が挿入さ
れている。
In the figure, reference numeral 1 denotes a chimney, into which a heating probe 2 is inserted to open one side wall of the chimney and take out the exhaust gas in the flue.
is connected to. Note that 5 and 6 are temperature controllers, respectively, and zones A and B are each equipped with a temperature controller 5 to ensure that the flue gas passing through the portion from the heating probe 2 to the absorption tube 4 is cooled and does not drop below the dew point. ,
It is heated by a heater controlled by 6. Further, a thermometer 7 is inserted into the tube 3 at its distal end.

前記吸収管4の吸収液入口部4bは吸収液タン
ク8と吸収液の流れに沿つて順次トラツプ9、3
方コツク10及び送液ポンプ11を介して接続さ
れている。そして前記吸収液タンク8には吸収液
タンク8内に水道水を送給するための電磁バルブ
12を介装する水道水導入管13が接続されてい
る。また吸収液タンク8には液面検知電極14,
14′が取り付けられており、この液面検知電極
14,14′は液面制御器15を介して前記電磁
バルブ12と電気的に接続されている。なお、1
6は3方コツク10に接続する等価液容器であ
る。
The absorption liquid inlet 4b of the absorption tube 4 connects to the absorption liquid tank 8 and traps 9 and 3 sequentially along the flow of the absorption liquid.
They are connected via a pump 10 and a liquid pump 11. A tap water inlet pipe 13 is connected to the absorbent tank 8 and has an electromagnetic valve 12 interposed therein for supplying tap water into the absorbent tank 8 . In addition, the absorption liquid tank 8 includes a liquid level detection electrode 14,
14' is attached, and these liquid level detection electrodes 14, 14' are electrically connected to the electromagnetic valve 12 via a liquid level controller 15. In addition, 1
6 is an equivalent liquid container connected to the three-way pot 10.

前記吸収管4の吸収液出口部4cは反応管17
を介して気液分離器18に接続していると共に、
この分離器18の下端はテフロン(登録商標名)
コイル19を介して塩素イオン電極20及比較電
極21が配設された測定装置22の試料入口部2
2aと接続し、前記分離器18で気体と分離され
た吸収液が測定装置22内で導入され、その中の
塩素イオン濃度が測定される。その測定値は電気
的にアンプ23で増幅され、レコーダ24に表示
される。また、前記測定装置22の試料出口部2
2bは、排液ポンプ25、液計量器26、バルブ
27を介して排液タンク28に接続している。な
お、排液ポンプ25は煙道の圧力変動、および反
応管17、テフロンコイル19による吸収液の流
路の抵抗があつても測定装置22を流れる吸収液
の排出に支障をきたさないようにするためのもの
である。
The absorption liquid outlet portion 4c of the absorption tube 4 is connected to the reaction tube 17.
is connected to the gas-liquid separator 18 via
The lower end of this separator 18 is made of Teflon (registered trademark).
A sample inlet section 2 of a measuring device 22 in which a chloride ion electrode 20 and a reference electrode 21 are arranged via a coil 19
2a, the absorption liquid separated from gas by the separator 18 is introduced into the measuring device 22, and the chloride ion concentration therein is measured. The measured value is electrically amplified by an amplifier 23 and displayed on a recorder 24. Further, the sample outlet section 2 of the measuring device 22
2b is connected to a drain tank 28 via a drain pump 25, a liquid meter 26, and a valve 27. In addition, the drain pump 25 is designed so that the discharge of the absorption liquid flowing through the measuring device 22 will not be hindered even if there is pressure fluctuation in the flue or resistance in the flow path of the absorption liquid due to the reaction tube 17 and the Teflon coil 19. It is for.

また、前記気液分離器18の上側部は電子除湿
器29に接続し、分離器18で吸収液と分離され
た気体成分がこの除湿器29に流入し、乾燥され
るようになつており、乾燥された気体成分は次い
でフイルター30、流量計31、吐出量を一定と
したガス吸引ポンプ32を通り、排気口33から
排出される。この場合、排ガスの吸引量は流量計
31に配設した流量検出器(図示せず)からの信
号により流量制御回路34及び可逆電動機35が
動作して流量調整弁36を開閉し、大気吸入口3
7からフイルター38を介して吸入する大気量を
増減することによつて自動制御している。また。
前記電子除湿器29内に凝集した水はドレイント
ラツプ39に一時集められた後、一定時間の経過
毎にタイマ40の指示でピンチバルブ41、ピン
チバルブ42が開き、排液口43より排出され
る。なお、この排液口43はバルブ44を介して
前記吸収液タンク8に連通している。また、図面
において、吸収管4、反応管17、分離器18、
テフロンコイル19、測定装置22、トラツプ
9、及び流量計31を含む一点鎖線でかこんだ区
域Cは温調器45が配設されて所定温度に加温さ
れるようになつており、図中太線は液体の流路、
細線は気体の流路、鎖線は電気的接続を示す。
Further, the upper part of the gas-liquid separator 18 is connected to an electronic dehumidifier 29, and the gas component separated from the absorption liquid in the separator 18 flows into the dehumidifier 29 and is dried. The dried gas component then passes through a filter 30, a flow meter 31, a gas suction pump 32 whose discharge amount is constant, and is discharged from an exhaust port 33. In this case, the amount of exhaust gas suction is determined by operating the flow control circuit 34 and reversible motor 35 to open and close the flow rate regulating valve 36 in response to a signal from a flow rate detector (not shown) disposed in the flow meter 31. 3
Automatic control is performed by increasing or decreasing the amount of air taken in from 7 through the filter 38. Also.
After the water condensed in the electronic dehumidifier 29 is temporarily collected in the drain trap 39, the pinch valve 41 and the pinch valve 42 are opened according to the instructions of the timer 40 every time a certain period of time has elapsed, and the water is discharged from the drain port 43. Ru. Note that this drain port 43 communicates with the absorption liquid tank 8 via a valve 44. In addition, in the drawing, an absorption tube 4, a reaction tube 17, a separator 18,
A temperature controller 45 is installed in the area C surrounded by the dashed line, which includes the Teflon coil 19, the measuring device 22, the trap 9, and the flow meter 31, and is heated to a predetermined temperature, as indicated by the thick line in the figure. is the liquid flow path,
Thin lines indicate gas flow paths, and chain lines indicate electrical connections.

次に、上記のように構成した排ガス中の塩化水
素濃度の測定装置を用いて煙道中の排ガスに含ま
れる塩化水素濃度を測定する場合について説明す
ると、まずガス吸引ポンプ32を作動させ、煙道
中の排ガスを加熱プローブ2内に導入する。な
お、排ガスの導入量(吸引量)は上述した記載の
通り自動制御されている。加熱プローブ2に流入
した排ガスは次いで加熱サンプリングチユーブ3
を通つた後、吸収管4内に流入する。この間、排
ガスは高温、例えば120℃以上に保たれ、水分の
凝結が防止される。
Next, to explain the case of measuring the hydrogen chloride concentration contained in the flue gas in the flue using the measuring device for the hydrogen chloride concentration in the flue gas configured as described above, first, the gas suction pump 32 is activated, and the hydrogen chloride concentration in the flue is of exhaust gas is introduced into the heating probe 2. Note that the amount of exhaust gas introduced (suction amount) is automatically controlled as described above. The exhaust gas flowing into the heating probe 2 then passes through the heating sampling tube 3
After passing through, it flows into the absorption tube 4. During this time, the exhaust gas is kept at a high temperature, for example 120°C or higher, to prevent moisture from condensing.

一方、吸収液タンク8内の吸収液は水道水であ
り、通常の水道水が電磁バルブ12及び水道水導
入管13を通つて吸収液タンク8に流入し吸収液
を補充するようになつており、その流入量は吸収
液タンク8内に取り付けた液面検知電極14,1
4′、流量制御器15及び前記電磁バルブ12よ
りなる自動制御系により制御され、吸収液タンク
内の吸収液レベルを常時ほぼ一定に維持してい
る。そして前記吸収液は送液ポンプ11の作動に
より、吸収液タンク8よりトラツプ9に一定流量
で流入し、ここで充分泡抜きをした後、3方コツ
ク10を通り前記吸収管4に流入し、前記排ガス
と混合する。水道水と混合された排ガスは次いで
反応管17を通つた後、気液分離器18に流入す
るが、吸収管4より反応管17を通る際、十分に
気液接触が行われ、排ガス中の塩化水素及び
CO2、SOx、NOx等が水道水に吸収される。
On the other hand, the absorption liquid in the absorption liquid tank 8 is tap water, and ordinary tap water flows into the absorption liquid tank 8 through the electromagnetic valve 12 and the tap water introduction pipe 13 to replenish the absorption liquid. , the inflow amount is determined by the liquid level detection electrodes 14, 1 installed in the absorption liquid tank 8.
4', a flow rate controller 15, and the electromagnetic valve 12, which are controlled by an automatic control system to keep the absorbent level in the absorbent tank almost constant at all times. Then, the absorption liquid flows from the absorption liquid tank 8 into the trap 9 at a constant flow rate by the operation of the liquid sending pump 11, and after sufficiently removing bubbles there, it flows into the absorption pipe 4 through the three-way tank 10, mixed with the exhaust gas. The exhaust gas mixed with tap water then passes through the reaction tube 17 and then flows into the gas-liquid separator 18. When passing through the reaction tube 17 from the absorption tube 4, sufficient gas-liquid contact occurs, and the hydrogen chloride and
CO 2 , SO x , NO x etc. are absorbed into tap water.

次に、気液分離器18で気体が分離された吸収
液は、テフロンコイル19を通つて測定装置22
内に流れ、ここで塩素イオン電極20によりCL-
イオンが検出され、この検出値はアンプ23で増
幅され、レコーダ24に記録される。なお、前記
装置22内の吸収液の流量は送液ポンプ11によ
り常に一定とされ、測定値の正確さが保障され
る。吸収液は次いで排液ポンプ25、液計量器2
6、バルブ27を経て排液タンク28内に入り、
貯えられる。
Next, the absorption liquid from which gas has been separated by the gas-liquid separator 18 passes through a Teflon coil 19 to a measuring device 22.
The chlorine ion electrode 20 causes CL -
Ions are detected, and the detected value is amplified by an amplifier 23 and recorded on a recorder 24. Note that the flow rate of the absorption liquid in the device 22 is always kept constant by the liquid feeding pump 11, thereby ensuring the accuracy of the measured values. The absorption liquid is then passed through a drainage pump 25 and a liquid meter 2.
6. Enter the drain tank 28 through the valve 27,
Can be stored.

他方、気液分離器18で分離された気体は、電
子除湿器29、フイルター30、流量計31、ガ
ス吸引ポンプ32を経て、排気口33から系外に
排出される。
On the other hand, the gas separated by the gas-liquid separator 18 passes through an electronic dehumidifier 29, a filter 30, a flow meter 31, and a gas suction pump 32, and is discharged out of the system from an exhaust port 33.

而して、上述した排ガス中の塩化水素ガス濃度
の測定において、測定装置22内を流れる吸収液
は水道水に排ガスを接触させ、塩化水素及び共存
するCO2、SOx、NOxガスを吸収したもので、吸
収液はH+、CO3 2-、SO3 2-、NO2 -等のイオンに
よる導電率と、水道水が始めより有する導電率と
によりかなりの導電率を示すことになり、これら
の各イオンが共存する水溶液であるから、塩素イ
オン濃度を塩素イオン電極20と比較電極21の
組合せによつて測定する場合、上記共存ガスの吸
収による各イオンの存在と、これによる水溶液の
導電率、および水道水が始めより有する導電率に
よつて電極電位が安定し、良好に塩素イオンを検
出することができる。従つて、吸収液としてアル
カリ溶液、緩衝溶液等を用いる必要がなく、吸収
管4に吸収液として水道水を導入するだけで排ガ
ス中の塩化水素ガスは十分に捕集され、かつ塩素
イオン電極20による塩素イオンの測定も電極電
位が安定化するので正確に行われる。更に、従来
の吸収液としてPH緩衝試薬、中性塩等を加えたも
のを用いている装置の場合は自動連続運転期間が
吸収液ストツクの関係からせいぜい1〜2週間程
度であつたが、本発明においては吸収液に水道水
を使用しているので、単に水道管と本装置とを配
管するだけで吸収液が長期間に亘り補給できるの
で、吸収液を補給するメンテナンスを行うことな
く、長期間の自動連続運転、連続測定ができる。
In the above-mentioned measurement of the concentration of hydrogen chloride gas in the exhaust gas, the absorption liquid flowing in the measuring device 22 brings the exhaust gas into contact with tap water and absorbs hydrogen chloride and the coexisting CO 2 , SO x , and NO x gases. As a result, the absorption liquid exhibits a considerable electrical conductivity due to the electrical conductivity due to ions such as H + , CO 3 2- , SO 3 2- , NO 2 - and the electrical conductivity that tap water has from the beginning. Since this is an aqueous solution in which each of these ions coexists, when measuring the chloride ion concentration using a combination of the chloride ion electrode 20 and the reference electrode 21, the presence of each ion due to absorption of the coexisting gas and the concentration of the aqueous solution due to this are determined. The electrode potential is stabilized by the electrical conductivity and the electrical conductivity that tap water has from the beginning, and chlorine ions can be detected satisfactorily. Therefore, there is no need to use an alkaline solution, a buffer solution, etc. as an absorption liquid, and hydrogen chloride gas in the exhaust gas can be sufficiently collected by simply introducing tap water as an absorption liquid into the absorption tube 4, and the chloride ion electrode 20 The measurement of chloride ions can also be carried out accurately because the electrode potential is stabilized. Furthermore, in the case of conventional devices that use PH buffer reagents, neutral salts, etc. as absorption liquid, the automatic continuous operation period is at most one to two weeks due to the absorption liquid stock. In the invention, tap water is used as the absorption liquid, so the absorption liquid can be replenished for a long period of time simply by connecting the water pipe to this device. Automatic continuous operation and continuous measurement are possible.

なお、上記実施例においては吸収液として水道
水を用いたが、これに限られることはなく、井戸
水又は工業用水等を用いることもでき、その他の
構成についても本考案の要旨を逸脱しない限り
種々変形して差支えない。
Although tap water was used as the absorption liquid in the above embodiments, it is not limited to this, and well water, industrial water, etc. may also be used, and various other configurations may be used without departing from the gist of the present invention. There is no problem with deformation.

以上説明したように、本発明によれば吸収液と
してPH緩衝試薬、中性塩等を溶解していない水道
水等を用いて塩化水素ガスを吸収しても、同時に
他の共存ガスも吸収され、液の導電率が上がり、
また水道水が始めより有する導電率により正確に
塩化水素ガス濃度を測定でき、また吸収液を定期
的に補給する必要がないから長期間に亘り連続自
動運転ができ、産業廃棄物等の焼却の際に発生す
る排ガス中の塩化水素ガスの濃度を連続して測定
できる。更に吸収液にアルカリ溶液、緩衝溶液等
を用いていないから、これらの薬品は不用とな
り、ランニングコストの点で有利であると共に、
これらのアルカリ溶液や緩衝液等を用いた従来の
装置の場合に生じるアルカリ等の試薬の析出及び
これに基づく各種のトラブルから解放される。そ
の上、先に本発明者が提案した、吸収液をイオン
交換樹脂で脱イオン化し、これを吸収液として再
度循環使用する排ガス中塩化水素測定装置と異な
り、本発明によればイオン交換樹脂を用いていな
いからイオン交換樹脂を著しく劣化させもしくは
再生不可能とするような有害成分を含む排ガス中
の塩化水素の濃度の測定も行なうことができ、更
にイオン交換樹脂を再生する手間も不要である等
の利点を有する。
As explained above, according to the present invention, even if hydrogen chloride gas is absorbed using tap water or the like in which PH buffer reagents, neutral salts, etc. are not dissolved as the absorption liquid, other coexisting gases are also absorbed at the same time. , the conductivity of the liquid increases,
In addition, the hydrogen chloride gas concentration can be measured accurately due to the electrical conductivity that tap water has from the beginning, and since there is no need to regularly replenish absorbent liquid, continuous automatic operation can be performed for long periods of time, making it possible to prevent the incineration of industrial waste, etc. The concentration of hydrogen chloride gas in the exhaust gas generated during the process can be measured continuously. Furthermore, since no alkaline solution, buffer solution, etc. are used in the absorption liquid, these chemicals are not required, which is advantageous in terms of running costs.
It is free from the precipitation of reagents such as alkali and the various troubles caused by this, which occur in the case of conventional apparatuses using these alkaline solutions, buffer solutions, and the like. Furthermore, unlike the device for measuring hydrogen chloride in exhaust gas previously proposed by the present inventor, which deionizes the absorption liquid with an ion exchange resin and recirculates it as an absorption liquid, the present invention uses an ion exchange resin. It is also possible to measure the concentration of hydrogen chloride in the exhaust gas, which contains harmful components that would significantly deteriorate the ion exchange resin or make it unrecyclable because it is not used, and there is no need to take the trouble of regenerating the ion exchange resin. It has the following advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すフローシートで
ある。 1……煙突、2……プローブ、4……吸収管、
8……吸収液タンク、11……送液ポンプ、22
……測定装置。
The drawing is a flow sheet showing one embodiment of the present invention. 1... Chimney, 2... Probe, 4... Absorption tube,
8...Absorption liquid tank, 11...Liquid feeding pump, 22
……measuring device.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化水素の濃度を測定すべき排ガスとこの排
ガス中の塩化水素及び共存ガスを吸収する水道
水、井戸水又は工業用水とが供給される吸収管
と、塩素イオン電極及び比較電極を備え、これら
塩素イオン電極及び比較電極で前記塩化水素及び
共存ガスを吸収した水道水、井戸水又は工業用水
中の塩化水素濃度を測定する測定装置とを具備し
てなることを特徴とする排ガス中塩化水素測定装
置。
1.Equipped with an absorption pipe to which exhaust gas whose concentration of hydrogen chloride is to be measured and tap water, well water, or industrial water that absorbs hydrogen chloride and coexisting gases in this exhaust gas are supplied, a chlorine ion electrode and a reference electrode, A measuring device for measuring hydrogen chloride in exhaust gas, comprising a measuring device for measuring the concentration of hydrogen chloride in tap water, well water, or industrial water that has absorbed the hydrogen chloride and coexisting gas using an ion electrode and a reference electrode.
JP11074779A 1979-08-30 1979-08-30 Measuring unit of hydrogen chloride in exhaust gas Granted JPS5635049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11074779A JPS5635049A (en) 1979-08-30 1979-08-30 Measuring unit of hydrogen chloride in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11074779A JPS5635049A (en) 1979-08-30 1979-08-30 Measuring unit of hydrogen chloride in exhaust gas

Publications (2)

Publication Number Publication Date
JPS5635049A JPS5635049A (en) 1981-04-07
JPS634140B2 true JPS634140B2 (en) 1988-01-27

Family

ID=14543513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11074779A Granted JPS5635049A (en) 1979-08-30 1979-08-30 Measuring unit of hydrogen chloride in exhaust gas

Country Status (1)

Country Link
JP (1) JPS5635049A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234541A (en) * 2005-02-24 2006-09-07 Koike Sanso Kogyo Co Ltd Measuring method and measuring instrument for hydrogen chloride
CN112147287B (en) * 2020-10-21 2024-01-23 西安热工研究院有限公司 Online measurement system and method for HCl in flue gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427690B2 (en) * 1972-05-02 1979-09-11

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730608Y2 (en) * 1977-07-25 1982-07-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427690B2 (en) * 1972-05-02 1979-09-11

Also Published As

Publication number Publication date
JPS5635049A (en) 1981-04-07

Similar Documents

Publication Publication Date Title
US5820823A (en) Method and apparatus for the measurement of dissolved carbon
US5667651A (en) Apparatus and associated method for reducing an undesired constituent of gas associated with wastewater and having sensor fault detection
US3844719A (en) Mercury metal analyzer
US4911891A (en) Sample monitoring instrument for on-line application
WO1997021096A1 (en) Method and apparatus for the measurement of dissolved carbon
US20060137433A1 (en) Apparatus for measuring mercury contained in gaseous medium
JPS634140B2 (en)
JPS634139B2 (en)
JPH022919A (en) Method of continuously analyzing chloride ion existing in water of head of distillation column of hydrocarbon and analyzer for implementing the same
US20230314332A1 (en) Analysis system and management system, analysis method, and analysis program
JPH09248420A (en) Wet type flue gas desulfurization apparatus
JP4388934B2 (en) Method for determining CaCO3 content in scrubber liquid and apparatus for determination
US7273561B1 (en) Method for determining the chemical dosage required to reduce sulfides in wastewater to acceptable levels
ZA200209436B (en) Method and device for measuring a component in a liquid sample.
EP0466303A2 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
JP2692276B2 (en) Total organic carbon meter with blank check mechanism
CN109738571A (en) A kind of device and method dividing Valence change and measurement for gaseous mercury
JP2005013791A (en) Air cleaner, method for controlling water supply and drainage and method for controlling water supply to impregnated part
JPS60252262A (en) Method for measuring hydrogen sulfide
SU1481666A1 (en) Method and apparatus for sodium ion concentration
US6617168B1 (en) Evaluation method and evaluation system of free hypohalous acid concentration
JPH01219559A (en) Organic carbon measuring instrument
JP3089867B2 (en) Salt detection method and apparatus
JPH059654Y2 (en)
JPH0713633B2 (en) Total organic carbon meter