JPS634128B2 - - Google Patents

Info

Publication number
JPS634128B2
JPS634128B2 JP54140671A JP14067179A JPS634128B2 JP S634128 B2 JPS634128 B2 JP S634128B2 JP 54140671 A JP54140671 A JP 54140671A JP 14067179 A JP14067179 A JP 14067179A JP S634128 B2 JPS634128 B2 JP S634128B2
Authority
JP
Japan
Prior art keywords
infrared
heated
light receiving
detector
window surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54140671A
Other languages
Japanese (ja)
Other versions
JPS5664622A (en
Inventor
Norisuke Fukuda
Reo Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14067179A priority Critical patent/JPS5664622A/en
Priority to GB8034207A priority patent/GB2062428B/en
Priority to US06/200,032 priority patent/US4360723A/en
Priority to CA000363488A priority patent/CA1142602A/en
Priority to DE3041122A priority patent/DE3041122C2/en
Publication of JPS5664622A publication Critical patent/JPS5664622A/en
Publication of JPS634128B2 publication Critical patent/JPS634128B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0804Shutters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0815Light concentrators, collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0893Arrangements to attach devices to a pyrometer, i.e. attaching an optical interface; Spatial relative arrangement of optical elements, e.g. folded beam path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control

Description

【発明の詳細な説明】 本発明は、被加熱物から放射される赤外線を検
出して高周波出力を制御する赤外線検出装置を設
けた電子レンジの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a microwave oven equipped with an infrared detection device that detects infrared rays emitted from an object to be heated and controls high frequency output.

電子レンジでは、被加熱物の加熱温度を把握し
て加熱条件を調整することが効果的な運用を図る
為に重要である。このような目的を達成するため
に、従来より赤外線検出装置を使つて被加熱物と
は非接触に温度検出を行うことが試みられている
が種々の問題があつた。たとえば、受光赤外線強
度が検出器と被加熱物との間の距離の2乗に反比
例して低下するので、これを補正する必要がある
が、この補正手段が複雑化する問題があつた。ま
た、レンズ系を用いて赤外線を集光する試みもな
されているが構成の複雑化を招くとともにコスト
アツプになり、しかも、付随的に電子レンジの電
波エネルギによつて検出器が誤動作することが
往々にしてあり、信頼性の良い温度検出が期待で
きなかつた。
In order to operate a microwave oven effectively, it is important to know the heating temperature of the object to be heated and adjust the heating conditions. In order to achieve this purpose, attempts have been made to detect temperature without contacting the object to be heated using an infrared detection device, but various problems have been encountered. For example, since the intensity of received infrared rays decreases in inverse proportion to the square of the distance between the detector and the object to be heated, it is necessary to correct this, but there is a problem in that this correction means becomes complicated. Attempts have also been made to focus infrared rays using a lens system, but this complicates the configuration and increases costs.Furthermore, the detector often malfunctions due to the radio wave energy from the microwave oven. Therefore, reliable temperature detection could not be expected.

本発明は、上記事情を考慮してなされたもの
で、その目的とするところは、構成の複雑化を招
くことなく、赤外線検出器と被加熱物との間の距
離変動や高周波の影響を受けることなく、常に信
頼性の高い正確な温度検出を行い得、もつて簡易
な構成で良好な加熱調理を実施し得る電子レンジ
を提供することにある。
The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to prevent the infrared detector and the object to be heated from being affected by distance fluctuations and high frequencies without complicating the structure. It is an object of the present invention to provide a microwave oven that can always perform highly reliable and accurate temperature detection without causing any problems, and can perform good heating cooking with a simple configuration.

以下、図面を参照して本発明の一実施例を説明
する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は電子レンジの外観形状を示す斜視図
で、図中1は電子レンジ本体である。この電子レ
ンジ本体1の前面には開閉自在に扉2が設けら
れ、この扉2により開閉される本体1の内部に加
熱室3が形成されている。この加熱室3の底部に
は被加熱物を載置する回転テーブル4が設けられ
ており、この回転テーブル4は図示しないモータ
によりマグネトロン(図示せず)の動作に応動し
て回転駆動される。そして、テーブル4上に載置
された被加熱物は上記マグネトロンから電波(マ
イクロ波)エネルギが照射され、この電波エネル
ギによる被加熱物の水分子の励振により加熱され
る。また本体1の前面側部には操作パネル5が設
けられており、この操作パネル5上に配設された
各種操作スイツチ6の選択的な操作により加熱条
件が設定される。また操作パネル5上に設けられ
た表示装置7にて被加熱物の加熱温度等が表示さ
れるように構成されている。
FIG. 1 is a perspective view showing the external shape of the microwave oven, and numeral 1 in the figure is the main body of the microwave oven. A door 2 is provided on the front surface of the microwave oven main body 1 so as to be openable and closable, and a heating chamber 3 is formed inside the main body 1 which is opened and closed by the door 2. A rotary table 4 on which an object to be heated is placed is provided at the bottom of the heating chamber 3, and the rotary table 4 is driven to rotate by a motor (not shown) in response to the operation of a magnetron (not shown). The object to be heated placed on the table 4 is irradiated with radio wave (microwave) energy from the magnetron, and is heated by the excitation of water molecules of the object by the radio wave energy. Further, an operation panel 5 is provided on the front side of the main body 1, and heating conditions are set by selectively operating various operation switches 6 disposed on the operation panel 5. Further, the display device 7 provided on the operation panel 5 is configured to display the heating temperature of the object to be heated, etc.

しかして、前記加熱室3の上壁部には赤外線検
出装置が組み込まれており、この赤外線検出装置
は例えば第2図に示す如く構成されている。すな
わち断面「コ」字状に折曲形成された外側部材1
1にモータ12と、ホルダ13に固定された赤外
線検出器14とを取り付けている。上記モータ1
2は回転軸を外側部材11に挿通し、その端部に
光チヨツパ体15を固定したものである。光チヨ
ツパ体15は内側面を赤外線輻射率を「1」とす
る黒体とし、且つ外側面を赤外線反射体とした回
転円板体からなるもので、周方向に等間隔に設け
たスリツト孔を以つて赤外線を前記モータ12に
より回転されてデユーテイ比50%で断続するもの
である。この光チヨツパ体15で断続され、交流
化された赤外線が外側部材11に設けられた窓1
1aを介して前記赤外線検出器14に導びかれ
る。
An infrared detection device is incorporated in the upper wall of the heating chamber 3, and this infrared detection device is constructed as shown in FIG. 2, for example. That is, the outer member 1 is bent into a U-shaped cross section.
1 is attached with a motor 12 and an infrared detector 14 fixed to a holder 13. Above motor 1
Reference numeral 2 has a rotary shaft inserted through the outer member 11, and an optical chopper body 15 fixed to the end thereof. The optical chopper body 15 consists of a rotating disk body whose inner surface is a black body with an infrared emissivity of "1" and whose outer surface is an infrared reflector, and has slit holes arranged at equal intervals in the circumferential direction. The infrared rays are rotated by the motor 12 and intermittent at a duty ratio of 50%. The window 1 provided in the outer member 11 receives infrared rays which are interrupted by the light chopper body 15 and converted into alternating current.
The light is guided to the infrared detector 14 via 1a.

一方、ホルダ13は、第3図に示すように内部
に赤外線検出器14の受光窓面14aを当接させ
て赤外線検出器14が窓11a方向へ位置ずれす
るのを規制する受け部16を有し、この受け部1
6で赤外線検出器14を位置保持するとともに、
赤外線検出器14の受光窓面14aより前面に位
置する部分に受光窓面14aに通じるとともに受
光窓面14aから遠ざかるにしたがつて拡口し、
かつ受光窓面14a側に位置する開口径が受光窓
面14aの径より小さい円錐状の孔17を有した
樹脂製のホーン体によつて形成されている。上記
孔17は、具体的には赤外線検出器4から被加熱
物までの距離が遠くなるにしたがつて赤外線検出
器14より見た視野範囲が相似的に拡大される断
面形状に形成されている。そして、ホルダ13
は、孔17の大径側開口部を前記窓11a側とし
て、窓11aの周縁に上記窓11aと同軸的に固
定され、これによつて光チヨツパ体15に対向し
ている。またホルダ13はその表面を電波シール
ド体でコーテイングしたものとなつており、マイ
クロ波等の高周波が遮蔽されるようになつてい
る。しかして上記ホルダ13等を取り付けた外側
部材11は加熱室3の天井板の裏側より固定さ
れ、天井板の赤外線検出透過窓3aを介して検出
器14が加熱室3に収容された被加熱物を見渡す
ようになつている。
On the other hand, as shown in FIG. 3, the holder 13 has a receiving part 16 inside thereof that abuts the light receiving window surface 14a of the infrared detector 14 to prevent the infrared detector 14 from shifting in the direction of the window 11a. And this receiving part 1
6 holds the infrared detector 14 in position,
A portion located in front of the light receiving window surface 14a of the infrared detector 14 communicates with the light receiving window surface 14a and widens as it moves away from the light receiving window surface 14a,
It is formed of a resin horn body having a conical hole 17 located on the side of the light receiving window surface 14a and having an opening diameter smaller than the diameter of the light receiving window surface 14a. Specifically, the hole 17 is formed in a cross-sectional shape such that as the distance from the infrared detector 4 to the object to be heated increases, the field of view seen from the infrared detector 14 similarly expands. . And holder 13
is fixed to the periphery of the window 11a coaxially with the window 11a, with the large-diameter opening of the hole 17 facing the window 11a, and thereby faces the optical chopper body 15. Further, the surface of the holder 13 is coated with a radio wave shielding body, so that high frequency waves such as microwaves are shielded. Thus, the outer member 11 to which the holder 13 and the like are attached is fixed from the back side of the ceiling plate of the heating chamber 3, and the detector 14 passes through the infrared detection transmission window 3a of the ceiling plate to the heated object housed in the heating chamber 3. It's starting to look out over the area.

かくして、上記構造の電子レンジにあつては、
ホルダ13の円錐状の孔17の拡がり角により第
3図に示すように赤外線検出器14の検出視野角
が効果的に規定される。即ち、上記拡がり角の範
囲内から入射する赤外線は第3図aに示すように
ホーンの内壁面にて反射しながら検出器14の受
光面に到達するが、上記拡がり角以外から入射し
た赤外線は第3図bに示すように反射光路の途中
において開口部側へ反射され、上記範囲外の赤外
線は赤外線検出器14に到達しないことになる。
さらに、この開口をマイクロ波の波長より小さい
寸法に設定しておきさえすれば、この開口からの
マイクロ波の侵入を容易に防ぐことができる。
Thus, in the microwave oven with the above structure,
The angle of divergence of the conical hole 17 of the holder 13 effectively defines the detection viewing angle of the infrared detector 14, as shown in FIG. That is, infrared rays incident from within the range of the above-mentioned divergence angle reach the light-receiving surface of the detector 14 while being reflected by the inner wall surface of the horn, as shown in FIG. As shown in FIG. 3b, the infrared rays outside the above range do not reach the infrared detector 14 because they are reflected toward the opening in the middle of the reflected optical path.
Furthermore, as long as this opening is set to a size smaller than the wavelength of the microwave, it is possible to easily prevent microwaves from entering through this opening.

従つて、調理用の一般的な電子レンジにあつて
検出器14の受光面径を3mmφ以下とし、被加熱
物の最小径を60mmφとしてこれを検出する場合、
上記拡がり角(視野角)を4〜10゜程度に設定す
れば良好なる検出を行い得る。即ち、固定テーブ
ル型の電子レンジにあつては第4図aに示すよう
に被加熱物収容領域の略中央を検出視野Aと定め
れば、被加熱物の温度をバツクグラウンドノイズ
を殆んど含むことなく検出することが可能とな
る。また回転テーブル型の電子レンジにあつては
第4図bに示すように被加熱物の回転移動領域を
横切るように検出視野Bを定めることにより、テ
ーブル4の回転に伴つて視野の全望を検出するこ
とが可能となる。
Therefore, in a general microwave oven for cooking, when the diameter of the light-receiving surface of the detector 14 is set to 3 mmφ or less, and the minimum diameter of the object to be heated is 60 mmφ, when detecting this,
Good detection can be achieved by setting the spread angle (viewing angle) to about 4 to 10 degrees. In other words, in the case of a fixed table type microwave oven, if the approximate center of the heated object storage area is set as the detection field of view A as shown in Fig. 4a, the temperature of the heated object can be detected with almost no background noise. It becomes possible to detect without including it. In addition, in the case of a rotary table type microwave oven, as shown in FIG. It becomes possible to detect.

ここで、赤外線検出器14に入射する赤外線の
強度Fは次のようになる。すなわち、第3図に示
すように、被加熱物18は単位面積当りその絶対
温度の4乗に比例した赤外線を発する。また赤外
線検出器14に到達する赤外線量は検出器14と
被加熱物18との間の距離bの2乗に反比例して
減衰する。また検出器14の視野角に入る被加熱
物18の面積は孔17の断面形状が前記関係に設
定されていることからして距離bの2乗に比例し
て増加する。したがつて上記視野角を適当な条件
に設定しておけば検出器14が受光する赤外線強
度Fは検出器14の光束の絞り距離をa、絞りの
半径をr、単位面積当りの赤外線放射量をdwと
したとき次のように示される。
Here, the intensity F of the infrared rays incident on the infrared detector 14 is as follows. That is, as shown in FIG. 3, the heated object 18 emits infrared radiation proportional to the fourth power of its absolute temperature per unit area. Further, the amount of infrared rays reaching the infrared detector 14 is attenuated in inverse proportion to the square of the distance b between the detector 14 and the object to be heated 18 . Furthermore, since the cross-sectional shape of the hole 17 is set in the above relationship, the area of the heated object 18 that falls within the viewing angle of the detector 14 increases in proportion to the square of the distance b. Therefore, if the above-mentioned viewing angle is set to an appropriate condition, the infrared intensity F received by the detector 14 will be determined by the aperture distance of the light beam of the detector 14 as a, the radius of the aperture as r, and the amount of infrared radiation per unit area. When dw is expressed as follows.

F=π(r/a)2・dw この式から判かるように距離bは受光赤外線強
度Fに関与しない。つまり、このような検出方式
を採用すると距離bの2乗に逆比例して赤外線到
達強度が低下するのを、距離bの2乗に比例して
検出視野領域が増加することによつて補償でき、
距離bに対する依存性を無くすことができる。そ
して、この実施例の場合には赤外線検出器14の
受光窓面14a側に位置する開口径が受光窓面1
4aの径より小さくなるように孔17を設けてい
るので、視野内から到来した赤外線の全部を赤外
線検出器14に入射させることがで、また受け部
16の存在によつて赤外線検出器14の位置ずれ
を防止でき、常に設計通りの寸法aを保持するこ
とができる。したがつて、被加熱物18から放出
させた赤外線を上述した式の通りに赤外線検出器
14に入射させることができる。しかも、上記作
用を呈するのに、従来構造の如きレンズ系や反射
鏡等の複雑な光学系を構成しないので、簡易に且
つ容易に実現製作ができる。
F=π(r/a) 2 ·dw As can be seen from this equation, the distance b does not affect the received infrared light intensity F. In other words, when such a detection method is adopted, the decrease in infrared radiation intensity that is inversely proportional to the square of the distance b can be compensated for by increasing the detection field of view in proportion to the square of the distance b. ,
The dependence on distance b can be eliminated. In the case of this embodiment, the aperture diameter of the infrared detector 14 located on the light receiving window surface 14a side is
Since the hole 17 is provided to have a diameter smaller than the diameter of the hole 4a, all of the infrared rays arriving from within the field of view can be incident on the infrared detector 14, and the presence of the receiving portion 16 allows the infrared detector 14 to be Misalignment can be prevented, and the designed dimension a can always be maintained. Therefore, the infrared rays emitted from the object to be heated 18 can be made to enter the infrared detector 14 according to the above-mentioned formula. Moreover, although it exhibits the above-mentioned effect, it does not require a complicated optical system such as a lens system or a reflecting mirror as in the conventional structure, so it can be easily realized and manufactured.

またホルダ13には電波シールドが施こされて
いるので、検出器14の受光面にマグネトロンか
らの高周波が到達することがなく、上記高周波に
よる悪影響が生じることがない。したがつて常に
安定した信頼性の高い動作が期待できる。
Further, since the holder 13 is provided with a radio wave shield, high frequency waves from the magnetron will not reach the light receiving surface of the detector 14, and no adverse effects will be caused by the high frequencies. Therefore, stable and highly reliable operation can be expected at all times.

第5図は前記第2図に示す赤外線検出装置に付
設される信号処理回路の概略構成図である。図中
21は光チヨツパ体15により交流化された赤外
線を受光する検出素子で、光電変換素子21a
と、その電気出力を安定化して出力するFETか
らなるバツフア21bとから構成される。通常こ
れらは1パツケージ内に同時集積されて1セルと
して構成される。しかして検出素子21の交流出
力はOPアンプからなる交流増幅器22を介して
所定のレベルに増幅されたのち、全波整流回路2
3に導びかれる。この全波整流回路23はOPア
ンプと、その帰還回路に挿入されたダイオード等
からなるもので、前記交流出力の振幅レベルに相
当した直流電圧信号を出力している。この全波整
流回路23の出力が可変抵抗器やOPアンプ等か
らなる直流増幅器24に導びかれ、利得補償がな
されて加算器25に入力されている。即ち、直流
増幅器24は、上記検出出力に含まれるバツクグ
ラウンドノイズ等を補償せんが為零補償を行い、
且つ以下に示す光チヨツパ体15の温度検出回路
との利得合せを行つている。しかして温度検出回
路26は、温度センサ27にて検出された光チヨ
ツパ体15の検出温度(電気信号)を直流増幅し
て前記加算器25に導びいている。加算器25は
上記各検出信号をそれぞれ反転信号入力端子およ
び非反転信号入力端子に入力してこれらの差分を
求め、これを前記被加熱物18の検出温度として
出力している。即ち、赤外線検出器21,14は
光チヨツパ体15により断続された赤外線を検出
しているから、その検出出力Vは Vαδ|ε1T1 4−ε2T2 4| 但し、 δ:ステフアンボルツマン定数 T1:被加熱物の温度 T2:光チヨツパ体の温度 ε1:被加熱物の赤外線輻射率 ε2:光チヨツパ体の赤外線輻射率 となる。従つて赤外線検出回路26で検出された
光チヨツパ体15の温度を上記検出出力Vより加
算器25にて減算することにより、ここに被加熱
物18の温度値を得ることができる。この温度値
で前記マグネトロンの出力が制御される。また上
記温度値がデジタルコード変換されて前述した表
示装置7にて表示される。
FIG. 5 is a schematic diagram of a signal processing circuit attached to the infrared detection device shown in FIG. 2. In the figure, 21 is a detection element that receives infrared rays converted into alternating current by the optical chopper body 15, and a photoelectric conversion element 21a.
and a buffer 21b consisting of an FET that stabilizes and outputs the electrical output. Usually, these are integrated together in one package and configured as one cell. Therefore, the AC output of the detection element 21 is amplified to a predetermined level via an AC amplifier 22 consisting of an OP amplifier, and then a full-wave rectifier circuit 2
I am guided by 3. This full-wave rectifier circuit 23 is composed of an OP amplifier and a diode inserted into its feedback circuit, and outputs a DC voltage signal corresponding to the amplitude level of the AC output. The output of this full-wave rectifier circuit 23 is led to a DC amplifier 24 consisting of a variable resistor, an OP amplifier, etc., and is then subjected to gain compensation and input to an adder 25. That is, the DC amplifier 24 performs zero compensation in order to compensate for background noise, etc. included in the detection output.
In addition, the gain is matched with the temperature detection circuit of the optical chopper body 15, which will be described below. The temperature detection circuit 26 directly amplifies the detected temperature (electrical signal) of the optical chopper body 15 detected by the temperature sensor 27 and guides it to the adder 25. The adder 25 inputs each of the detection signals to an inverted signal input terminal and a non-inverted signal input terminal, calculates a difference between them, and outputs this as the detected temperature of the object to be heated 18 . That is, since the infrared detectors 21 and 14 detect infrared rays interrupted by the optical chopper body 15, their detection output V is Vαδ|ε 1 T 1 4 −ε 2 T 2 4 | However, δ: Stephan Boltzmann's constant T 1 : Temperature of the object to be heated T 2 : Temperature of the optical chopper body ε 1 : Infrared emissivity of the heated object ε 2 : Infrared emissivity of the optical chopper body. Therefore, by subtracting the temperature of the optical chopper body 15 detected by the infrared detection circuit 26 from the detection output V in the adder 25, the temperature value of the object to be heated 18 can be obtained here. This temperature value controls the output of the magnetron. Further, the temperature value is converted into a digital code and displayed on the display device 7 described above.

以上のように本発明によれば、構成の複雑化を
招くことなく、高周波の影響を受けない状態で、
しかも赤外線検出器と被加熱物との間の距離変動
の影響を受けない状態で被加熱物の温度を正確に
検出する機能を有し、もつて被加熱物の良好に加
熱制御できる電子レンジを提供する。
As described above, according to the present invention, without complicating the configuration and without being affected by high frequencies,
In addition, it has the ability to accurately detect the temperature of the heated object without being affected by distance fluctuations between the infrared detector and the heated object, making it possible to create a microwave oven that can effectively control the heating of the heated object. provide.

尚、本発明は上記実施例に限定されるものでは
ない。例えばホーン体の孔の拡がり角や、その長
さは仕様に応じて適宜定めればよいものである。
また適用される電子レンジの型式についても特に
限定されるものではない。更には光チヨツパ体の
構造等についても種々変形が可能であり、要はそ
の要旨を逸脱しない範囲で種々変形して実施する
ことができる。
Note that the present invention is not limited to the above embodiments. For example, the angle of expansion of the hole in the horn body and its length may be determined as appropriate depending on the specifications.
Furthermore, there are no particular limitations on the type of microwave oven to be applied. Furthermore, various modifications can be made to the structure of the optical chopper body, and in other words, various modifications can be made without departing from the gist of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示すもので、第1図は
電子レンジの外観形状を示す斜視図、第2図は同
電子レンジの要部の概略構成図、第3図a,bは
視野角と距離補正とを説明する為の光学的模式
図、第4図a,bは視野領域を示す図、第5図は
検出信号処理回路の構成図である。 11……基板、12……モータ、13……ホル
ダ(ホーン体)、14……赤外線検出器、15…
…光チヨツパ体。
The drawings show one embodiment of the present invention. Fig. 1 is a perspective view showing the external appearance of the microwave oven, Fig. 2 is a schematic configuration diagram of the main parts of the microwave oven, and Fig. 3 a and b are visual fields. FIG. 4 is a schematic optical diagram for explaining angle and distance correction, FIGS. 4a and 4b are diagrams showing visual field areas, and FIG. 5 is a configuration diagram of a detection signal processing circuit. 11... Board, 12... Motor, 13... Holder (horn body), 14... Infrared detector, 15...
...Light chiyotsupa body.

Claims (1)

【特許請求の範囲】[Claims] 1 被加熱物を収容する加熱室の壁に赤外線透過
部を設けるとともに上記被加熱物が放出する赤外
線のうち上記赤外線透過部を透過した赤外線を検
出する赤外線検出装置を設け、この赤外線検出装
置の出力に基いて高周波出力を制御するようにし
た電子レンジにおいて、前記赤外線検出装置は、
受光窓面を前記赤外線透過部に対向させて配置さ
れた赤外線検出器と、内部に前記赤外線検出器の
前記受光窓面を当接させて上記赤外線検出器の前
記赤外線透過部側方向への位置ずれを規制する受
け部を有し、この受け部で上記赤外線検出器を位
置保持するとともに上記受光窓面より前面に位置
する部分に上記赤外線検出器から前記被加熱物ま
での距離が遠くなるにしたがつて上記赤外線検出
器より見た視野範囲を相似的に拡大させて視野領
域にある被加熱物から放出された赤外線を集光し
て上記受光窓面に入射させる断面形状で、かつ上
記受光窓面側に位置する開口径が上記受光窓面径
より小さく形成された孔を有し、少なくとも表面
部が高周波シールド材で形成されたホーン体とを
具備してなることを特徴とする電子レンジ。
1. An infrared transmitting section is provided on the wall of the heating chamber containing the object to be heated, and an infrared detecting device is provided to detect the infrared rays transmitted through the infrared transmitting section among the infrared rays emitted by the object to be heated, and the infrared detecting device In a microwave oven that controls high frequency output based on output, the infrared detection device includes:
an infrared detector disposed with a light receiving window surface facing the infrared transmitting section; and a position of the infrared detector in a lateral direction of the infrared transmitting section with the light receiving window surface of the infrared detector in contact with the interior thereof. It has a receiving part for regulating displacement, and the receiving part holds the infrared detector in position, and a part located in front of the light receiving window surface is provided with a receiving part for controlling displacement as the distance from the infrared detector to the object to be heated increases. Therefore, the cross-sectional shape is such that the field of view seen by the infrared detector is similarly expanded, and the infrared rays emitted from the object to be heated in the field of view are focused and incident on the light receiving window surface, and the light receiving window is A microwave oven characterized by having a hole located on the window surface side and having an opening diameter smaller than the diameter of the light receiving window surface, and a horn body having at least a surface portion formed of a high frequency shielding material. .
JP14067179A 1979-10-31 1979-10-31 Sensing device of infrared ray Granted JPS5664622A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14067179A JPS5664622A (en) 1979-10-31 1979-10-31 Sensing device of infrared ray
GB8034207A GB2062428B (en) 1979-10-31 1980-10-23 Microwave oven
US06/200,032 US4360723A (en) 1979-10-31 1980-10-23 Microwave oven
CA000363488A CA1142602A (en) 1979-10-31 1980-10-29 Microwave oven with infrared detecting means including a horn member
DE3041122A DE3041122C2 (en) 1979-10-31 1980-10-31 Microwave oven with an infrared sensor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14067179A JPS5664622A (en) 1979-10-31 1979-10-31 Sensing device of infrared ray

Publications (2)

Publication Number Publication Date
JPS5664622A JPS5664622A (en) 1981-06-01
JPS634128B2 true JPS634128B2 (en) 1988-01-27

Family

ID=15274045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14067179A Granted JPS5664622A (en) 1979-10-31 1979-10-31 Sensing device of infrared ray

Country Status (1)

Country Link
JP (1) JPS5664622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268639U (en) * 1988-11-08 1990-05-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080556A (en) * 2014-10-20 2016-05-16 岡谷電機産業株式会社 Infrared sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879686A (en) * 1972-01-28 1973-10-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879686A (en) * 1972-01-28 1973-10-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268639U (en) * 1988-11-08 1990-05-24

Also Published As

Publication number Publication date
JPS5664622A (en) 1981-06-01

Similar Documents

Publication Publication Date Title
KR101887054B1 (en) Infrared ray detecting device and heating cooker including the same
KR0129239B1 (en) Cooking device of microwave-oven
EP2117282B1 (en) Induction heating appliance for cooking
JP3393648B2 (en) Temperature compensation sensor module
US5055685A (en) Infrared detecting apparatus
KR900008175B1 (en) Devices detecting temperature
US4245143A (en) Microwave oven
KR100370001B1 (en) Temperature sensing device
JPS634128B2 (en)
KR20120048497A (en) Infrared ray detection device, heating cooker and method of measuring a temperature of a cooking chamber thereof
KR830002608B1 (en) Microwave
US3454775A (en) Information decoding apparatus employing a frequency sensitive light responsive receiver
US4602159A (en) Infrared detector
JP2706669B2 (en) Infrared detector
JPS6358024A (en) Electronic oven
KR940003417B1 (en) Target detector eliminating in-range sensitivity
JPS6353444B2 (en)
JPS6330890Y2 (en)
JPS6124899Y2 (en)
JPS58203476A (en) Temperature controller of heat roll
JP3486364B2 (en) Thaw detection device
JPS5914645Y2 (en) Cooking device
KR0129385Y1 (en) Weight detection circuit of microwave oven
JPH0233970B2 (en)
JPS622486B2 (en)