JPS634116B2 - - Google Patents
Info
- Publication number
- JPS634116B2 JPS634116B2 JP57155288A JP15528882A JPS634116B2 JP S634116 B2 JPS634116 B2 JP S634116B2 JP 57155288 A JP57155288 A JP 57155288A JP 15528882 A JP15528882 A JP 15528882A JP S634116 B2 JPS634116 B2 JP S634116B2
- Authority
- JP
- Japan
- Prior art keywords
- strip
- temperature
- nozzle
- air
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 10
- 238000010992 reflux Methods 0.000 claims description 9
- 238000007664 blowing Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 13
- 238000001035 drying Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000004744 fabric Substances 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Treatment Of Fiber Materials (AREA)
- Drying Of Solid Materials (AREA)
Description
【発明の詳細な説明】
本発明は帯状体の温度を連続的に無接触に測定
しながら繊維帯状体のとくに乾燥、仕上、固定、
染色等の際の連続的対流熱処理を制御する方法お
よび装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is a method of drying, finishing, fixing, and fixing fiber strips while continuously and non-contactly measuring the temperature of the strips.
The present invention relates to a method and apparatus for controlling continuous convection heat treatment during dyeing, etc.
この種の方法は雑誌“Melliand
Textilberichte”1965年8月887ページ右欄のレ
ポートに加湿した織物の乾燥の場合について記載
される。これによれば均一な乾燥条件において繊
維種類に応じて異なる一定の臨界残留水分に達す
るまで織物がほぼ一定温度に留まることが観測さ
れる。この水分に達すると、乾燥速度を大きく低
下し、織物温度の均一な上昇を観測しなければな
らない。織物が完全に乾燥し、水の蒸発のために
もはやエネルギーが消費されなくなると、達成し
た高いレベルでほぼ一定の温度になる。さらに均
一な温度上昇の開始により臨界残留水分に達した
ことが示されるため、低下する含水量によるより
簡単に温度変化を測定しうることが述べられてい
る。したがつて公知技術では材料の温度が直接、
しかし無接触に放射温度計のような温度ンサによ
り連続的に測定される。 This kind of method is described in the magazine “Melliand
Textilberichte”, August 1965, page 887 The report on the right column describes the case of drying humidified fabrics. It states that under uniform drying conditions, fabrics are allowed to dry until a certain critical residual moisture is reached, which varies depending on the fiber type. It is observed that the temperature remains approximately constant. Once this moisture is reached, the drying rate must be significantly reduced and a uniform increase in the fabric temperature must be observed. The fabric is completely dry and due to the evaporation of water When no more energy is expended, there is an almost constant temperature at the high level achieved.The onset of a more uniform temperature increase indicates that the critical residual moisture has been reached, so that temperature changes can be made more easily due to the decreasing moisture content. Therefore, in the known technology, the temperature of the material can be directly measured.
However, it is continuously measured without contact using a temperature sensor such as a radiation thermometer.
温度曲線をそれぞれの装置たとえばテンター、
ホツトフリユーおよび多孔ドラムまたはシーブド
ラムもしくはシーブベルト装置内で処理通路に沿
つて記録する場合、それぞれの要求に応じて前記
温度上昇点または温度曲線の折点が処理通路に沿
つてそれぞれ異なる位置にある種々の処理条件の
ためにも、この通路に沿つて温度センサを、すべ
ての“温度折点”の確認を可能にするスクリンの
形で配置しなければならない。放射高温計のよう
に無接触に動作する広く一般に使用しうる公知温
度センサは非常に高価なので、連続的対流熱処理
の制御は現在までそれぞれ非常に制限された範囲
でしか行われなかつた。この場合このような制御
が使用する装置の温度曲線をエネルギー節約の目
的を有するそれぞれの処理目的によく適合させる
ために役立ち、かつそのために必要な費用がもち
ろんエネルギー節約によつて補償されるように考
慮しなければならない。 Temperature curves for each device such as a tenter,
When recording along the processing path in hot-free and perforated drums or sieve drums or sieve belt devices, different processes are possible in which the temperature rise point or the breaking point of the temperature curve is located at a different location along the processing path depending on the respective requirements. Due to the conditions, temperature sensors must also be placed along this path in the form of a screen that makes it possible to check all "temperature corners". The control of continuous convective heat treatments has hitherto only been possible to a very limited extent, since the widely available temperature sensors which operate without contact, such as radiation pyrometers, are very expensive. In this case, such a control serves to better adapt the temperature curve of the equipment used to the respective processing purpose with the aim of energy saving, and in such a way that the necessary costs are of course compensated for by the energy saving. must be taken into consideration.
それゆえ無接触でなく動作する簡単な温度測定
器がテンターのような熱処理装置の作業のためす
でに開発された(雑誌 Textibetrieb 1981年4
月 55ページ参照)。この場合制御すべき材料の
境界層の温度が測定される。熱処理装置たとえば
テンターまたはホツトフリユー内の材料のフラツ
タリングは避けられず、測定に適する境界層の厚
さが僅か数mmなので、測定器と材料の接触は避け
られない。それゆえ測定器の材料側の面は摩擦を
低下するプラスチツクで被覆される。多くの帯状
織物を処理する際、摩擦が小さくてもある程度マ
ークが発生するので、実際にはこの装置は特殊な
場合にしか使用することができない。 Therefore, simple temperature measuring instruments that operate without contact have already been developed for working with heat treatment equipment such as tenters (Magazine Textibetrieb, 1981, 4).
month (see page 55). In this case, the temperature of the boundary layer of the material to be controlled is measured. Fluttering of the material in a heat treatment device, such as a tenter or hot freeze, is unavoidable, and since the thickness of the boundary layer suitable for measurement is only a few mm, contact between the measuring device and the material is unavoidable. The material side of the measuring device is therefore coated with a friction-reducing plastic. In practice, this device can only be used in special cases, since when processing many strips of fabric, marks occur to some extent even with low friction.
本発明の目的は繊維帯状体の連続的対流熱処理
装置内の処理経過を認識し、輸送速度を制御する
装置を得ることであり、この装置は工業的に十分
正確な測定結果を与え、それぞれのパラメータの
測定結果に基く制御および(または)調節を可能
にし、エネルギーおよび生産時間の節約によつて
完全に補償される費用をもつて製造および作業で
きなければならない。 The object of the present invention is to obtain a device for recognizing the processing progress in a continuous convection heat treatment device for fiber strips and controlling the transport speed. It should be possible to control and/or adjust parameters based on measurements and to be able to manufacture and operate at a cost that is fully compensated by the savings in energy and production time.
この目的は本発明により帯状体の温度を連続的
に無接触に測定しながら繊維帯状体の連続的対流
熱処理を制御する首記の装置において、特許請求
の範囲第1項の特徴部に記載の手段によつて解決
される。 This object is achieved by the above-mentioned apparatus for controlling the continuous convective heat treatment of a fiber strip while continuously measuring the temperature of the strip without contact, according to the present invention. solved by means.
この場合“空気”とはすべての使用する処理ガ
スを表わす。本発明の装置は輸送通路上に相前後
して続く多数のノズル列またはノズル領域を有す
るノズル装置に、帯状体輸送通路に沿つたおよび
(または)帯状体輸送通路と直角の各温度差測定
のため、1つのセンサが直接帯状体へ接するノズ
ル流出口に配置され、もう1つのセンサが直接ノ
ズル装置の帯状体へ接する還流通路に配置され
る。このような装置はテンターまたはホツトフリ
ユー内に設置することができる。選択的に本発明
の装置は貫流原理による帯状体の処理の際、たと
えばシーブドラムまたはシーブベルト装置による
場合、帯状体輸送通路に対し平行および(また
は)直角の各温度差測定のため、1つのセンサが
空気流れの方向で帯状体の前に、もう1つのセン
サが空気流れの方向で帯状体のあとに配置され
る。 In this case "air" refers to all process gases used. The device according to the invention uses a nozzle arrangement having a number of nozzle rows or nozzle areas that follow one after the other on a transport path, for each temperature difference measurement along and/or perpendicular to the web transport path. For this purpose, one sensor is arranged at the nozzle outlet directly on the strip, and another sensor is arranged in the return passage of the nozzle arrangement directly on the strip. Such a device can be installed in a tenter or hot fly. Alternatively, the device according to the invention provides for the processing of webs according to the flow-through principle, for example in the case of sheave drum or sieve belt systems, with one sensor for each temperature difference measurement parallel and/or perpendicular to the web transport path. In front of the strip in the direction of air flow, another sensor is arranged after the strip in the direction of air flow.
それゆえ本発明の手段によれば実際には到達す
る空気の温度と材料の温度の差に比例する、加熱
空気によつて帯状体に与えられた熱量が、到達す
る空気の温度と反射もしくは貫流した空気または
還流空気の温度との差の函数として測定される。
さらに材料へ吹付ける空気の温度は一定であり、
または少なくとも直接測定しうることを前提とし
ているので、帯状体へ与えられた熱エネルギーの
本発明による測定によれば、とくに輸送通路上の
相前後する多数の位置で測定する場合、材料自体
の温度に相当する曲線が得られる。 Therefore, according to the measures of the invention, the amount of heat imparted to the strip by the heated air, which is actually proportional to the difference between the temperature of the arriving air and the temperature of the material, is reflected or passed through to the temperature of the arriving air. It is measured as a function of the difference between the temperature of the cooled air or the reflux air.
Furthermore, the temperature of the air blown onto the material is constant;
or at least that it can be measured directly, so that the measurement according to the invention of the thermal energy imparted to the strip results in the temperature of the material itself, especially when measured at a number of successive positions on the transport path. A curve corresponding to is obtained.
連続的対流熱処理を制御するため、本発明によ
れば空気温度計または熱電対を必要とするだけな
ので、費用はきわめて低く、帯状体の輸送通路上
の多数の装置組込費用はそれぞれの装置の作業の
際のエネルギー節約によつて完全に補償される。 Since only air thermometers or thermocouples are required according to the invention to control the continuous convective heat treatment, the cost is very low and the cost of installing multiple devices on the transport path of the strip is reduced by the cost of each device. Fully compensated by energy savings during operation.
次に本発明を図面により説明する。 Next, the present invention will be explained with reference to the drawings.
第1図はテンタの2つのノズルボツクス1およ
び2を示し、このボツクスから矢3の方向に空気
または他の加熱された処理ガスが矢4の方向へ動
く繊維帯状体5へ吹付けられる。ノズルボツクス
1および2の内部から矢3の方向に流れる高温空
気は帯状体5で反射され、それぞれ2つのノズル
ボツクス1および2の間に配置された還流通路7
を矢6の方向に流れる。吹付けるガスの温度tDと
帯状体5の温度tWの差の大きさに応じて吹付ガス
は一定の熱量Qを帯状体に与え、還流ガスは低下
した温度tRをもつて帯状体5から矢6の方向に還
流する。前記のように吹付ガスと還流ガスの温度
差
ΔtL=tD−tR
は加熱されたガスから帯状体5へ与えられる熱量
Qに比する。この熱量は吹付ガスの温度tDと帯状
体の温度tWの差に理論的に比例し、かつ温度tDは
一定または既知であることを前提としているの
で、温度差ΔtLから直接温度tWを推定することが
でき、したがつてtDが一定の場合ΔtL〜tWである。 FIG. 1 shows two nozzle boxes 1 and 2 of the tenter from which air or other heated process gas in the direction of arrow 3 is blown onto a fiber strip 5 moving in the direction of arrow 4. FIG. High-temperature air flowing in the direction of arrow 3 from inside the nozzle boxes 1 and 2 is reflected by the strip 5 and flows into the reflux passage 7 arranged between the two nozzle boxes 1 and 2, respectively.
flows in the direction of arrow 6. The blown gas gives a constant amount of heat Q to the strip according to the difference between the temperature t D of the blown gas and the temperature t W of the strip 5, and the reflux gas gives the strip 5 a lower temperature t R. reflux in the direction of arrow 6. As mentioned above, the temperature difference Δt L =t D −t R between the blown gas and the reflux gas is compared to the amount of heat Q given to the strip 5 from the heated gas. This amount of heat is theoretically proportional to the difference between the temperature t D of the blown gas and the temperature t W of the strip, and it is assumed that the temperature t D is constant or known, so the temperature t can be directly calculated from the temperature difference Δt L. W can be estimated so that Δt L ~t W for a constant t D .
温度計8および9を直接ノズルボツクス1およ
び還流通路9内の適当な点に配置し、それによつ
て測定された温度差ΔtL=tD−tRを求めるように
接続すれば、相当する位置でΔtLの値から帯状体
の局部的温度tWを直接示すことができる。さらに
その際温度計8,9を個々の場合に応ずる相互距
離で帯状体5の輸送路に沿つてノズルボツクス出
口および還流通路入口に配置すれば、たとえば第
2図に示すような温度曲線を測定することができ
る。 If the thermometers 8 and 9 are placed directly at appropriate points in the nozzle box 1 and the reflux passage 9 and connected in such a way that the measured temperature difference Δt L = t D −t R can be obtained, the corresponding positions can be determined. The value of Δt L can directly indicate the local temperature t W of the strip. Furthermore, if thermometers 8, 9 are placed at the exit of the nozzle box and the entrance of the reflux channel along the transport path of the strip 5 at mutual distances that depend on the individual case, a temperature curve such as that shown in FIG. 2 can be measured, for example. can do.
第2図にはそれぞれの熱処理装置内の帯状体の
通路または長さにわたる帯状体5の温度経過が
種々の場合に対して示される。ノズルボツクス
1,2から帯状体5へ流れる空気はこの場合一定
温度tDを有する。それゆえ帯状体の温度はtDより
高く上昇し得ない。糸にあらかじめ加湿した繊維
帯状体を純乾燥の目的で供給する場合、温度曲線
は原則的に曲線Aに沿う。これに反しすでに乾燥
した帯状体を単に固定する場合、曲線Bの温度曲
線が生ずる。実際には多くの場合帯状体は乾燥と
同時に固定される。その場合の温度曲線は第2図
に曲線Cで示される。 FIG. 2 shows the temperature course of the strip 5 over the path or length of the strip in the respective heat treatment device for various cases. The air flowing from the nozzle boxes 1, 2 to the strip 5 has a constant temperature tD in this case. Therefore the temperature of the band cannot rise above tD . If the yarn is supplied with a pre-moistened fiber strip for pure drying purposes, the temperature curve will in principle follow curve A. If, on the other hand, the already dried strip is simply fixed, a temperature curve of curve B results. In practice, in many cases the strip is fixed at the same time as it dries. The temperature curve in that case is shown by curve C in FIG.
湿つた帯状体の乾燥のみを望む場合、帯状体を
それぞれの装置へ導入した直後に帯状体はいわゆ
る蒸発平衡温度tGへ加熱される。この温度は帯状
体中に含まれる液体が次第に蒸発する間、臨界残
留水分までほぼ一定に留まる。臨界残留水分に達
すると、温度曲線に折点が現れ、以後は温度が上
昇する。温度折点および続く温度上昇の進行が認
められ、または本発明により求められた場合、帯
状体のそれぞれの乾燥装置内の輸送速度は、帯状
体が出口で所定の乾燥度Tに達するように調節さ
れる。 If only drying of the wet strip is desired, the strip is heated to the so-called evaporation equilibrium temperature t G immediately after introduction of the strip into the respective device. This temperature remains approximately constant while the liquid contained in the strip gradually evaporates, up to a critical residual moisture content. When the critical residual moisture is reached, a breaking point appears on the temperature curve, and the temperature increases thereafter. If a temperature break point and a subsequent progression of temperature increase are observed or determined according to the invention, the transport speed of the strips in the respective drying device is adjusted such that the strips reach a predetermined degree of dryness T at the exit. be done.
これに反しあらかじめ乾燥した帯状体を比較的
高い温度tDで単に固定する目的の場合、帯状体の
温度TWは水分がないため曲線Bに沿つてほぼ吹
付ガスの温度tDまで非常に早く上昇する。この固
定温度で帯状体は一定滞留時間たとえば数秒間固
定される。本発明によれば固定温度到達の時点を
正確に決定し、それによつてそれぞれの装置の輸
送速度を帯状体が正確に固定温度に所望の滞留時
間保持されるように調節することができる。これ
に反したとえば測定費用が高過ぎるため、固定温
度到達時点を正確に決定し得ない場合、装置の輸
送速度は所要の滞留時間がすべての場合に維持さ
れるように選択しなければならない。それゆえ現
在までは安全のためしばしば無用に長い滞留時間
およびそれに伴うエネルギーおよび生産損失をも
つて作業が行われた。 On the other hand, if the purpose is simply to fix a pre-dried strip at a relatively high temperature tD , the temperature TW of the strip will very quickly reach approximately the blown gas temperature tD along curve B due to the absence of moisture. Rise. At this fixed temperature, the strip is fixed for a certain residence time, for example a few seconds. According to the invention, the point in time at which a fixed temperature is reached can be precisely determined, so that the transport speed of the respective device can be adjusted in such a way that the strip is held exactly at the fixed temperature for the desired residence time. If, on the other hand, it is not possible to accurately determine the point at which a fixed temperature is reached, for example because the measurement costs are too high, then the transport speed of the device must be selected in such a way that the required residence time is maintained in all cases. Up to now, therefore, work has often been carried out with unnecessarily long residence times and associated energy and production losses for safety reasons.
現在まで加湿した帯状体を乾燥および固定する
場合、測定技術上とくに困難な問題が生じた。す
なわち蒸発平衡温度範囲の端部に続く温度曲線上
の折点の後の温度上昇範囲は加湿度、帯状体の重
量およびその材料等に応じて大きく変化する。蒸
発平衡温度レベルの端部へ続く折点およびほぼ温
度tDに等しい固定温度に達する際の温度曲線の折
点の記録または位置決定のため、それゆえ輸送通
路の長さに沿つて帯状体温度TWに相当する温度
差ΔtLを求める多数の測定位置が必要である。こ
の場合非常に小さいスクリンの形の配置を必要と
し、とくに温度曲線中の固定温度到達の始点を表
わす折点を正確に測定し、それぞれの装置内の残
りの滞留時間V2が帯状体を固定するために十分
であるように制御しなければならない。測定ユニ
ツト当りの費用は本発明の場合公知装置に比して
著しく低いので、この場合に本発明の利点がとく
に明らかに現れる。というのは測定位置の数が多
くにもかかわらず、本発明により達成されるエネ
ルギー節約および生産上昇が本発明の装置のため
の費用を大きく超えるからである。 To date, particularly difficult problems have arisen in terms of measurement technology when drying and fixing humidified strips. That is, the temperature increase range after the break point on the temperature curve following the end of the evaporation equilibrium temperature range varies greatly depending on the humidification, the weight of the strip, the material thereof, etc. For the recording or positioning of the break point of the temperature curve following the end of the evaporation equilibrium temperature level and reaching a fixed temperature approximately equal to the temperature t D , and therefore the band temperature along the length of the transport path. A large number of measurement positions are required to determine the temperature difference Δt L corresponding to T W . This requires an arrangement in the form of a very small screen, in particular the precise measurement of the break point in the temperature curve representing the beginning of reaching the fixed temperature, and the remaining residence time V 2 in the respective device fixing the strip. must be controlled so that it is sufficient to do so. The advantages of the invention are particularly clear in this case, since the cost per measuring unit is considerably lower in the case of the invention compared to known devices. This is because, despite the large number of measurement positions, the energy savings and production increases achieved by the invention greatly exceed the cost for the apparatus of the invention.
本発明を多孔もしくはシーブベルトまたはシー
ブドラム装置へ乾燥、固定等のため適用する場合
もテンターノズル系の場合と原理的には同様であ
る。第3図によれば帯状体5は矢12の方向に処
理ガスが貫流するための孔11を有するベルト1
3上を14の方向に輸送され、その際輸送方向1
4および帯状体平面とほぼ垂直の12の方向に処
理ガスが帯状体を貫流する。帯状体5の前後のガ
ス温度測定のため温度計15〜17、または18
〜20が使用される。十分な温度計の対が処理区
間に沿つて配置されている場合、この場合も第2
図の温度曲線を記録することができる。第3図は
平らなベルトを有するシーブベルト系に関するけ
れど、このベルトは平面へ投影した多孔ドラム系
の表面と見なすこともできる。 When the present invention is applied to a porous or sieve belt or sieve drum device for drying, fixing, etc., the principle is the same as in the case of a tenter nozzle system. According to FIG. 3, the strip 5 is a belt 1 having holes 11 through which the process gas flows in the direction of the arrow 12.
3 in the direction 14, in which case the transport direction 1
Processing gas flows through the strip in directions 4 and 12 approximately perpendicular to the plane of the strip. Thermometers 15 to 17 or 18 for measuring gas temperature before and after the strip 5
~20 are used. If sufficient thermometer pairs are placed along the treatment section, the second
The temperature curve in the figure can be recorded. Although FIG. 3 relates to a sheave belt system with a flat belt, this belt can also be viewed as the surface of a perforated drum system projected onto a plane.
第1または3図の系で温度曲線を帯状体輸送方
向と平行でなく、直角に記録する場合、帯状体に
対する空気供給または空気吸引は帯状体の幅にわ
たつて同じ温度を有する温度平坦部が発生するよ
うに適合させる。 If the temperature curve is recorded perpendicularly, rather than parallel, to the direction of transport of the strip in the system of Figures 1 or 3, the air supply or suction to the strip will result in a temperature plateau with the same temperature across the width of the strip. Adapt it to occur.
第1図はテンターノズル系の1部縦断面図、第
2図は熱処理装置の長さ方向に沿う温度経過を示
す図、第3図はシーブベルト系の1部縦断面図で
ある。
1,2…ノズルボツクス、3…吹付方向、5…
帯状体、6…還流方向、8,9;15〜17;1
8〜20…温度計。
FIG. 1 is a longitudinal sectional view of a portion of the tenter nozzle system, FIG. 2 is a diagram showing the temperature progression along the length of the heat treatment apparatus, and FIG. 3 is a longitudinal sectional view of a portion of the sieve belt system. 1, 2... Nozzle box, 3... Spraying direction, 5...
Band-shaped body, 6... Reflux direction, 8, 9; 15 to 17; 1
8-20...Thermometer.
Claims (1)
帯状体へ近接するノズル流出通路ならびに帯状体
で反射した空気の導出のため、ノズル流出通路お
よび帯状体へ近接する還流通路を有し、 帯状体輸送通路4上に順次に続く多数のノズル
列またはノズル領域を有するテンターフレーム内
で温度を連続的に無接触測定しながら、 繊維帯状体5の連続的対流熱処理を制御する装
置において、 帯状体輸送通路4に沿つて実施する各測定のた
め、温度差を測定する1組の温度計を備え、 そのうち帯状体5上へ流れる加熱した空気の温
度tDを検出する温度計8がノズル流出通路1のノ
ズルボツクス出口に配置され、 帯状体5で反射した空気6の温度を検出する温
度計9が還流通路7の入口に配置されている ことを特徴とする繊維帯状体の連続的熱処理を
制御する装置。 2 シーブドラムまたはシーブベルトを有する装
置内で帯状体に加熱空気を貫流させ、帯状体の温
度tWを連続的に無接触測定しながら、 繊維帯状体の連続的対流熱処理を制御する装置
において、 貫流原理により帯状体5を処理するため各測定
ごとに、 そのつど帯状体へ向う空気の温度tDと帯状体5
を貫流した空気の温度tRとの差を測定するため、 帯状体輸送通路14に沿つて、かつ(または)
帯状体輸送通路14に対し横方向に、 帯状体5へ向う空気の温度tPを検出する温度計
15〜17が空気流の方向で帯状体の前に配置さ
れ、帯状体を貫流した空気の温度tRを検出する温
度計が空気流の方向で帯状体の後方に配置されて
いる ことを特徴とする繊維帯状体の連続的対流熱処
理を制御する装置。[Claims] 1. For blowing heated air onto a moving strip,
It has a nozzle outflow passage close to the band-like body and a nozzle outflow passage and a return passage close to the band-like body for guiding the air reflected by the band-like body, and a large number of nozzle rows or In a device for controlling the continuous convective heat treatment of the fiber web 5, with continuous non-contact measurement of the temperature in a tenter frame with a nozzle area, for each measurement carried out along the web transport path 4, the temperature A thermometer 8 for detecting the temperature tD of the heated air flowing onto the strip 5 is arranged at the outlet of the nozzle box of the nozzle outlet passage 1, and the thermometer 8 detects the temperature tD of the heated air flowing onto the strip 5, which is reflected by the strip 5. A device for controlling continuous heat treatment of a fiber strip, characterized in that a thermometer 9 for detecting the temperature of the heated air 6 is disposed at the entrance of the reflux passage 7. 2. In an apparatus that controls continuous convective heat treatment of a fiber strip by flowing heated air through the strip in an apparatus having a sieve drum or a sieve belt and continuously measuring the temperature t W of the strip without contact, the flow-through principle is used. For each measurement, the temperature t D of the air heading towards the strip and the strip 5 are
along the strip transport path 14 and/or
Thermometers 15 to 17 for detecting the temperature tP of the air heading toward the strip 5 are arranged in front of the strip in the direction of the air flow, transversely to the strip transport passage 14, and detect the temperature tP of the air flowing through the strip. 1. A device for controlling continuous convective heat treatment of a fiber strip, characterized in that a thermometer for detecting the temperature t R is placed behind the strip in the direction of airflow.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3135473 | 1981-09-08 | ||
DE3135473.4 | 1981-09-08 | ||
DE3148576.6 | 1981-12-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5869388A JPS5869388A (en) | 1983-04-25 |
JPS634116B2 true JPS634116B2 (en) | 1988-01-27 |
Family
ID=6141102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15528882A Granted JPS5869388A (en) | 1981-09-08 | 1982-09-08 | Method and device for controlling continuous heat treatment of fiber beltlike body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5869388A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS521185A (en) * | 1975-06-18 | 1977-01-06 | Measurex Corp | System for and method of controlling tenter frame |
-
1982
- 1982-09-08 JP JP15528882A patent/JPS5869388A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS521185A (en) * | 1975-06-18 | 1977-01-06 | Measurex Corp | System for and method of controlling tenter frame |
Also Published As
Publication number | Publication date |
---|---|
JPS5869388A (en) | 1983-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4498248A (en) | Method and device for controlling a continuous heat treatment of a textile fabric web | |
FI95061C (en) | Method of calendering paper web and calender for application of the method | |
US5625962A (en) | Method for measuring the moisture content of a web of goods on a through-flow dryer and device for working the method | |
RU2011110263A (en) | METHOD AND DEVICE FOR COOLING AND DRYING A HOT STRIP OR SHEET IN A ROLLING MACHINE | |
SE443384B (en) | PROCEDURE FOR DRYING A CARTON OR PAPER COAT AND DRYING FOR APPLICATION OF THIS PROCEDURE | |
US2464119A (en) | Moistening apparatus | |
EP0458825B1 (en) | Apparatus for drying | |
EP0723609B1 (en) | Conditioning of fabrics | |
US5323546A (en) | Method of drying photographic materials | |
US4656756A (en) | Method for heat-treating textile material and tenter for carrying out method | |
JPS634116B2 (en) | ||
US2718065A (en) | Humidifying apparatus | |
JPH0214772A (en) | Controller for drying of web in drier | |
US2611974A (en) | Method of measuring the moisture content of a running web | |
US3604124A (en) | Conditioning of textile fabrics | |
JP2729802B2 (en) | Drying machine for web offset press | |
US3318017A (en) | Heat treating method and apparatus | |
US20030108661A1 (en) | Method and arrangement for determining the profile of a coating layer | |
FI79198B (en) | FOERFARANDE OCH APPARATUR FOER MAETNING OCH REGLERING AV TORKLUFTENS FUKTHALT I EN TORKMASKIN FOER TEXTILMATERIAL. | |
US3525163A (en) | Method of drying nodular fiberboard | |
JPH0663487A (en) | Method and device for continuously drying belt-like coating film | |
JPS61217037A (en) | Method for drying flexible web | |
US6706149B2 (en) | Web monitoring | |
JP4022673B2 (en) | Method for drying coating film and method for producing sheet for inkjet recording | |
RU2770736C1 (en) | Device and method for thermal processing of moving canvas tapes |