JPS6341166B2 - - Google Patents

Info

Publication number
JPS6341166B2
JPS6341166B2 JP18758881A JP18758881A JPS6341166B2 JP S6341166 B2 JPS6341166 B2 JP S6341166B2 JP 18758881 A JP18758881 A JP 18758881A JP 18758881 A JP18758881 A JP 18758881A JP S6341166 B2 JPS6341166 B2 JP S6341166B2
Authority
JP
Japan
Prior art keywords
powder
conductive
conductive paste
alloy
pastes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18758881A
Other languages
Japanese (ja)
Other versions
JPS5889702A (en
Inventor
Akyoshi Takeshima
Yasuhiro Ogawa
Sankichi Shinoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18758881A priority Critical patent/JPS5889702A/en
Publication of JPS5889702A publication Critical patent/JPS5889702A/en
Publication of JPS6341166B2 publication Critical patent/JPS6341166B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性ペーストに関し、安価で導電
性、耐食性のすぐれた導電性ペーストの提供を目
的とするものである。 従来、この種の導電性ペーストには、導電用粉
体としてAu、Ag、Pdなどの貴金属が用いられて
きた。一般的には導電用粉体にAgを用い、PbO、
Bi2O3、ZnOを主成分とし、他にB2O3、SiO2
Al2O3などを加えたガラスフリツトとともに、ビ
ヒクル中に分散したペーストをセラミツク等の基
板にスクリーン印刷等の方法で塗布した後、高温
で焼成して、セラミツクコンデンサ、圧電体素
子、半導体セラミツクなどの電極あるいは電子回
路用の配線導体として使用されて来た。 しかしながら、近年、貴金属類、特にAg価格
の高騰のために、導電性Agペーストの代替とし
て、安価な導電性粉体を用いた導電性ペーストと
か、セラミツクの焼付用電極として、Cu、Niの
メツキ電極など、多くの提案がなされている。た
とえばAg粉体の代用として、安価なNi、Cuなど
の卑金属粉体あるいはTiN、SnO2などの導電性
金属化合物粉体等を用いた導電性ペーストが開発
され、一部に市販されるようになつて来た。 しかしながら、TiN、SnO2などの導電性ペー
ストは粉末体自体が比較的高抵抗の材料であるた
めに低抵抗の導電性ペーストは得られにくく、さ
らに、TiNは高温焼付型の導電性ペーストに対
しては、大気中の焼成では酸化してしまうため、
使用できない欠点がある。また、酸化物粉体を利
用したものとしては、Al2O3粉体にAgコートし
た導電性粉体を用いた導電性ペーストもあるが、
この種の導電ペーストは焼成後の導電膜にはんだ
付け性がないという弱点がある。他方、Ni、Cu
などの卑金属粉体を利用した導電性ペーストは大
気中での焼成が困難なこと、またCu系は耐食性
に難点が見られる。 一方、Niの高温大気中における酸化を改良す
る方法として、NiにBを添加することが知られ
ている。Ni−B合金は酸化性雰囲気において加
熱しても酸化スケールの生成する割合が少ない。
これは、表面にB2O3の薄い層が発生し、合金の
酸化進行を防いでいるものと考えられる。しかし
ながら、導電性ペーストとして十分な酸化性を得
るまでに至らない。このため、耐酸化性のより改
良したものとして、Siを添加し、Ni−Si−B合
金粉を導電粉としたペーストの提案が見られる。
この方法は抵抗値の面において改良効果が認めら
れるが、はんだ付け性が失なわれる欠点がある。 以上のように、Ag代替として各種導電性ペー
ストが提案されているが、いずれも、導電性、耐
食性あるいははんだ付け性のいずれかに不満足な
面があり、これら諸特性のすぐれた安価な高温焼
付型導電ペーストの出現が望まれている。 本発明者等は、上記したような導電性、耐食
性、はんだ付け性、さらには経済性をも満足でき
るべく、卑金属を主成分とする合金粉体について
調査検討した結果、基本的にはNiを主成分とし、
これにBおよびSnを添加した合金が、上記諸特
性をかなりのレベルで満足することを見い出し
た。 以下、本発明について詳述する。 本発明に係る導電性ペーストにおいて、その導
電用粉体はNi−B−Snの合金粉体である。その
組成比はB3〜10重量%、Sn3〜15重量%、残部
Niから成る。 推察するに、この種導電性ペースト、特に高温
焼付型導電ペースト用導電媒体となる粉体におい
て望まれる条件は、 (a) 導電性があること、 (b) 耐熱酸化性があること、 (c) はんだ付けが可能であること、 などがあげられる。 本発明における導電性粉体の主成分であるNi
は導電性の優れた金属であるが、耐食性、耐熱酸
化性は良いとは言えない。特に、高温焼付型のペ
ースト用導電媒体としては、その表面に多量の酸
化スケールが発生し、導電性が得られず不適当で
あるが、本発明に従えば、Niのこの弱点を先に
記したBおよびSnの添加により、改善されるこ
とが見い出される。本発明において示すNi−B
−Sn合金粉を導電粉体としたペーストはBと相
まつてSnの薄層酸化物が耐酸化性を強化し、他
方、導電性の面においては、Sn酸化物が半導体
であるところから、実用上許容し得る範囲に抑制
される。一方、はんだ付け性について言えば、B
の添加によつてB2O3の被膜が生成するため、焼
成膜そのままの状態では良好なものと言えない
が、スコツチブライトなどにより研摩すれば、
Snの添加効果により著しく改良され、実用上何
等問題はない。 本発明において、NiにBおよびSnを添加した
効果を見い出し得る組成比は、B3〜10重量%、
Sn3〜15重量%、残部Niである。添加量の下限は
前述の効果を見い出し得る最少量である。上限は
合金粉の作成のしやすさにより主に制約され、ま
たSn量が過多になるとSn酸化膜が肥厚化し、抵
抗値の上昇を招来する。 次に、本発明において、Ni−B−Sn合金粉体
のみを導電媒体とした場合には、そのペースト焼
成膜の特性上、導電性においてなお不十分の面が
多く、その用途に制約が生じやすいために、この
点を補うものとしてNi−B−Sn合金粉体にAg粉
体を加え、これらの混合粉体を導電媒体とするこ
とを提案する。Ag粉体の添加によつて、導電性
ペースト焼成膜の導電性およびはんだ付け性が更
に改良される。 Ni−B−Sn合金粉体とAg粉体との混合割合に
ついて説明すると、導電媒体としてNi−Sn−B
合金粉体に加えてAg粉体を併せて用いることは、
導電性、はんだ付け性を改良することを可能とす
る。導電媒体に占めるNi−B−Sn合金粉体の占
める割合が80体積%を越えるとAg粉体の添加の
効果が小さく、また20体積%未満になると安価な
導電性ペーストの提供という本発明の目的にそぐ
わなくなるので、合金粉体とAg粉体との混合割
合はNi−B−Sn合金粉体量が20〜80体積%の範
囲が望ましい。 本発明に従えば、Ni−B−Sn合金粉体あるい
はこの粉体とAg粉体の混合粉体が導電性ペース
トの導電媒体として供されるが、一般的には、上
記粉体をPbO、Bi2O3、B2O3、SiO2、Al2O3など
から成るガラスフリツトとビヒクル中に分散して
導電性ペーストとなす。このペーストは通常の
Ag粉体を用いたペーストと同様に、セラミツク
などの基板にスクリーン印刷等の方法で塗布した
後、高温で焼成し、電極、導電路として利用され
る。粉体の粒径は0.05〜10μの範囲、好ましくは
0.5〜5μ程度が良い。10μ以上になるとスクリーン
印刷時の印刷性が悪化し、最終焼成後の面抵抗が
大きくなる。 次に、本発明をより具体化するために実施例に
ついて詳述する。 本発明に用いるNi−B−Sn合金粉体は次のよ
うにして作製した。本発明に従う組成に合わせて
Ni−B母合金、Ni、Snの各素材を秤量し、全量
を1Kgとした。これをアルゴンガス中で溶解し、
さらに、溶湯噴霧法によつて粉体化した。噴霧媒
としては窒素ガスを利用し、水中投入冷却した。
得られた粉体の粒径は5〜100μ程度のものであ
るが、これを機械式粉砕機にて再度粉体化し、平
均粒径約2μとした。 上記の方法によつて得られたNi−B−Sn合金
粉体は全量3gに秤量された。また、この合金粉
体にAg粉体を混合する場合には、Ag粉体(平均
粒径約2μ)をも合わせて所定の混合割合になる
ように秤量し、全量を3gとした。これをエチル
セルロース(100cps)とテレピネオールから成る
ビヒクルと、GA−6(日本電気硝子製、ホウケ
イ酸鉛系ガラスフリツト)とともに、フーバーマ
ーラを用いて混練した。なお、金属粉体は全量の
80重量%とし、フーバーマーラによる混練は、荷
重100ポンド、40回転を4回繰り返して行なつた。 上記作製したペーストはスクリーン印刷法を用
いて、アルミナ基板上に所定の形状に印刷された
のち、120℃で10分間乾燥され、さらに、大気中
850℃で10分間、その前後の温度上昇、温度下降
を含めて1時間サイクルの条件で焼成された。 上記焼成パターンの両端間の抵抗値を測定した
結果、次表に示す値を得た。なお表には、参考ま
でに、同方法で作成したAg粉体、Ni粉体、Ni粉
体とAg粉体との混合粉体にてペーストを作製し、
その焼成膜の特性も同様に示す。 また、焼成された膜面のはんだ付け性について
は、スコツチブライトロールにて研摩したのち、
230℃50/50Sn−Pb浴に松やにフラツクスを塗布
して3秒間浸せきし、パターン面に対するはんだ
の付着割合を、〇、△、×の三段階で評価した。
The present invention relates to a conductive paste, and an object of the present invention is to provide a conductive paste that is inexpensive and has excellent conductivity and corrosion resistance. Conventionally, noble metals such as Au, Ag, and Pd have been used as conductive powder in this type of conductive paste. Generally, Ag is used as conductive powder, PbO,
The main components are Bi 2 O 3 and ZnO, and also B 2 O 3 , SiO 2 ,
A paste dispersed in a vehicle along with a glass frit containing Al 2 O 3 etc. is applied to a ceramic substrate by a method such as screen printing, and then fired at a high temperature to produce ceramic capacitors, piezoelectric elements, semiconductor ceramics, etc. It has been used as an electrode or wiring conductor for electronic circuits. However, in recent years, due to the sharp increase in the price of precious metals, especially Ag, conductive pastes using inexpensive conductive powder are being used as substitutes for conductive Ag paste, and Cu and Ni plating are being used as electrodes for baking ceramics. Many proposals have been made, including electrodes. For example, as a substitute for Ag powder, conductive pastes using inexpensive base metal powders such as Ni and Cu, or conductive metal compound powders such as TiN and SnO 2 have been developed, and some are now commercially available. I'm getting used to it. However, since the powder itself of conductive pastes such as TiN and SnO 2 is a material with relatively high resistance, it is difficult to obtain a conductive paste with low resistance. However, since it oxidizes when fired in the atmosphere,
There are drawbacks that make it unusable. In addition, there is also a conductive paste that uses conductive powder made of Al 2 O 3 powder coated with Ag, which uses oxide powder.
This type of conductive paste has the disadvantage that the conductive film after firing has no solderability. On the other hand, Ni, Cu
Conductive pastes that use base metal powders such as metal powders are difficult to sinter in the atmosphere, and Cu-based pastes have poor corrosion resistance. On the other hand, as a method for improving the oxidation of Ni in high-temperature atmosphere, it is known to add B to Ni. Even when Ni-B alloy is heated in an oxidizing atmosphere, the proportion of oxide scale generated is small.
This is thought to be due to the formation of a thin layer of B 2 O 3 on the surface, which prevents the progress of oxidation of the alloy. However, it does not reach the point where sufficient oxidizing properties are obtained as a conductive paste. Therefore, as a paste with improved oxidation resistance, there have been proposals for pastes containing Si and using Ni-Si-B alloy powder as conductive powder.
Although this method has an improvement effect in terms of resistance value, it has the disadvantage that solderability is lost. As mentioned above, various conductive pastes have been proposed as substitutes for Ag, but all of them are unsatisfactory in either conductivity, corrosion resistance, or solderability. The emergence of a type conductive paste is desired. As a result of research and study on alloy powders mainly composed of base metals, the inventors of the present invention have found that they can satisfy the electrical conductivity, corrosion resistance, solderability, and economic efficiency as described above. The main ingredient is
It has been found that an alloy to which B and Sn are added satisfies the above properties to a considerable degree. The present invention will be explained in detail below. In the conductive paste according to the present invention, the conductive powder is a Ni-B-Sn alloy powder. Its composition ratio is B3 to 10% by weight, Sn3 to 15% by weight, and the balance
Consists of Ni. Inferred, the desirable conditions for this type of conductive paste, especially the powder that serves as the conductive medium for high-temperature baking type conductive paste, are (a) electrical conductivity, (b) thermal oxidation resistance, (c ) Must be able to be soldered. Ni, which is the main component of the conductive powder in the present invention
is a metal with excellent electrical conductivity, but its corrosion resistance and thermal oxidation resistance are not good. In particular, it is unsuitable as a conductive medium for high-temperature baking pastes because a large amount of oxide scale is generated on its surface, making it impossible to obtain conductivity. It has been found that the addition of B and Sn improves the performance. Ni-B shown in the present invention
-In pastes made of Sn alloy powder as conductive powder, the thin layer of Sn oxide combined with B strengthens the oxidation resistance.On the other hand, in terms of conductivity, Sn oxide is a semiconductor, so it is not suitable for practical use. It is suppressed within an acceptable range. On the other hand, regarding solderability, B
A film of B 2 O 3 is formed by the addition of B 2 O 3, so the fired film cannot be said to be good as it is, but if polished with Scotch brite etc.
It is significantly improved by the effect of adding Sn, and there is no problem in practical use. In the present invention, the composition ratio in which the effect of adding B and Sn to Ni can be found is B3 to 10% by weight,
Sn is 3 to 15% by weight, and the balance is Ni. The lower limit of the amount added is the minimum amount at which the above-mentioned effect can be found. The upper limit is mainly limited by the ease of producing alloy powder, and if the amount of Sn is excessive, the Sn oxide film will become thick, leading to an increase in resistance value. Next, in the present invention, when only Ni-B-Sn alloy powder is used as a conductive medium, due to the characteristics of the paste fired film, the conductivity is still insufficient in many aspects, resulting in restrictions on its use. To make it easier, we propose adding Ag powder to the Ni-B-Sn alloy powder and using the mixed powder as a conductive medium to compensate for this point. The addition of Ag powder further improves the conductivity and solderability of the fired conductive paste film. To explain the mixing ratio of Ni-B-Sn alloy powder and Ag powder, Ni-Sn-B is used as a conductive medium.
Using Ag powder in addition to alloy powder
It makes it possible to improve conductivity and solderability. If the proportion of the Ni-B-Sn alloy powder in the conductive medium exceeds 80% by volume, the effect of adding Ag powder will be small, and if it is less than 20% by volume, the present invention, which aims to provide an inexpensive conductive paste, will fail. Therefore, it is desirable that the mixing ratio of the alloy powder and the Ag powder is in the range of 20 to 80% by volume of the Ni-B-Sn alloy powder. According to the present invention, Ni-B-Sn alloy powder or a mixed powder of this powder and Ag powder is used as the conductive medium of the conductive paste, but generally, the above powder is used as PbO, It is dispersed in a vehicle and a glass frit consisting of Bi 2 O 3 , B 2 O 3 , SiO 2 , Al 2 O 3 , etc. to form a conductive paste. This paste is normal
Similar to pastes using Ag powder, it is applied to a substrate such as ceramic using a method such as screen printing, then fired at a high temperature and used as an electrode or conductive path. The particle size of the powder ranges from 0.05 to 10μ, preferably
Approximately 0.5 to 5μ is good. When the thickness exceeds 10μ, printability during screen printing deteriorates, and sheet resistance after final firing increases. Next, examples will be described in detail in order to make the present invention more concrete. The Ni-B-Sn alloy powder used in the present invention was produced as follows. In accordance with the composition according to the invention
The Ni-B master alloy, Ni, and Sn materials were weighed to give a total weight of 1 kg. Dissolve this in argon gas,
Furthermore, it was pulverized by a molten metal spraying method. Nitrogen gas was used as the spray medium and cooled by cooling it in water.
The particle size of the obtained powder was approximately 5 to 100 μm, but this was again pulverized using a mechanical pulverizer to give an average particle size of approximately 2 μm. The Ni-B-Sn alloy powder obtained by the above method was weighed to a total amount of 3 g. In addition, when mixing Ag powder with this alloy powder, the Ag powder (average particle size of about 2 μm) was also weighed to achieve a predetermined mixing ratio, and the total amount was 3 g. This was kneaded with a vehicle consisting of ethyl cellulose (100 cps) and terpineol, and GA-6 (manufactured by Nippon Electric Glass Co., Ltd., lead borosilicate glass frit) using a Hubermala. In addition, the total amount of metal powder is
80% by weight, and kneading with a Hubermala was repeated 4 times under a load of 100 pounds and 40 revolutions. The paste prepared above was printed in a predetermined shape on an alumina substrate using a screen printing method, dried at 120℃ for 10 minutes, and then exposed to air.
It was fired at 850°C for 10 minutes, followed by a 1-hour cycle including temperature increases and decreases. As a result of measuring the resistance value between both ends of the above firing pattern, the values shown in the following table were obtained. For reference, the table shows pastes prepared using Ag powder, Ni powder, and a mixed powder of Ni powder and Ag powder prepared using the same method.
The characteristics of the fired film are also shown in the same manner. In addition, regarding the solderability of the fired film surface, after polishing it with a Scotch bright roll,
Flux was applied to the pine tar in a 50/50Sn-Pb bath at 230°C and immersed for 3 seconds, and the adhesion ratio of solder to the pattern surface was evaluated in three grades: ○, △, and ×.

【表】 上記表から明らかなように、本発明に係る導電
性ペーストは、Ag粉体を利用した従来のペース
トに匹敵する値を示す。他方、Ni粉を利用した
ペーストは全く満足できるものでない。 以上説明したように、本発明に係る導電性ペー
ストは、十分に実用に供し得る性能を持ち、かつ
経済的には、Agの削減により安価に作製し得る
ことから、その工業的価値は大なるものがある。
[Table] As is clear from the above table, the conductive paste according to the present invention exhibits values comparable to conventional pastes using Ag powder. On the other hand, pastes using Ni powder are not completely satisfactory. As explained above, the conductive paste according to the present invention has sufficient performance for practical use, and economically, it can be produced at low cost by reducing Ag, so it has great industrial value. There is something.

Claims (1)

【特許請求の範囲】 1 B3〜10重量%、Sn3〜15重量%、残部Niの
組成より成る合金の粉体を、ガラスフリツトとと
もにビヒクル中に分散させたことを特徴とする導
電性ペースト。 2 B3〜10重量%、Sn3〜15重量%、残部Niの
組成より成る合金の粉体20〜80体積%と、Ag粉
体80〜20体積%の混合粉体を、ガラスフリツトと
ともにビヒクル中に分散させたことを特徴とする
導電性ペースト。
[Scope of Claims] 1. A conductive paste characterized in that an alloy powder having a composition of 3 to 10% by weight B, 3 to 15% by weight Sn, and the balance Ni is dispersed in a vehicle together with glass frit. 2 A mixed powder of 20 to 80 volume % of alloy powder consisting of 3 to 10 weight % B, 3 to 15 weight % Sn, and the balance Ni and 80 to 20 volume % of Ag powder is dispersed in a vehicle together with glass frit. A conductive paste characterized by:
JP18758881A 1981-11-20 1981-11-20 Conductive paste Granted JPS5889702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18758881A JPS5889702A (en) 1981-11-20 1981-11-20 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18758881A JPS5889702A (en) 1981-11-20 1981-11-20 Conductive paste

Publications (2)

Publication Number Publication Date
JPS5889702A JPS5889702A (en) 1983-05-28
JPS6341166B2 true JPS6341166B2 (en) 1988-08-16

Family

ID=16208730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18758881A Granted JPS5889702A (en) 1981-11-20 1981-11-20 Conductive paste

Country Status (1)

Country Link
JP (1) JPS5889702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003817A1 (en) * 1989-08-31 1991-03-21 Dai Nippon Insatsu Kabushiki Kaisha Conductive pattern forming composition and method of producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468514B1 (en) 2007-06-15 2008-12-23 Hamamatsu Photonics K.K. Radiation image conversion panel, scintillator panel, and radiation image sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003817A1 (en) * 1989-08-31 1991-03-21 Dai Nippon Insatsu Kabushiki Kaisha Conductive pattern forming composition and method of producing the same

Also Published As

Publication number Publication date
JPS5889702A (en) 1983-05-28

Similar Documents

Publication Publication Date Title
US4400214A (en) Conductive paste
US4172919A (en) Copper conductor compositions containing copper oxide and Bi2 O3
US4001146A (en) Novel silver compositions
JP5488282B2 (en) Conductive paste
US3838071A (en) High adhesion silver-based metallizations
JPH0378906A (en) Conductive paste
JP6623920B2 (en) Method for producing conductive composition and terminal electrode
JPS6341166B2 (en)
JPH0346705A (en) Copper paste
JP2941002B2 (en) Conductor composition
JP2631010B2 (en) Thick film copper paste
JP2550630B2 (en) Copper paste for conductive film formation
JPH0440803B2 (en)
JPH05114305A (en) Paste for baking
JPS6340328B2 (en)
JPH0349108A (en) Copper conductor composition material
JPS5889703A (en) Conductive paste
JPH04206602A (en) Thick-film resistance composition
JPS626282B2 (en)
JPS626283B2 (en)
JPS6361723B2 (en)
JPH0431336A (en) Thick film conductor composition
JPH0465010A (en) Copper conductive paste
JP2992958B2 (en) Conductive paste for low-temperature fired multilayer wiring boards
JPH0548225A (en) Conductive paste