JPS6341009B2 - - Google Patents

Info

Publication number
JPS6341009B2
JPS6341009B2 JP54053143A JP5314379A JPS6341009B2 JP S6341009 B2 JPS6341009 B2 JP S6341009B2 JP 54053143 A JP54053143 A JP 54053143A JP 5314379 A JP5314379 A JP 5314379A JP S6341009 B2 JPS6341009 B2 JP S6341009B2
Authority
JP
Japan
Prior art keywords
vibration
knocking
engine
frequency band
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54053143A
Other languages
Japanese (ja)
Other versions
JPS55144521A (en
Inventor
Kimiaki Yamaguchi
Tadashi Hatsutori
Yoshinori Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP5314379A priority Critical patent/JPS55144521A/en
Priority to US06/135,929 priority patent/US4345558A/en
Publication of JPS55144521A publication Critical patent/JPS55144521A/en
Publication of JPS6341009B2 publication Critical patent/JPS6341009B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関の気筒内圧力により気筒内外
に生じる振動によつてノツキングを検出して、所
定のノツキング程度に点火時期を調整する機能を
もつ内燃機関用点火時期制御装置等に用いるノツ
キング検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an ignition timing control for an internal combustion engine that has a function of detecting knocking by vibrations generated inside and outside the cylinder due to the internal cylinder pressure of the internal combustion engine, and adjusting the ignition timing to a predetermined knocking level. This invention relates to a knocking detection device used in devices and the like.

ところで、点火時期と気筒内圧とは強い相関関
係があることは一般に知られるところであるが、
混合気を爆発させた場合のシリンダ内圧はノツキ
ングが生じていない時の高調波(通常エンジンシ
リダのボア径と燃焼時の音速りよつて決められる
周波数帯域の成分で燃焼の断続急速燃焼により生
じるもの)がのらないが、ノツキングを生じだす
と内圧の最大値近傍よりこの高調波がのりだし、
その影響によつて気筒外へ振動あるいは音となつ
て発生する。その気筒内に発生する内圧信号ある
いは気筒外へ発生する振動あるいは音の発生状態
をよくみると、ノツキングの生じはじめ(トレー
スノツク)は内圧の最大値になるエンジンクラン
ク角より出はじめ、徐々に大きなノツキング(ラ
イトノツク、ヘビーノツク)になると内圧最大値
より前側(すなわち点火側)にその高調波が大き
くのりだす。ところで、このノツキングによる高
調波の周波数は前述したごとく、シリンダのボア
径と燃焼時の音速により一義的に定まるものと考
えられており、その周波数は特定の周波数帯(通
常7〜10KHz)にのみ発生するといわれている。
そこで、従来のものは、機関の外部に生ずる振動
を単に検出するか特定の周波数のみに着目すれば
ノツキング検出ができるものとしてノツキングを
検出し点火時期を制御していた。しかし、上記の
ものでは機関の運転条件により、検出精度が悪化
し、微弱なトレースノツキングの検出が難しくな
る領域の生じることがわかつた。即ち、7KHz〜
10KHz帯でノツキングを検出する場合高回転にな
ると機関本体に生ずる振動ノイズ(例えばバルブ
着座振動)が大きくなり、S/N比が悪化する。
特に、高回転、高負荷時はその影響が大きく、ト
レースノツキングの検出はほとんど検出不能とな
る。又、S/N比が悪くとも無理に点火時期を制
御しようとすれば過大なノツキングを生じやす
く、時として点火プラグ溶損を含む機関本体の破
損を生じる。この被害を防止するため、一般に高
回転、高負荷では点火時期制御と停止せざるを得
ない。また、特定の周波数帯に着目することもな
く、単に振動を検出しようとするものでは振動ノ
イズの影響が大きすぎ、トレースノツキングの検
出はほとんどできず、円滑な制御は期待できな
い。そこで、従来方式の欠点を除去するノツキン
グの検出法を種々検討したところ、ノツキングは
単一の周波数帯にのみ存在するのではなく、複数
の周波数帯に存在しており、この周波数帯に着目
すれば機関の振動ノイズが乗りにくく高回転にて
も精度よくノツキングを検出できることがわかつ
た。
By the way, it is generally known that there is a strong correlation between ignition timing and cylinder pressure;
When the air-fuel mixture is exploded, the cylinder internal pressure is a harmonic when no knocking occurs (component in a frequency band usually determined by the bore diameter of the engine cylinder and the sound speed during combustion, which is caused by intermittent rapid combustion) However, when knocking occurs, this harmonic wave rises near the maximum value of the internal pressure,
As a result, vibrations or noise are generated outside the cylinder. If we look closely at the internal pressure signal generated within the cylinder or the vibration or sound generated outside the cylinder, we can see that knocking (trace knock) begins at the engine crank angle where the internal pressure reaches its maximum value, and gradually increases. When knocking occurs (light knock, heavy knock), the harmonics become large in front of the maximum internal pressure (that is, on the ignition side). By the way, as mentioned above, the frequency of harmonics caused by this knocking is thought to be uniquely determined by the bore diameter of the cylinder and the sound speed during combustion, and the frequency is limited to a specific frequency band (usually 7 to 10 KHz). is said to occur.
Therefore, in conventional engines, knocking can be detected by simply detecting vibrations occurring outside the engine or by focusing on a specific frequency, and the ignition timing is controlled by detecting knocking. However, it has been found that with the above method, the detection accuracy deteriorates depending on the operating conditions of the engine, and a region occurs where it becomes difficult to detect weak trace knocking. That is, 7KHz ~
When detecting knocking in the 10KHz band, when the engine speed becomes high, vibration noise generated in the engine body (for example, valve seating vibration) increases, and the S/N ratio deteriorates.
This effect is particularly large at high speeds and high loads, and trace knocking becomes almost impossible to detect. Furthermore, even if the S/N ratio is poor, if the ignition timing is forcibly controlled, excessive knocking is likely to occur, and damage to the engine body, including melting of the spark plug, may occur. To prevent this damage, it is generally necessary to control the ignition timing and stop the engine at high speeds and high loads. Furthermore, in a method that simply detects vibration without focusing on a specific frequency band, the influence of vibration noise is too large, trace knocking can hardly be detected, and smooth control cannot be expected. Therefore, we investigated various knocking detection methods that eliminate the drawbacks of conventional methods, and found that knocking exists not only in a single frequency band, but in multiple frequency bands. It was found that knocking could be detected accurately even at high rotation speeds, since the vibration noise of the engine was difficult to detect.

第1図は圧電素子型振動検出器を機関のブロツ
クに取りつけ、ノツキングの有無による振動出力
を周波数分析したものである。
Figure 1 shows a piezoelectric element type vibration detector attached to the engine block, and frequency analysis of the vibration output depending on the presence or absence of knocking.

図中A,Bは機関速度1500と3000rpmにおける
高負荷(WOT)時のノツキングのない状態の振
動出力(バツクノイズ)であり、Cは機関速度
3000rpmにおけるWOTでのノツキング発生時の
振動出力である。
In the figure, A and B are the vibration output (back noise) without knocking at high load (WOT) at engine speeds of 1500 and 3000 rpm, and C is the engine speed.
This is the vibration output when knocking occurs at WOT at 3000 rpm.

この結果から明らかなように、ノツキングは5
〜10KHz帯と(以下低周波帯)と11〜13KHz帯
(以下高周波帯)とに発生するものであり、11〜
13KHz帯は高回転で振動ノイズの影響が少くS/
N比がよい。逆に、低回転では低周波帯の感度が
よいことがわかる。又、高周波帯の振動は指圧の
ピーク近くでも大きく生じ、低周波帯の振動は指
圧ピーク後に出やすくなる。この結果は指圧波形
ともよく対応しており、従来考えられた様にノツ
キング周波数は一義的に定まるものでなく特殊燃
焼領域が存在する。さらに、この高、低の周波数
は燃焼室の形状や条件による影響をうけるため機
関形式により絶対的に定められない場合もある
が、複数の周波数帯にノツキングが生じることに
違いはない。
As is clear from this result, Notsking is 5
~10KHz band (hereinafter referred to as low frequency band) and 11~13KHz band (hereinafter referred to as high frequency band), and 11~13KHz band (hereinafter referred to as high frequency band)
The 13KHz band has high rotation speed and is less affected by vibration noise.
Good N ratio. Conversely, it can be seen that the sensitivity in the low frequency band is good at low rotations. Further, vibrations in a high frequency band occur largely even near the peak of acupressure, and vibrations in a low frequency band tend to occur after the peak of acupressure. This result corresponds well to the acupressure waveform, and as previously thought, the knocking frequency is not uniquely determined, but a special combustion region exists. Furthermore, these high and low frequencies are affected by the shape and conditions of the combustion chamber, so they may not be absolutely determined depending on the engine type, but knocking will definitely occur in multiple frequency bands.

そこで、本発明は上記の点に鑑みて、内燃機関
の互いに異なる周波数帯のノツキング振動を各々
検出し、これら各振動出力を必要に応じて切り換
える構成にすることにより、機関の振動ノイズが
比較的少く、低周波帯の感度がよく、S/N比も
よくノツキングの検出が可能な機関の低回転、軽
負荷時には低周波側の振動出力を用い、逆に機関
が高回転や高負荷となり、振動ノイズが大きくな
つた時は高周波帯の振動出力を切り換えて使用
し、常に機関の運転条件が変化しても安定かつ精
度よく微弱なノツキングを検出することができ、
従来の方式で問題となつた、高回転側で振動ノイ
ズによりノツキングの検出ができずに制御ができ
なくなつたり、あるいはS/N比が悪化して比較
的強度のノイズ(ヘビーノツキング)しかできな
い状態で点火時期を制御せんとして点火プラグの
溶損や時として機関本体の破損等を生じたり、あ
るいは最も燃費効率の向上が期待できる高負荷高
回転で円滑なノツキングの制御ができないという
重大な欠点をなくし、機関の耐久性、効率を大幅
に改善できる内燃機関用ノツキング検出装置を提
供することを目的とするものである。
Therefore, in view of the above points, the present invention is configured to detect knocking vibrations in different frequency bands of an internal combustion engine and to switch the output of each of these vibrations as necessary, thereby reducing the vibration noise of the engine relatively. When the engine is running at low speeds and under light load, the vibration output on the low frequency side is used. When the vibration noise becomes large, the vibration output in the high frequency band is switched and used, making it possible to detect weak knocking stably and accurately even when engine operating conditions change.
Problems with the conventional method were that vibration noise at high rotation speeds made it impossible to detect knocking and control, or that the S/N ratio worsened and only caused relatively strong noise (heavy knocking). If you try to control the ignition timing in a situation where it is not possible to control the ignition timing, it may cause melting of the spark plug and sometimes damage to the engine itself, or it may cause serious problems such as not being able to smoothly control knocking under high load and high rotation speeds, which is the area where fuel efficiency is most expected to be improved. It is an object of the present invention to provide a knocking detection device for an internal combustion engine that can eliminate the drawbacks and significantly improve the durability and efficiency of the engine.

以下本発明を図に示す実施例について説明す
る。第2図は本発明装置を用いたノツキングフイ
ードバツク点火システム図である。
The present invention will be described below with reference to embodiments shown in the drawings. FIG. 2 is a diagram of a knocking feedback ignition system using the device of the present invention.

図中1は4気筒列型内燃機関であり、機関1の
シリンダブロツク部(図では第4気筒側)に振動
検出器2がねじ等の手段で強固に装着してある。
この振動検出器2は互いに異なる周波数帯に2つ
の共振点を持ち、各周波数帯の振動出力をそれぞ
れ2つの信号線a,bより出力する。3は振動検
出器2の出力信号から機関のノツキングを検出す
るノツキング検出回路、4は検出回路3の出力に
応じて、点火時期を進遅角させ最適位置に制御す
る点火時期制御装置である。この制御装置4の出
力信号は点火装置5を介して、機関1に装着した
点火プラグにより、混合気に着火する。
In the figure, reference numeral 1 denotes a four-cylinder in-line internal combustion engine, and a vibration detector 2 is firmly attached to a cylinder block portion of the engine 1 (on the fourth cylinder side in the figure) using screws or the like.
This vibration detector 2 has two resonance points in different frequency bands, and outputs vibration output in each frequency band from two signal lines a and b, respectively. 3 is a knocking detection circuit that detects engine knocking from the output signal of the vibration detector 2; 4 is an ignition timing control device that advances or retards the ignition timing in accordance with the output of the detection circuit 3 to control it to an optimum position. The output signal of the control device 4 is passed through the ignition device 5 to ignite the air-fuel mixture by a spark plug attached to the engine 1.

次に、振動検出器2の具体的な構成を説明す
る。第3図は、圧電素子を用いた振動検出器の第
1実施例である。21A,21Bはそれぞれ2つ
の圧電素子21a,21b間に中心電極21cを
挾み接着させたバイモルフと呼ばれる2個の圧電
型の振動検出素子である。その各振動検出素子2
1A,21Bは凹部を設けたセラミツク、ベーク
等の2つの絶縁物22a,22bの間に上下の圧
電素子21a,21bを継ぐ外側電極21dとと
もに挾み、ビス23により金属製のステー29に
強固にビス止めする。各振動検出素子21A,2
1Bの信号は各中心電極21cおよび各外側電極
21dの端部より各リード線24a,24b,2
5a,25bにより半田付、かしめ等で接続して
取り出し、電極4本をガラスにより絶縁して構成
した密封用端子26(通常ハーメチツクシールと
呼ばれる)の各電極を介して外部に出力する。端
子26はその金属ハウジング26aにより金属製
のカバー27に半田付され、カバー27はゴム等
のシール部材28とともにステー29にカバー2
7の端部とかしめて取付る。ステー29はその下
部に取付用ねじ部29aを持ち、このねじ部で機
関のシリンダブロツクに強固に固定される。この
検出器2の感知方向は図中矢印の上下方向であ
る。また、検出器に装着した各振動検出素子21
A,21Bの共振周波数は、その材質がいずれも
同材質、同構成であるから、その長さにより決定
される。図では短い方の振動検出素子21Bが高
共振点となり振動検出素子21Aは8KHz、振動
検出素子21Bは12KHzに共振ピークが生じるべ
く設計してある。更に、各振動検出素子21A,
21B間は充分に絶縁に注意してある。
Next, a specific configuration of the vibration detector 2 will be explained. FIG. 3 shows a first embodiment of a vibration detector using a piezoelectric element. Reference numerals 21A and 21B are two piezoelectric vibration detecting elements called bimorph, in which a center electrode 21c is sandwiched and bonded between two piezoelectric elements 21a and 21b, respectively. Each vibration detection element 2
1A and 21B are sandwiched between two insulators 22a and 22b made of ceramic, baked or the like with recesses together with an outer electrode 21d that connects the upper and lower piezoelectric elements 21a and 21b, and are firmly attached to a metal stay 29 with screws 23. Fasten with screws. Each vibration detection element 21A, 2
The signal of 1B is transmitted from the end of each center electrode 21c and each outer electrode 21d to each lead wire 24a, 24b, 2.
5a and 25b by soldering, caulking, etc., and output to the outside through each electrode of a sealing terminal 26 (usually called a hermetic seal) constructed by insulating four electrodes with glass. The terminal 26 is soldered to a metal cover 27 through its metal housing 26a, and the cover 27 is attached to the stay 29 together with a sealing member 28 such as rubber.
Attach by caulking the end of 7. The stay 29 has a mounting threaded portion 29a at its lower portion, and is firmly fixed to the cylinder block of the engine by this threaded portion. The sensing direction of this detector 2 is the up and down direction of the arrow in the figure. In addition, each vibration detection element 21 attached to the detector
Since they are both made of the same material and have the same configuration, the resonance frequency of A and 21B is determined by their length. In the figure, the shorter vibration detection element 21B is designed to have a high resonance point, and the vibration detection element 21A has a resonance peak at 8KHz, and the vibration detection element 21B has a resonance peak at 12KHz. Furthermore, each vibration detection element 21A,
Care must be taken to insulate between 21B and 21B.

これら各振動検出素子21A,21Bは特定の
周波数に共振特性がある。従つて、その周波数周
辺の振動周波数に対し感度が良く、他の帯域のノ
イズに対して非常にS/N比が良くなる。
Each of these vibration detection elements 21A and 21B has resonance characteristics at a specific frequency. Therefore, the sensitivity is good for vibration frequencies around that frequency, and the S/N ratio is very good for noise in other bands.

検出器2の作動は、シリンダブロツクに検出器
2を取り付け機関を運転すると、各振動検出素子
21A,21Bが矢印方向に力を受け、この力に
応じた出力を出す。これら各振動検出素子21
A,21Bは互に電気的に独立に構成してあるか
ら、振動に応じ振動検出素子21Aは低周波帯の
ノツキングに高感度に応答し、振動検出素子21
Bは高周波帯に良好な応答をする。これら両者の
振動検出素子21A,21Bは各々ノツキングが
機関条件によりその発生する振動周波数帯が異
り、S/N比にも差があるのに対し、切り換え回
路31によつてS/N比の良好な側の出力が使用
でき常に適正にノツキングを検出することが可能
になる。
When the detector 2 is attached to a cylinder block and the engine is operated, each vibration detection element 21A, 21B receives a force in the direction of the arrow, and outputs an output corresponding to this force. Each of these vibration detection elements 21
Since A and 21B are configured to be electrically independent from each other, the vibration detection element 21A responds with high sensitivity to knocking in the low frequency band, and the vibration detection element 21A responds to knocking in the low frequency band.
B has good response in high frequency band. Both of these vibration detection elements 21A and 21B have different vibration frequency bands in which knocking occurs depending on the engine conditions, and also have different S/N ratios. Since the output on the better side can be used, knocking can always be detected properly.

従つて、従来の検出法において問題となつた高
回転や、高回転高負荷側でS/N比が悪化するこ
とはなく良好な微弱ノツキングの検出ができる。
Therefore, the S/N ratio does not deteriorate at high speeds or at high speeds and high loads, which has been a problem in conventional detection methods, and it is possible to successfully detect weak knocking.

第4図はノツキング検出回路2及び点火時期制
御装置4の詳細ブロツク図である。
FIG. 4 is a detailed block diagram of the knocking detection circuit 2 and the ignition timing control device 4.

6は機関1の運転状態を検出する機関状態検出
器であり、機関速度、負荷状態、温度等を検出す
る。41は検出した機関状態の各種信号を点火時
期演算に好適に信号変換する入力処理回路、42
は機関条件の中で機関速度(例えばデイストリビ
ユータ軸、クランクシヤフト等の回転部に複数の
突起部を設けてマグネツトとコイルによる発電方
式にて検出し、これをデイジタル信号に変換した
機関速度に比例した周波数を持つ信号)を基に、
機関速度のみに依存して変化する所定の進角値
(例えば最低進角値やフエールセーフのための進
角制御範囲等)を決めるベース進角演算回路であ
る。43はベース進角演算回路42、入力処理回
路41ノツキングの状態に応じて進角値量を決め
る補正進角演算回路44の各出力を用いて、機関
運転に最適な点火時期を決める点火時期演算回路
である。45は点火時期演算回路43のイグナイ
タ駆動信号(例えば点火コイルの通電時間、点火
タイミングを指示するデイジタル信号)により点
火直後のノツキングの発生しない所定時間Lとノ
ツキングが生じる期間とを分割し、後述するノツ
キング判別回路32により、ノツキングとベース
の振動ノイズとを求めるための分割信号回路であ
る。5は点火時期演算回路43の出力により図示
しない点火コイルを駆動し、その2次コイルに生
じた高電圧により点火プラグで飛火させ着火燃焼
させる前述した公知の点火装置である。
Reference numeral 6 denotes an engine state detector that detects the operating state of the engine 1, and detects engine speed, load state, temperature, etc. 41 is an input processing circuit that converts various detected engine state signals into signals suitable for calculating ignition timing; 42;
is the engine speed under the engine conditions (for example, the engine speed is detected by installing multiple protrusions on the rotating parts of the distributor shaft, crankshaft, etc. and using a power generation method using a magnet and coil, and converting this into a digital signal) signal with proportional frequency),
This is a base advance angle calculation circuit that determines a predetermined advance angle value (for example, a minimum advance angle value, an advance angle control range for failsafe, etc.) that changes depending only on the engine speed. Reference numeral 43 denotes an ignition timing calculation circuit that determines the optimal ignition timing for engine operation using the outputs of the base advance angle calculation circuit 42 and the input processing circuit 41 and the corrected advance angle calculation circuit 44 that determines the amount of advance value according to the notching state. It is a circuit. 45 divides a predetermined period L in which knocking does not occur immediately after ignition and a period in which knocking occurs by using an igniter drive signal (for example, a digital signal instructing the ignition coil energization time and ignition timing) from the ignition timing calculation circuit 43, which will be described later. This is a divided signal circuit for determining knocking and bass vibration noise using a knocking discrimination circuit 32. Reference numeral 5 denotes the above-mentioned known ignition device which drives an ignition coil (not shown) by the output of the ignition timing calculation circuit 43, and uses the high voltage generated in the secondary coil to cause the ignition plug to ignite and burn the spark.

2は前述の振動検出器、3はノツキング検出回
路であつて、31は振動検出器2に発生する2種
の信号を入力処理回路41の出力に応じて切り換
える切り換え回路、32は分割信号発生回路45
の出力に応じて、所定のタイミングで振動のノイ
ズとノツキングの出力とを比較し、ノツキングの
有無を判定するノツキング判定回路である。
2 is the aforementioned vibration detector, 3 is a knocking detection circuit, 31 is a switching circuit that switches two types of signals generated in the vibration detector 2 according to the output of the input processing circuit 41, and 32 is a division signal generation circuit. 45
This knocking determination circuit compares the vibration noise and the knocking output at a predetermined timing according to the output of the knocking, and determines the presence or absence of knocking.

第5図は切り換え回路31の詳細ブロツク図で
あり、2は前述の振動検出器、a,bはこの検出
器2の高周波帯と低周波帯との2種の出力線を示
している。311,312は制御端子に“1”レ
ベルの信号が加えられると導通するアナログスイ
ツチであつて比較器317の出力とNOTゲート
313の出力とによりどちらか一方のみが導通す
る。
FIG. 5 is a detailed block diagram of the switching circuit 31. Reference numeral 2 indicates the aforementioned vibration detector, and reference numerals a and b indicate two types of output lines for the high frequency band and low frequency band of this detector 2. Reference numerals 311 and 312 are analog switches that become conductive when a "1" level signal is applied to their control terminals, and only one of them becomes conductive depending on the output of the comparator 317 and the output of the NOT gate 313.

314は各アナログスイツチ311,312を
通る振動検出器2の出力を増幅する増幅器であ
る。端子Cには前述の入力処理回路41の出力の
うち機関速度Nに比例するデイジタル信号が入力
され微分回路315と積分器316とを経て機関
速度Nに比例したアナログ電圧が出力される。3
17は電圧設定器318の出力と積分器316の
出力とを比較する比較器である。
Reference numeral 314 denotes an amplifier that amplifies the output of the vibration detector 2 that passes through each analog switch 311, 312. A digital signal proportional to the engine speed N out of the output of the input processing circuit 41 described above is inputted to the terminal C, and an analog voltage proportional to the engine speed N is outputted via a differentiating circuit 315 and an integrator 316. 3
A comparator 17 compares the output of the voltage setter 318 and the output of the integrator 316.

次に、上記構成においてその作動を説明する。
この点火装置は通常の点火手段とは別に機関に何
らかの異常が生じた時に機関が損われることなく
最低の運行が維持される様にする機関の回転数で
定めたベース進角機能(これは点火装置の誤動作
何らかの原因で異常なノツキングが生じてしまう
などの場合に使用される)と通常の機関速度、負
荷、水温等で定まる進角機能とノツキングの有無
により進遅角される進角機能とを持ち、点火時期
はこの機能の合成したものとして演算し決定され
る。点火時期が通常の作動にて決定され機関にて
点火されると、振動検出器2は異つた周波数帯に
共振点を持つ2種の振動に応じた信号を出力す
る。切り換え回路31は微分回路315、積分器
316の出力が回転に比例して上昇するから、こ
れと、電圧設定器318の所定電圧Vcと積分器
316の出力Vとを比較し、所定速度(本例では
3000rpmに定めた)以上か以下かを検出する。回
転数電圧Vが所定値Vcより大きければ(V>
Vc)、比較器317の出力は“0”レベルとな
り、アナログスイツチ311が導通して、振動検
出器2よりの高周波帯の出力信号が増幅器314
に入力され、従つてノツキング判別回路32には
機関本体の振動ノイズが小さくS/N比のよい高
周波帯(共振点は12KHz)の信号が入力されて精
度よくノツキングが検出される。逆に(V<Vc)
ならば比較器317の出力が“1”レベルとな
り、アナログスイツチ312が導通し、振動ノイ
ズが比較的小さくノツキング振動が大きな感度で
検知される低周波帯(8KHzの共振点)の出力が
ノツキング判別回路32に入力される。従つて、
常にノツキング判別回路32は、回転が上昇し機
関の振動ノイズが大きくなれば信号の感度が良い
高周波帯の信号を用い、低回転で低周波帯(5〜
10KHz)にも振動ノイズが微弱にしか生じない時
はノツキングに対し感度のよい低周波帯の信号を
用いることができ、常にS/N比の良い状態でノ
ツキングの判定が可能になる。
Next, the operation of the above configuration will be explained.
In addition to the normal ignition means, this ignition system has a base advance function (this is an ignition advance function) that is determined by the engine speed to maintain the minimum operation without damaging the engine in the event of any abnormality in the engine. (Used in cases where abnormal knocking occurs due to equipment malfunction for some reason), an advance angle function that is determined by normal engine speed, load, water temperature, etc., and an advance angle function that advances or retards depending on the presence or absence of knocking. The ignition timing is calculated and determined as a combination of these functions. When the ignition timing is determined during normal operation and the engine ignites, the vibration detector 2 outputs signals corresponding to two types of vibrations having resonance points in different frequency bands. The switching circuit 31 compares the outputs of the differentiating circuit 315 and the integrator 316 with the predetermined voltage Vc of the voltage setter 318 and the output V of the integrator 316, since the outputs of the differentiator circuit 315 and the integrator 316 increase in proportion to the rotation. In the example
It detects whether the speed is above or below (set at 3000 rpm). If the rotation speed voltage V is larger than the predetermined value Vc (V>
Vc), the output of the comparator 317 becomes "0" level, the analog switch 311 becomes conductive, and the high frequency band output signal from the vibration detector 2 is transmitted to the amplifier 314.
Therefore, a signal in a high frequency band (resonance point is 12 KHz) with low vibration noise from the engine body and a good S/N ratio is input to the knocking discrimination circuit 32, so that knocking can be detected with high accuracy. On the contrary (V<Vc)
Then, the output of the comparator 317 becomes "1" level, the analog switch 312 becomes conductive, and the output of the low frequency band (resonance point of 8KHz), where vibration noise is relatively small and knocking vibration is detected with high sensitivity, is used to determine knocking. It is input to circuit 32. Therefore,
The knocking discrimination circuit 32 always uses a signal in the high frequency band, which has good signal sensitivity when the engine speed increases and the vibration noise of the engine increases;
When vibration noise is only weak (10KHz), it is possible to use a low frequency band signal that is sensitive to knocking, making it possible to always determine knocking with a good S/N ratio.

ノツキング判別回路32は分割信号回路45の
出力により点火直後のノツキングの生じない時間
の第7図cで示す振動ノイズサンプリング信号と
その後のノツキングが生じる時間の第7図Dの実
線あるいは破線で示すノツキングサンプリング信
号とに分割して振動検出器2の出力をサンプリン
グする。(ここで、第7図においてAは点火時期
演算回路43の出力信号、Bは点火装置5の点火
コイルの一次電流を断続するパワートランジスタ
の出力波形である。)そして、各々の信号はピー
クホールド又は整流積分値を求め両信号の比や電
位の大小(但しノイズレベルはノツキング信号の
レベルより小なる故にKX(ノイズ)〓ノツキン
グとして判定する。)を比較し、所定値よりノツ
キングが大きければノツク有として補正進角演算
回路44でノツキングのレベルに応じて進遅角量
を計算する。
The knocking discrimination circuit 32 uses the output of the divided signal circuit 45 to detect the vibration noise sampling signal shown in FIG. 7C for the time immediately after ignition when knocking does not occur, and the notch shown by the solid line or broken line in FIG. 7D for the subsequent time when knocking occurs. The output of the vibration detector 2 is sampled by dividing it into a king sampling signal. (Here, in FIG. 7, A is the output signal of the ignition timing calculation circuit 43, and B is the output waveform of the power transistor that intermittents the primary current of the ignition coil of the ignition device 5.) Alternatively, find the rectified integral value and compare the ratio of both signals and the magnitude of the potential (however, since the noise level is smaller than the level of the knocking signal, it is judged as KX (noise) = knocking), and if knocking is larger than a predetermined value, knocking is detected. Assuming that there is, the correction advance angle calculation circuit 44 calculates the advance/retard amount according to the level of knocking.

点火時期演算回路43はこのノツキングによる
補正量を機関の条件により演算した進角量に加
え、この結果により点火装置5を駆動して点火さ
せる。この時、ノツキングが生じなければ補正進
角演算回路44は所定の量を進角させる様信号を
出す。つまり、この装置では検出器2の出力に応
じてノツキングがあれば所定量を遅角し、なけれ
ば所定量を進角させ、機関に異常が生じればベー
ス進角演算回路42よりのベース進角量により点
火時期を制御することになる。
The ignition timing calculation circuit 43 adds the correction amount due to this knocking to the advance amount calculated based on the engine conditions, and based on this result, drives the ignition device 5 to ignite. At this time, if knocking does not occur, the correction advance angle calculation circuit 44 issues a signal to advance the angle by a predetermined amount. In other words, in this device, if there is knocking according to the output of the detector 2, the engine is retarded by a predetermined amount, if not, it is advanced by a predetermined amount, and if an abnormality occurs in the engine, the base advance is advanced by the base advance angle calculation circuit 42. The ignition timing is controlled by the amount of angle.

なお、上述の実施例では、点火1回毎にベース
ノイズとノツキングとの比をとつてノツキングを
判定したが、これを統計的(例えば100回中何%
のノツキングが生じるか)に処理することもでき
る。ただし、この場合応答が遅れることになる。
Note that in the above embodiment, knocking was determined by calculating the ratio of base noise to knocking for each ignition, but this was determined statistically (for example, what percentage out of 100 firings).
It can also be treated to reduce the risk of knocking. However, in this case, the response will be delayed.

また、実施例では検出器2の出力の切り換えを
機関速度が上昇すると低周波帯の振動ノイズが増
加することから信号を機関速度により切り換えた
が、振動ノイズのレベルを検出して切り換えるも
のを第6図について説明する。この第6図におい
て第4図と同一番号を付したものはそれと同一構
成を示す。315aは分割信号回路45よりの振
動ノイズサンプリング信号が“1”レベルの間振
動検出器2よりの低周波帯検出信号の出力が入力
されてこれを整流する整流回路、316aは整流
回路315aの出力を積分してホールドする積分
器であり、この積分器316aは次回の振動ノイ
ズサンプリング信号が入力される直前に出される
リセツト信号Rを入力し(この信号は時間、又は
角度に同期させてつくる)、このリセツト信号R
の入力直後から、次回のリセツト信号Rの入力直
前までの積分データをホールドする。比較器31
7は積分器316aの出力Vと電圧設定器318
aよりの所定のノイズレベル電圧VNとを比較し
て出力を発生する。従つて、ノツキングの発生し
ない期間の振動のノイズを検出してV>VNなら
高周波用に、V<VNなら低周波用に検出器2の
出力が切り換えられる。この切り換え回路31以
後の作動は前述と同様である。
In addition, in the embodiment, the output of the detector 2 was switched depending on the engine speed because as the engine speed increases, the vibration noise in the low frequency band increases, but the output of the detector 2 is switched by detecting the level of vibration noise. Figure 6 will be explained. In FIG. 6, the same numbers as in FIG. 4 indicate the same configurations. 315a is a rectifier circuit to which the output of the low frequency band detection signal from the vibration detector 2 is input and rectified while the vibration noise sampling signal from the divided signal circuit 45 is at the "1" level, and 316a is the output of the rectifier circuit 315a. This integrator 316a integrates and holds the signal, and this integrator 316a receives a reset signal R that is issued immediately before the next vibration noise sampling signal is input (this signal is generated in synchronization with time or angle). , this reset signal R
The integral data from immediately after the input of the reset signal R to immediately before the next input of the reset signal R is held. Comparator 31
7 is the output V of the integrator 316a and the voltage setting device 318
A is compared with a predetermined noise level voltage VN from a to generate an output. Therefore, when detecting vibration noise during a period in which knocking does not occur, the output of the detector 2 is switched to high frequency if V>VN, and to low frequency if V<VN. The operation after this switching circuit 31 is the same as described above.

また、機関に生じる振動ノイズは負荷の増加に
つれ上昇することもわかつている。この場合は吸
気管圧力を検出し、圧力に比例した電圧を取り出
し比較器317の入力に入れれば吸気管圧力によ
つて信号の切り換えができる。また回転と負荷の
両パラメータを用い、特に回転、負荷のマトリツ
クスを組み、切り換え条件を選ぶこともできる。
この場合切り換えはより細かくできる利点があ
る。
It is also known that the vibration noise generated in the engine increases as the load increases. In this case, if the intake pipe pressure is detected and a voltage proportional to the pressure is taken out and inputted to the comparator 317, the signal can be switched depending on the intake pipe pressure. It is also possible to select switching conditions by using both rotation and load parameters, particularly by creating a rotation and load matrix.
In this case, there is an advantage that switching can be made more precisely.

また、上述した実施例では異なる周波数帯に共
振点を持つ振動検出器2の一例として圧電素子型
のもので説明したが、検出器は共振点を異る周波
数帯に持てばよいのであるから、その検出原理、
形態によらずいずれのものも使用ができる。従つ
て検出器2は1個の容器中に含まずとも、独立し
た共振点を持つ2つあるいはそれ以上の振動検出
器をシリンダブロツクに取りつけても検出が可能
なことは明らかである。ただし、取付位置によつ
ては振動の程度が変るため両者はその取付位置、
取付方法に注意が必要である。
Furthermore, in the above-mentioned embodiment, a piezoelectric element type vibration detector 2 was explained as an example of the vibration detector 2 having resonance points in different frequency bands, but since the detector only needs to have resonance points in different frequency bands, Its detection principle,
Any type can be used regardless of its form. Therefore, it is clear that detection is possible even if the detector 2 is not included in one container, but two or more vibration detectors having independent resonance points are attached to the cylinder block. However, since the degree of vibration changes depending on the mounting position, both
Care must be taken when installing.

次に、磁気的に検出する振動検出器2の第2実
施例を説明する。第8図は検出器の構造図であり
21′は特定のノツキング周波数で共振する共振
点を持つ鉄あるいは鉄−ニツケル合金よりなる磁
性体のリード片、22′は磁力を有するマグネツ
ト、23′は磁路をリード片21′とマグネツト2
2′とから形性する鉄、鉄−ニツケル合金、フエ
ライト等の材質を持つコアである。この磁路には
リード片21′、コア23′間にエアギヤツプGが
設けてあり、このギヤツプGに対向する部分のリ
ード片21′およびコア23′の先端は鋭角にして
ある。従つて、リード片21′が矢印方向に振動
するとギヤツプGが変化し磁路の磁気抵抗が変化
する。24′はこの磁束が変化するのを検出する
コイルである。コイルボビン24a′はコア23′
がその中心を通る様穴があけてあり、コイル用の
導体はこのボビン24a′の外周に巻回する。又、
コイル24′とコア23′はその相対的な位置の変
化による鎖交磁束数の変化を防止する為、接着等
の手段でボビン24a′がコア23′に固着してあ
る。25′は下部に機関のシリンダブロツクに検
出器を取りつけるねじ部25a′を持ち、上部にコ
ア23′を取付ける支持部25b′,25c′を持つ
鉄、しんちゆう等のステーである。26′は前述
の磁路を形成する各部品のおさえ棒であり絶縁板
27′,29′、コイル出力端子24b′を取けるラ
グ板28′、ワツシヤ210′とともにビス21
1′によりステー25′の支持部25b′に強固に固
定される。コイル出力端子24b′はラグ板28′
に半田付、かしめ等で固定された後、リード線2
12′によつて外部に出力される。213′はステ
ー25′にゴム等のシール材214′を挾んでかし
めにより取りつけるカバーでありリード線21
2′を取り出す穴213a′があけてある。21
5′はリード線212′を固定するゴムブツシユで
ある。そして、このリード片21′、コイル2
4′等より構成される振動検出部は、リード片2
1′の長さを異ならせることによつて異なる周波
数に共振点を有する2組のものを有しており、こ
れらは互に独立して並列的に支持部25b′,25
c′に組付けてある。そして、検出器全体がシリン
ダブロツクと一体に振動する様にシリンダブロツ
クにねじ部25a′により締めつけて強固に取付け
る。
Next, a second embodiment of the vibration detector 2 that detects magnetically will be described. FIG. 8 is a structural diagram of the detector, in which 21' is a magnetic lead piece made of iron or iron-nickel alloy that has a resonance point that resonates at a specific knocking frequency, 22' is a magnet with magnetic force, and 23' is a magnetic lead piece made of iron or iron-nickel alloy. Connect the magnetic path between lead piece 21' and magnet 2.
The core is made of iron, iron-nickel alloy, ferrite, etc., and is shaped from 2'. In this magnetic path, an air gap G is provided between the lead piece 21' and the core 23', and the tips of the lead piece 21' and the core 23' facing the gap G are made at acute angles. Therefore, when the reed piece 21' vibrates in the direction of the arrow, the gap G changes and the magnetic resistance of the magnetic path changes. 24' is a coil that detects changes in this magnetic flux. Coil bobbin 24a' is core 23'
A hole is drilled through the center of the bobbin 24a', and a coil conductor is wound around the outer periphery of this bobbin 24a'. or,
In order to prevent changes in the number of interlinked magnetic fluxes due to changes in the relative positions of the coil 24' and core 23', the bobbin 24a' is fixed to the core 23' by means of adhesive or the like. Reference numeral 25' is a stay made of iron or brass, which has a threaded portion 25a' on the lower part for attaching the detector to the cylinder block of the engine, and support parts 25b' and 25c' on the upper part for attaching the core 23'. Reference numeral 26' denotes a holding rod for each component forming the aforementioned magnetic path, and includes insulating plates 27', 29', a lug plate 28' for attaching the coil output terminal 24b', a washer 210', and a screw 21.
1', it is firmly fixed to the support portion 25b' of the stay 25'. The coil output terminal 24b' is connected to the lug plate 28'
After it is fixed by soldering, caulking, etc., lead wire 2
12' to the outside. 213' is a cover that is attached to the stay 25' by sandwiching a sealing material 214' such as rubber and caulking the lead wire 21.
A hole 213a' is provided to take out the hole 213'. 21
5' is a rubber bushing for fixing the lead wire 212'. Then, this lead piece 21', the coil 2
4' etc., the vibration detection section consists of lead piece 2.
By making the lengths of 1' different, there are two sets having resonance points at different frequencies, and these are supported independently and in parallel with the support parts 25b' and 25.
It is attached to c′. Then, the detector is firmly attached to the cylinder block by tightening the threaded portion 25a' so that the entire detector vibrates together with the cylinder block.

この第8図のものによれば、シリンダブロツク
に生じたノツキングの振動はこのステー25′を
介してリード片21′に伝えられる。このリード
片21′はこの振動の周波数、強さに応じてリー
ド片自体の固有振動も加えて振動するが、この時
コア23′、コイル24′、マグネツト22′はス
テー25′と一体になつて振動すべく強固に作ら
れるから、リード片21′のみが磁路中において、
相対的にノツク振動に対応して振動し、エアギヤ
ツプGの距離がノツキングに応じて変化する。こ
こで、コア23′、リード片21′にはマグネツト
22′により、あらじめ所定の磁束が通じる様設
計してあり、エアギヤツプGの変化は閉磁路内の
磁束数変化となる。コイル24′はこの磁束の変
化、即ちノツキングによる振動を電圧として検出
する。検出した電圧信号はリード線212′を介
してノツキング検出回路3へ出力さらる。ところ
で、2組の磁気検出部の各リード片21′はその
長さを異ならせることによつてノツキング周波数
(7〜10KHz)に対し、通常8KHzと12KHz近辺に
共振点を持たせてそれぞれ設計しており、この周
波数帯において特にノツク検出感度が高くなり、
他の周波数帯の信号の感度が悪いことからS/N
比が向上する。
According to the structure shown in FIG. 8, the knocking vibration generated in the cylinder block is transmitted to the reed piece 21' via the stay 25'. This reed piece 21' vibrates in addition to the natural vibration of the reed piece itself depending on the frequency and intensity of this vibration, but at this time, the core 23', coil 24', and magnet 22' are integrated with the stay 25'. Since it is made strongly to vibrate, only the lead piece 21' is in the magnetic path.
It vibrates relatively in response to the knocking vibration, and the distance of the air gap G changes in accordance with the knocking. Here, the core 23' and the lead piece 21' are designed in advance so that a predetermined magnetic flux is passed through the magnet 22', and a change in the air gap G results in a change in the number of magnetic fluxes in the closed magnetic path. The coil 24' detects this change in magnetic flux, that is, the vibration caused by knocking, as a voltage. The detected voltage signal is output to the knocking detection circuit 3 via the lead wire 212'. By the way, each lead piece 21' of the two sets of magnetic detection parts is designed to have a resonance point at a knocking frequency (7 to 10 KHz) usually around 8 KHz and 12 KHz by having different lengths. The knock detection sensitivity is particularly high in this frequency band,
S/N due to poor sensitivity of signals in other frequency bands
ratio is improved.

第9図は第8図が並列的に磁路を作つたものに
対し、対向する位置に磁路を設けた振動検出器の
第3実施例を示す原理図である。201は前述の
共振点を持つリード片相当品であつて、対向位置
にエアギヤツプG1,G2を持つ。このリード片は
1枚の板にてもよく、又2個に分割しても固定が
しつかりしておれば問題はない。202はマグネ
ツト、203はコの字型の磁性材料からなるコア
である。磁束の一方はマグネツト202のN極、
リード片201の一方201a、ギヤツプG1
コア203の一方203aの経路で流れ、他方は
マグネツト202のN極、リード片201の他方
201b、ギヤツプG2、コア203の他方20
3bの経路で流れる。204,205は2つの磁
路のコア203に巻回したコイルである。この場
合も共振点はリード片201の左右の長さを変え
れば変化する。
FIG. 9 is a principle diagram showing a third embodiment of a vibration detector in which a magnetic path is provided in a position opposite to that shown in FIG. 8 in which magnetic paths are provided in parallel. Reference numeral 201 corresponds to the reed piece having the resonance point described above, and has air gaps G 1 and G 2 at opposing positions. This lead piece may be a single plate, or it may be divided into two pieces without any problem as long as they are firmly fixed. 202 is a magnet, and 203 is a U-shaped core made of magnetic material. One side of the magnetic flux is the N pole of the magnet 202,
One side 201a of the lead piece 201, gap G 1 ,
It flows in the path of one side 203a of the core 203, the other side is the N pole of the magnet 202, the other side 201b of the lead piece 201, the gap G2 , and the other side 20 of the core 203.
It flows through route 3b. Coils 204 and 205 are wound around the cores 203 of the two magnetic paths. In this case as well, the resonance point changes by changing the left and right lengths of the lead piece 201.

このノツキング検出に用いる検出器は上記の外
に共振点を持ち機関の振動を検知できるものであ
れば光電式、その他いずれの検出原理のものも使
用ができる。また、ノツキングの判定手段につい
ても実施例以外のもの(例えば振動のベースノイ
ズを検知しない方式やベースノイズの平均値と振
動のピーク値で判定するもの)も使用できること
は明らかである。更に、信号の切り換え回路とし
てアナログスイツチを用いたが接点式スイツチ等
いずれの切り換え手段も使用可能である。但し、
応答性と耐絶縁性に注意が必要である。
The detector used for this knocking detection may be a photoelectric type or one based on any other detection principle as long as it has a resonance point other than the above and can detect engine vibration. Furthermore, it is clear that methods other than those described in the embodiments can also be used for the knocking determination means (for example, a method that does not detect the base noise of vibrations or a method that determines based on the average value of the base noise and the peak value of the vibrations). Further, although an analog switch is used as a signal switching circuit, any switching means such as a contact type switch can be used. however,
Pay attention to responsiveness and insulation resistance.

また、上述した各実施例に示す検出器はいずれ
も低周波帯と高周波帯とに対応する共振点を1個
づつ設けたが、同一周波数帯に2個以上の共振点
を持たせて高低周波数帯を切り換えることもでき
る。
In addition, although the detectors shown in each of the above-mentioned embodiments each have one resonance point corresponding to a low frequency band and one high frequency band, it is possible to have two or more resonance points in the same frequency band. You can also switch bands.

以上述べたように、本発明においては、内燃機
関の互いに異る周波数帯のノツキング振動を各々
検出し、これら各振動出力を切り換えて、ノツキ
ングを検出するから、機関が高回転や高負荷とな
つて振動ノイズが上昇し、ノツキングが精度よく
検出できなくなり、燃費、効率が悪化するあるい
は制御した結果振動プラグ溶損等が生じるという
重大な問題点に対してノイズの少い機関運転状態
では感度が比較的良い低周波帯の出力を用い、逆
にノイズの多い高回転、高負荷ではS/N比の良
い高周波帯の出力を使用することができて、常に
精度よく機関の全運転領域にわたつて微弱なトレ
ースノツキングの検出ができ、燃費、機関の効率
が大幅に向上するという優れた効果がある。
As described above, in the present invention, knocking vibrations in different frequency bands of the internal combustion engine are detected, and knocking is detected by switching the respective vibration outputs. Sensitivity is low when the engine is running with little noise, which is a serious problem in that vibration noise increases and knocking cannot be detected accurately, resulting in poor fuel consumption and efficiency, or vibration plug melting as a result of control. It uses a relatively good low frequency band output, and conversely, at noisy high rotations and high loads, it can use a high frequency band output with a good S/N ratio, so it can always be used accurately over the entire operating range of the engine. It has the excellent effect of significantly improving fuel efficiency and engine efficiency by detecting weak trace knocking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特定の内燃機関においてノツキングに
より生じる振動の周波数分析図、第2図は本発明
装置を適用したノツキング検出フイードバツク点
火システムの構成図、第3図は本発明装置におけ
る振動検出器の第1実施例を示すもので、第3図
aはその縦断面図、第3図bはその横断面図、第
3図cはその要部縦断面図、第3図dはその要部
拡大縦断面図、第4図は第2図図示システムの要
部詳細ブロツク図、第5図および第6図は第4図
中の切り換え回路31の2例を示す詳細ブロツク
図、第7図は第4図中の分割信号回路45の作動
説明に供する各部信号波形図、第8図は上記振動
検出器の第2実施例を示す縦断面図、第9図は上
記振動検出器の第3実施例を示す模式構成図であ
る。 1……内燃機関、2……振動検出器、21A,
21B……振動検出部としての振動検出素子、2
1′,22′,23′,24′……振動検出部を構成
するリード片、マグネツト、コア、コイル、2
7,29……容器を構成するカバーとステー、2
5′,213′……容器を構成するステーとカバ
ー、31……切り換え回路、201,202,2
03,204,205……振動検出部を構成する
リード片、マグネツト、コア、コイル。
Fig. 1 is a frequency analysis diagram of vibrations caused by knocking in a specific internal combustion engine, Fig. 2 is a block diagram of a knocking detection feedback ignition system to which the device of the present invention is applied, and Fig. 3 is a diagram of the vibration detector in the device of the present invention. 3A is a longitudinal sectional view thereof, FIG. 3B is a cross-sectional view thereof, FIG. 3C is a longitudinal sectional view of the main part thereof, and FIG. 3D is an enlarged longitudinal sectional view of the main part thereof. 4 is a detailed block diagram of the main part of the system illustrated in FIG. 2, FIGS. 5 and 6 are detailed block diagrams showing two examples of the switching circuit 31 in FIG. 4, and FIG. 8 is a vertical sectional view showing a second embodiment of the vibration detector, and FIG. 9 is a diagram showing a third embodiment of the vibration detector. FIG. 1... Internal combustion engine, 2... Vibration detector, 21A,
21B...Vibration detection element as a vibration detection section, 2
1', 22', 23', 24'...Reed piece, magnet, core, coil, 2, which constitute the vibration detection section
7, 29...Cover and stay constituting the container, 2
5', 213'... Stay and cover constituting the container, 31... Switching circuit, 201, 202, 2
03, 204, 205...Reed pieces, magnets, cores, and coils that constitute the vibration detection section.

Claims (1)

【特許請求の範囲】 1 互いに異なる共振特性を持つ複数の振動検出
部を含み、内燃機関の互いに異なる周波数帯のノ
ツキング振動を各々検出する振動検出手段と、機
関速度、前記振動検出手段よりの振動ノイズ、機
関負荷のうちいずれかが所定値以上か以下かを判
別する機関状態判別手段と、この機関状態判別手
段により判別された機関状態に応じて、機関速
度、振動ノイズ、機関負荷のいずれかが所定値以
下のときには前記振動検出手段の各振動出力のう
ち低周波数帯側を選択し、所定値以上の時には高
周波数帯側を選択する選択手段と、この選択手段
により選択された振動出力と、この振動出力に応
じて作成される振動ノイズレベルと比較してノツ
キングの有無を判定する判定手段とを備える内燃
機関用ノツキング検出装置。 2 前記振動検出手段により検出される各ノツキ
ング振動のうち高周波数帯側は11KHz〜13KHzの
間に設定され、低周波数帯側は7KHz〜10KHzの
間に設定されている特許請求の範囲第1項記載の
内燃機関用ノツキング検出装置。 3 前記振動検出手段により検出される各ノツキ
ング振動のうち高周波数帯側はほぼ12KHzに設定
され、低周波数帯側はほぼ8KHzに設定されてい
る特許請求の範囲第2項記載の内燃機関用ノツキ
ング検出装置。 4 前記各振動検出部は同一の容器内に収納され
ている特許請求の範囲第4項記載の内燃機関用ノ
ツキング検出装置。 5 前記振動ノイズレベルは前記選択手段により
選択された振動出力のうちノツキングが生じない
期間のものをサンプリングすることにより作成さ
れる特許請求の範囲第1項乃至第4項のいずれか
に記載の内燃機関用ノツキング検出装置。
[Scope of Claims] 1. Vibration detecting means that includes a plurality of vibration detecting sections having mutually different resonance characteristics and each detecting knocking vibrations in different frequency bands of an internal combustion engine, and an engine speed and a vibration detected by the vibration detecting means. An engine state determining means for determining whether either noise or engine load is above or below a predetermined value; and one of engine speed, vibration noise, and engine load depending on the engine state determined by the engine state determining means. a selection means for selecting a low frequency band side among the vibration outputs of the vibration detection means when is below a predetermined value, and selecting a high frequency band side when the vibration output is above a predetermined value; and a vibration output selected by the selection means. A knocking detection device for an internal combustion engine, comprising: a determining means for determining the presence or absence of knocking by comparing the vibration output with a vibration noise level created according to the vibration output. 2. Among the knocking vibrations detected by the vibration detection means, the high frequency band side is set between 11 KHz and 13 KHz, and the low frequency band side is set between 7 KHz and 10 KHz. The knocking detection device for an internal combustion engine as described above. 3. Knocking for an internal combustion engine according to claim 2, wherein among the knocking vibrations detected by the vibration detection means, the high frequency band side is set to approximately 12 KHz, and the low frequency band side is set to approximately 8 KHz. Detection device. 4. The knocking detection device for an internal combustion engine according to claim 4, wherein each of the vibration detection sections is housed in the same container. 5. The internal combustion noise level according to any one of claims 1 to 4, wherein the vibration noise level is created by sampling the vibration output during a period in which knocking does not occur among the vibration outputs selected by the selection means. Engine knocking detection device.
JP5314379A 1979-04-28 1979-04-28 Knocking detector for internal combustion engine Granted JPS55144521A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5314379A JPS55144521A (en) 1979-04-28 1979-04-28 Knocking detector for internal combustion engine
US06/135,929 US4345558A (en) 1979-04-28 1980-03-31 Knock detecting apparatus for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5314379A JPS55144521A (en) 1979-04-28 1979-04-28 Knocking detector for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS55144521A JPS55144521A (en) 1980-11-11
JPS6341009B2 true JPS6341009B2 (en) 1988-08-15

Family

ID=12934600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5314379A Granted JPS55144521A (en) 1979-04-28 1979-04-28 Knocking detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS55144521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246711U (en) * 1988-09-21 1990-03-30

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136042A (en) * 1975-05-20 1976-11-25 Nissan Motor Co Ltd Internal combustion engine nocking automatic pursuit device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112227U (en) * 1979-02-01 1980-08-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136042A (en) * 1975-05-20 1976-11-25 Nissan Motor Co Ltd Internal combustion engine nocking automatic pursuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246711U (en) * 1988-09-21 1990-03-30

Also Published As

Publication number Publication date
JPS55144521A (en) 1980-11-11

Similar Documents

Publication Publication Date Title
US4345558A (en) Knock detecting apparatus for an internal combustion engine
US4357919A (en) Ignition timing control apparatus for internal combustion engines
US6799451B2 (en) Spark generating apparatus having strain gage cylinder pressure measurement feature
US4316440A (en) Knock detecting apparatus for internal combustion engine
US4341189A (en) Knock detecting apparatus for combustion engines
JPH02272328A (en) Engine knocking detector
JPS6148650B2 (en)
JPS6337884B2 (en)
JPS6226409B2 (en)
JPS6042355B2 (en) Ignition timing control device for internal combustion engines
JPS5754819A (en) Detector for knocking in internal combustion engine
JPS5825580A (en) Ignition system with ignition coil integrating type ignition distributor
US6668632B2 (en) Spark apparatus with pressure signal response amplification
JPS6157830A (en) Method and device for deciding on abnormal combustion
US4693221A (en) Engine control system
KR910009753B1 (en) Spark timing control device in internal combustion engine
JPS6341009B2 (en)
JP2001082309A (en) Knock detection device of internal combustion engine
US4414840A (en) Knock detecting apparatus for internal combustion engines
US4424705A (en) Engine knock sensing apparatus
US4357825A (en) Knock detecting apparatus for internal combustion engines
US4462247A (en) Knock detecting apparatus for internal combustion engines
US4336707A (en) Knock detecting apparatus for internal combustion engines
US4379403A (en) Knock detecting apparatus for internal combustion engines
US4337643A (en) Knock detecting apparatus for internal combustion engine