JPS6340871B2 - - Google Patents
Info
- Publication number
- JPS6340871B2 JPS6340871B2 JP56078707A JP7870781A JPS6340871B2 JP S6340871 B2 JPS6340871 B2 JP S6340871B2 JP 56078707 A JP56078707 A JP 56078707A JP 7870781 A JP7870781 A JP 7870781A JP S6340871 B2 JPS6340871 B2 JP S6340871B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- exchange resin
- water
- ion exchange
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012528 membrane Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 20
- 239000003729 cation exchange resin Substances 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 238000005868 electrolysis reaction Methods 0.000 claims description 14
- 239000011347 resin Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 7
- 239000011737 fluorine Substances 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 description 14
- -1 polyethylene Polymers 0.000 description 12
- 238000005342 ion exchange Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 239000003513 alkali Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000003518 caustics Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000010425 asbestos Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000003456 ion exchange resin Substances 0.000 description 4
- 229920003303 ion-exchange polymer Polymers 0.000 description 4
- 229910052895 riebeckite Inorganic materials 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000007868 Raney catalyst Substances 0.000 description 2
- 229910000564 Raney nickel Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【発明の詳細な説明】
本発明は、水を電解して水素を製造する方法、
更に詳しくは、特定の陽イオン交換樹脂膜を使用
した隔膜電解により、水を電解することにより、
水素を効率よく製造する方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing hydrogen by electrolyzing water;
More specifically, by electrolyzing water by diaphragm electrolysis using a specific cation exchange resin membrane,
This invention relates to a method for efficiently producing hydrogen.
水素は、最近のエネルギー事情を反映し石油に
代る新しいエネルギー源として多方面から注目さ
れている。そして、水素の工業的製造方法として
は大別して水電解法とコークスや石油のガス化法
が挙げられる。前者の方法は、原料として入手し
易い水が用いられる反面、多数の電解設備が必要
なこと、電流の過不足に対する適応性が不充分で
あること、電解液の炭酸化による劣化や床面積、
設備費などに多くの問題が残されている。他方、
後者の方法は一般に操作が煩雑であると共に設備
もかなり大型なものが要求され、設備費がかなり
かかるなどの問題がある。 Reflecting the recent energy situation, hydrogen is attracting attention from many quarters as a new energy source to replace oil. Industrial hydrogen production methods can be roughly divided into water electrolysis methods and coke or petroleum gasification methods. Although the former method uses readily available water as a raw material, it requires a large number of electrolytic equipment, is insufficiently adaptable to excess or insufficient current, and suffers from deterioration due to carbonation of the electrolyte and floor space.
Many issues remain, including equipment costs. On the other hand,
The latter method is generally complicated to operate, requires fairly large equipment, and has problems such as considerable equipment costs.
而して、前記水電解法においては、電解槽の陰
極と陽極の間を隔膜で区画し、通常陰極室に水を
供給して電解することにより、陰極室に水素を製
造する、所謂二室法による隔膜電解方法は公知で
ある。従来、こゝにおける隔膜としては、最も普
通には、アスベスト隔膜が使用されているが、ア
スベスト隔膜の場合には、アスベスト自体が電解
液により腐食を受けるために長期間の使用に耐え
なく寿命が小さいという大きい欠点のほかに、こ
の場合には、隔膜が微孔質性であり、電解液や生
成ガスを透過させるために、得られる水素には酸
素が混入し純度が低下するという難点がある。 In the water electrolysis method, a diaphragm is used to separate the cathode and anode of the electrolytic cell, and water is usually supplied to the cathode chamber and electrolyzed to produce hydrogen in the cathode chamber, the so-called two-chamber method. The diaphragm electrolysis method is known. Conventionally, asbestos diaphragms have been most commonly used as diaphragms in this field, but in the case of asbestos diaphragms, the asbestos itself is corroded by electrolyte, so it cannot withstand long-term use and has a short lifespan. In addition to the major drawback of being small, in this case, the diaphragm is microporous and allows the electrolyte and generated gas to pass through, resulting in the disadvantage that the resulting hydrogen is contaminated with oxygen, reducing its purity. .
本発明者は、隔膜として、陽イオン交換樹脂膜
を使用して、水を電解することにより、純度が高
くしかも効率よく水素を製造するべく、鋭意研究
を続けたところ、、特定の水酸基をイオン交換基
とし、これを特定のイオン交換容量になるように
有する含弗素イオン交換樹脂膜を隔膜として使用
することにより、該目的を有利に達成できること
を見い出した。 The inventor of the present invention has conducted intensive research in order to produce hydrogen with high purity and efficiency by electrolyzing water using a cation exchange resin membrane as a diaphragm. It has been found that this object can be advantageously achieved by using a fluorine-containing ion exchange resin membrane having an exchange group so as to have a specific ion exchange capacity as a diaphragm.
即ち、本発明は、陽イオン交換樹脂膜を隔膜と
する隔膜電解により、水を電解して水素を製造す
るにあたり、−(CF2X)(CF2X′)−OH(こゝで、
X、X′は、水素原子、塩素原子、フツ素原子又
はフルオロアルキル基である)からなる水酸基を
イオン交換基とし、交換容量が、0.1〜4ミリ当
量/グラム乾燥樹脂である含弗素陽イオン交換樹
脂膜を使用することを特徴とするものである。 That is, in the present invention, in producing hydrogen by electrolyzing water by diaphragm electrolysis using a cation exchange resin membrane as a diaphragm, -(CF 2 X) (CF 2
X and X' are hydrogen atoms, chlorine atoms, fluorine atoms, or fluoroalkyl groups) as an ion exchange group, and a fluorine-containing cation having an exchange capacity of 0.1 to 4 milliequivalents/gram dry resin. It is characterized by the use of an exchange resin membrane.
かゝる本発明による場合、得られる水素が高純
度であるばかりでなく、電解液がアルカリ性の場
合でも、アスベスト隔膜に見られる如き腐食の難
点がなく、長期間にわたつて安定な運転が可能で
ある。 In the case of the present invention, not only the hydrogen obtained is of high purity, but even when the electrolyte is alkaline, there is no problem of corrosion as seen in asbestos diaphragms, and stable operation can be performed for a long period of time. It is.
以下に、更に本発明について詳述すると、本発
明で使用する隔膜は、実質上電解液や生成ガスを
透過させないものであり、しかも、特定の水酸基
を特定のイオン交換容量になるように含有する含
弗素陽イオン交換樹脂膜でなければならない。生
成ガス、例えば酸素を実質上透過しないというこ
とは、本発明のイオン交換樹脂膜の必須的性質で
あり、該性質を有さない場合には、得られる水素
の純度が低下し、上記本発明の目的は全く達成さ
れない。このため、本発明のイオン交換樹脂膜
は、非多孔性の緻密なものでなければならない。
非多孔性を判定する有力な尺度として、例えば透
水量が挙げられるが、本発明では該透水量が水柱
圧1m(60℃、PH10の4N NaCl中)の場合、100
ml/時間/m2以下である必要があり、これ以上の
場合には、電解液や生成ガスの透過により純度低
下が大きくなつてしまう。なかでも透水量は、特
に10ml/時間/m2以下が好ましい。 The present invention will be described in more detail below. The diaphragm used in the present invention is one that substantially does not allow the electrolyte solution or generated gas to pass through, and furthermore, contains specific hydroxyl groups to have a specific ion exchange capacity. Must be a fluorine-containing cation exchange resin membrane. It is an essential property of the ion exchange resin membrane of the present invention that generated gases such as oxygen are not substantially permeable, and if it does not have this property, the purity of the obtained hydrogen will decrease, and the above-mentioned present invention purpose is not achieved at all. Therefore, the ion exchange resin membrane of the present invention must be non-porous and dense.
For example, water permeability is an effective measure for determining non-porosity, and in the present invention, when the water permeability is 1 m of water column pressure (60°C, PH10 in 4N NaCl), 100
It needs to be ml/hour/m 2 or less; if it is more than this, the purity will be greatly reduced due to the permeation of the electrolyte and the generated gas. Among these, the water permeation rate is particularly preferably 10 ml/hour/m 2 or less.
本発明で使用されるイオン交換基は、上記のよ
うに、一般式−C(CF2X)(CF2X′)−OHを有す
る水酸基が使用される。こゝで、X、X′は、上
記と同じものを示すが、フルオロアルキル基とし
ては、炭素数1〜10のもので、特にパーフルオロ
アルキル基が好ましい。X、X′は、なかでもと
もにフツ素原子である場合が特に好ましい。また
イオン交換容量は、上記のように、0.1〜4ミリ
当量/グラム乾燥樹脂にせしめる必要があり、該
範囲より、小さい場合には膜の電気抵抗が高くな
り、電解電圧の上昇をきたす。逆に該範囲を越え
る場合には、膜の含水率が大きくなり、電流効率
が低下するので不適当である。かゝる範囲のうち
でも、更には0.5〜2ミリ当量/グラム乾燥樹脂
特には、0.8〜1.8ミリ当量/グラム乾燥樹脂のイ
オン交換容量を有するものが性能上特に好まし
い。 As described above, the ion exchange group used in the present invention is a hydroxyl group having the general formula -C( CF2X )( CF2X ')-OH. Here, X and X' are the same as above, but the fluoroalkyl group has 1 to 10 carbon atoms, and a perfluoroalkyl group is particularly preferred. It is especially preferable that X and X' are both fluorine atoms. Further, as mentioned above, the ion exchange capacity needs to be 0.1 to 4 milliequivalents/gram dry resin, and if it is smaller than this range, the electrical resistance of the membrane becomes high and the electrolytic voltage increases. On the other hand, if it exceeds this range, the water content of the membrane increases and the current efficiency decreases, which is unsuitable. Within this range, those having an ion exchange capacity of 0.5 to 2 milliequivalents/gram dry resin, particularly 0.8 to 1.8 milliequivalents/gram dry resin are particularly preferred in terms of performance.
かゝる本発明の特定の水酸基を有する含弗素陽
イオン交換樹脂膜は、種々の構造を有するものが
使用できるが、なかでも、次の(イ)、(ロ)の二つの構
造を含有する重合体の使用が好ましい。 The fluorine-containing cation exchange resin membrane having the specific hydroxyl group of the present invention can have various structures, and among them, the membrane containing the following two structures (a) and (b) is used. Preference is given to using polymers.
こゝで、Yは、水素原子、塩素原子、フツ素原
子又は−CF3であり、Y′、Y″は、Yと同じ群か
ら選ばれるか又は炭素数1〜10のパーフルオロア
ルキル基若しくはパーフルオロアルコキシ基であ
り、Z、Z′は、それぞれY、Y′と同じ群から選ば
れ、1は、0又は1、m、nは、ともに1〜6の
整数である。なお、X、X′は、上記の定義と同
じである。 Here, Y is a hydrogen atom, a chlorine atom, a fluorine atom, or -CF3 , and Y' and Y'' are selected from the same group as Y or are a perfluoroalkyl group having 1 to 10 carbon atoms or It is a perfluoroalkoxy group, Z and Z' are each selected from the same group as Y and Y', 1 is 0 or 1, and m and n are both integers of 1 to 6. X′ is the same as defined above.
かゝる、(イ)及び(ロ)の構造を含む重合体はイオン
交換膜としての性能及び成膜上の必要性から、そ
の分子量は好ましくは約3000〜30万、特には1万
〜10万のものがよい。また重合体が、上記のイオ
ン交換容量を達成せるために、重合体中、(ロ)の構
造は、1〜40モル%、特には、3〜20モル%含ま
れることが好ましい。 The molecular weight of the polymer containing structures (a) and (b) is preferably about 3,000 to 300,000, particularly 10,000 to 10,000 in view of its performance as an ion exchange membrane and the necessity for film formation. Ten thousand things are good. Further, in order for the polymer to achieve the above-mentioned ion exchange capacity, it is preferable that the structure (b) is contained in the polymer in an amount of 1 to 40 mol%, particularly 3 to 20 mol%.
上記の(イ)、(ロ)の構造を有する重合体を製造する
には、例えば、次に如き方法が採用される。 In order to produce the polymer having the structures (a) and (b) above, for example, the following method is employed.
1 (イ)及び(ロ)の構造を与えうるそれぞれの単量体
化合物、例えばフツ素化オレフインと、CF2=
CF−C(CF3)2−OH、
又はCH2=CH−CH2−C(CF3)2−OHなどの
水酸基含有モノマーとを直接共重合させる。1. Respective monomer compounds capable of providing the structures (a) and (b), such as fluorinated olefin, and CF 2 =
Direct copolymerization with a hydroxyl group-containing monomer such as CF-C( CF3 ) 2 -OH or CH2 =CH- CH2 -C( CF3 ) 2 -OH.
2 テトラフルオロエチレン、ヘキサフルオロプ
ロピレンなどのフツ素化オレフインなどの重合
体又は共重合体に、上記の如き水酸基含有モノ
マーをグラフト重合させる。2. A hydroxyl group-containing monomer as described above is graft-polymerized onto a polymer or copolymer such as a fluorinated olefin such as tetrafluoroethylene or hexafluoropropylene.
3 上記フツ素化オレフインなどの重合体又は共
重合体を、ラジカル発生剤の存在下に、
(CF2X)(CF2X′)C=Oなど化合物とを反応
させる。3. A polymer or copolymer such as the above-mentioned fluorinated olefin in the presence of a radical generator,
(CF 2 X) (CF 2 X') React with a compound such as C=O.
本発明の含弗素陽イオン交換樹脂膜を製造する
重合体の製造にあたつては、例えば、次の如き単
量体を併用し、得られる重合体の改質を図ること
ができる。即ち、例えば
CF2=CFORf(Rfは炭素数1〜10のパーフルオ
ロアルキル基)を併用することにより、膜に可撓
性を付与したり或いは、CF2=CF−CF=CF2、
CF2=CFO(CF2)1〜3CF=CF2などのジビニルモノ
マーを併用することにより得られる重合体を架橋
せしめ、膜に機械的強度を付与することができ
る。 In producing the polymer for producing the fluorine-containing cation exchange resin membrane of the present invention, for example, the following monomers can be used in combination to modify the resulting polymer. That is, for example, by using CF 2 =CFOR f (R f is a perfluoroalkyl group having 1 to 10 carbon atoms) in combination, flexibility can be imparted to the film, or CF 2 =CF−CF=CF 2 ,
By using a divinyl monomer such as CF 2 =CFO(CF 2 ) 1-3 CF = CF 2 in combination, the resulting polymer can be crosslinked and mechanical strength can be imparted to the membrane.
かくして得られた重合体からイオン交換樹脂膜
に製膜する手段も、既知の例えばプレス成型、ロ
ール成型、押出し成型、溶液流延法、デイスパー
ジヨン成型又は粉末成型などにより行なわれる。
かくして、膜厚が好ましくは、20〜500ミクロン、
更には50〜300ミクロンにせしめたイオン交換膜
が好適に使用される。 The means for forming an ion exchange resin membrane from the thus obtained polymer can be carried out by known methods such as press molding, roll molding, extrusion molding, solution casting, dispersion molding, or powder molding.
Thus, the film thickness is preferably between 20 and 500 microns,
Furthermore, an ion exchange membrane with a thickness of 50 to 300 microns is preferably used.
本発明の陽イオン交換樹脂膜は、必要に応じ
て、製膜時にポリエチレン、ポリプロピレンなど
のオレフインの重合体、好ましくはポリテトラフ
ルオロエチレン、エチレンとテトラフルオロエチ
レンとの共重合体などの含弗素重合体をブレンド
として成型するか、又はこれらの重合体からなる
布、ネツトなどの織物、不織布或いは多孔質フイ
ルムからなる支持体により共重合体を支持せし
め、膜の機械的強度などを改善することができ
る。なお、かゝるブレンド又は支持体を使用した
場合には、これらの樹脂の重さは、前記したイオ
ン交換容量には算入されない。 The cation exchange resin membrane of the present invention may be formed using an olefin polymer such as polyethylene or polypropylene, preferably a fluorine-containing polymer such as polytetrafluoroethylene or a copolymer of ethylene and tetrafluoroethylene, if necessary. It is possible to improve the mechanical strength of the membrane by molding the copolymer as a blend, or by supporting the copolymer with a support made of cloth, net, or other woven fabric, nonwoven fabric, or porous film made of these polymers. can. Note that when such blends or supports are used, the weight of these resins is not included in the ion exchange capacity described above.
上記陽イオン交換樹脂膜を使用して、水の電解
を行ない、水素を製造する手段としては、公知乃
至周知いずれの隔膜電解の方式も採用することが
できる。例えば、本発明において、水電解に使用
される電極としては、いずれの形式の電極も例示
でき、例えば、多孔板、網又はエキスパンデツド
メタルなどの空隙性の電極が使用さる。空隙性電
極は、適宜の開孔率のものが使用でき、また複数
の板状のものを積層して使用することもできる
が、開孔率の違う複数枚の電極を使用するとき
は、開孔率の小さいものを膜側に配置するのが好
ましい。 As a means for electrolyzing water and producing hydrogen using the above-mentioned cation exchange resin membrane, any known or well-known diaphragm electrolysis method can be employed. For example, in the present invention, any type of electrode can be used as the electrode used for water electrolysis, such as a porous electrode such as a perforated plate, a mesh, or an expanded metal. Porous electrodes with appropriate porosity can be used, and multiple plate-shaped electrodes can be stacked together, but when using multiple electrodes with different porosity, It is preferable to arrange a material with low porosity on the membrane side.
かくして、陽極としては、通常白金族金属、そ
の導電性酸化物又はその導電性還元酸化物、鉄族
金属等が使用され、一方陰極としては白金族金
属、その導電性酸化物又は鉄族金属等が使用され
る。なお、白金族金属としては白金、ロジウム、、
ルテニウム、パラジウム、イリジウムが例示さ
れ、また鉄族金属としては、鉄、コバルト、ラネ
ーコバルト、ニツケル、ラネーニツケル、安定化
ラネーニツケル、ステンレス、アルカリエツチン
グステンレス(特公昭54−19229号公報)、ラネー
ニツケルメツキ陰極(特開昭54−112785号公報)、
ロダンニツケルメツキ陰極(特開昭53−115676号
公報)等が例示される。 Thus, as the anode, platinum group metals, their conductive oxides or their conductive reduced oxides, iron group metals, etc. are usually used, while as the cathodes, platinum group metals, their conductive oxides, iron group metals, etc. is used. In addition, platinum group metals include platinum, rhodium,
Ruthenium, palladium, and iridium are exemplified, and iron group metals include iron, cobalt, Raney cobalt, nickel, Raney nickel, stabilized Raney nickel, stainless steel, alkali-etched stainless steel (Japanese Patent Publication No. 1982-19229), and Raney nickel metal cathode. (Japanese Unexamined Patent Publication No. 112785/1985),
Examples include the Rodan-Nitzkelmecki cathode (Japanese Patent Application Laid-open No. 115676/1983).
空隙性の電極を使用する場合は、該電極は、上
記陽極又は陰極を形成する物質それ自体からこれ
を形成することができる。しかし、白金族金属又
はその導電性酸化物等を使用するときには、通常
チタンやタンタルなどの弁金属のエキスパンデツ
ドメタルの表面にこれらの物質を被覆せしめて形
成するのが好ましい。また、電解槽の形式も単極
槽、複極槽などのいずれの方式も採用できる。 If a porous electrode is used, it can be formed from the material itself forming the anode or cathode. However, when platinum group metals or conductive oxides thereof are used, it is preferable to coat the surface of an expanded valve metal such as titanium or tantalum with these substances. Furthermore, the electrolytic cell may be of any type, such as a monopolar cell or a bipolar cell.
かくして、例えば本発明の陽イオン交換樹脂膜
にて、陽極と陰極とを区画して電解槽に陽極室と
陰極室とを構成し、陰極室に水を供給して電解
し、陰極室から水素を得る所謂二室型槽の場合で
も、後述の如きアルカリ性水溶液などを原料にし
て、適当な電解電圧及び電流密度で電解すること
により、高純度の水素が効率よく長期にわたつて
安定して製造できる。 Thus, for example, an anode and a cathode are separated using the cation exchange resin membrane of the present invention, an anode chamber and a cathode chamber are configured in an electrolytic cell, water is supplied to the cathode chamber for electrolysis, and hydrogen is removed from the cathode chamber. Even in the case of a so-called two-chamber type tank that produces hydrogen, high-purity hydrogen can be efficiently and stably produced over a long period of time by electrolyzing at an appropriate electrolytic voltage and current density using an alkaline aqueous solution as described below as a raw material. can.
実際、水電界に際しては、電解時における電気
抵抗を下げる目的で、陽極室に水と共にアルカリ
を添加するのが好ましい。 In fact, when applying a water electric field, it is preferable to add an alkali together with water to the anode chamber for the purpose of lowering the electrical resistance during electrolysis.
アルカリを用いる場合には水電解によつて陰極
室に生成した苛性アルカリの一部乃至全部を陽極
室に添加し、苛性アルカリを循環使用することが
出来る。陽極室中における苛性アルカリの濃度
は、5〜45重量%程度を採用するのが適当であ
る。又用いられる苛性アルカリとしては、アルカ
リ金属の水酸化物が適当である。 When using an alkali, part or all of the caustic alkali generated in the cathode chamber by water electrolysis can be added to the anode chamber, and the caustic alkali can be recycled. The concentration of caustic alkali in the anode chamber is preferably about 5 to 45% by weight. As the caustic alkali to be used, alkali metal hydroxides are suitable.
電解に際し、電流密度は10〜150A/dm2、好
ましくは20〜100A/dm2を採用するのが適当で
ある。 During electrolysis, it is appropriate to adopt a current density of 10 to 150 A/dm 2 , preferably 20 to 100 A/dm 2 .
又、陽極液の電解時の温度は80〜150℃、好ま
しくは80〜120℃を採用すると電圧面及び電気抵
抗等が最も好ましい状態になし得る。 Further, by adopting a temperature of 80 to 150°C, preferably 80 to 120°C during electrolysis of the anolyte, the voltage surface, electrical resistance, etc. can be brought into the most favorable state.
もちろん、本発明では、かゝる二室型槽ばかり
でなく、上記した陽イオン交換樹脂膜の複数枚、
或いは該陽イオン交換樹脂膜と他の陽イオン交換
樹脂膜若しくは隔膜の複数枚を使用して、陽極と
陰極との間を区画して陽極室と陰極室のほかに中
間室を形成せしめた所謂三室型若しくはそれ以上
の多室型電解槽にても実施できる。 Of course, in the present invention, not only such a two-chamber type tank but also a plurality of the above-mentioned cation exchange resin membranes,
Alternatively, the so-called cation exchange resin membrane and a plurality of other cation exchange resin membranes or diaphragms are used to partition an anode and a cathode to form an intermediate chamber in addition to an anode chamber and a cathode chamber. It can also be carried out in a three-chamber type or more multi-chamber type electrolytic cell.
以下に、本発明を更に具体的に示すために実施
例を挙げるが、本発明は、上記の記載及び下記の
実施例に限定されないことはもちろんである。 Examples are given below to more specifically illustrate the present invention, but it goes without saying that the present invention is not limited to the above description and the following examples.
実施例 1
ポリテトラフルオロエチレンの微粉末(米国ア
ライドケミカル社製商品名ポリミスト)60gを、
1,1−ビス−(トリフルオロメチル)−2,3,
3−トリフルオロ−2−プロペン−1−オール中
に加え、還流温度で2時間加熱した後、ポリマー
粉末を濾過した。このモノマー含浸粉末に線量率
0.01メガラツト/時間のCO60のγ線を8時間照射
した後80℃の真空乾燥器中で重量変化がなくなる
まで充分乾燥した。得られたグラフト重合体粉末
を熱プレスし、厚さ200μ、大きさ8cm×8cmの
陽イオン交換樹脂膜を製造した。この膜のイオン
交換容量は1.23ミリ当量/グラム乾燥樹脂、透水
量は水柱圧1m(60℃、PH10の4N NaCl中)に
おいて4.9ml/時間/m2であつた。Example 1 60 g of polytetrafluoroethylene fine powder (trade name: Polymist, manufactured by Allied Chemical Company, USA) was
1,1-bis-(trifluoromethyl)-2,3,
After being added to 3-trifluoro-2-propen-1-ol and heated at reflux temperature for 2 hours, the polymer powder was filtered. This monomer-impregnated powder has a dose rate of
After 8 hours of irradiation with CO 60 gamma rays at a rate of 0.01 megarats/hour, the sample was sufficiently dried in a vacuum dryer at 80° C. until there was no change in weight. The obtained graft polymer powder was hot pressed to produce a cation exchange resin membrane with a thickness of 200 μm and a size of 8 cm×8 cm. The ion exchange capacity of this membrane was 1.23 meq/g dry resin, and the water permeability was 4.9 ml/hr/m 2 at 1 m of water column pressure (60° C. in 4N NaCl, pH 10).
かゝる陽イオン交換樹脂膜を用いて、陽極室と
陰極室とに区画した二室型電解層を形成した。陽
極にはニツケル電極、陰極にはステンレスをそれ
ぞれ使用し、両極の極間距離を2.2cm、隔膜の有
効面積を25cm2とし、下記の条件で苛性カリ水溶液
の電解を行なつた。 Using such a cation exchange resin membrane, a two-chamber electrolyte layer partitioned into an anode chamber and a cathode chamber was formed. A nickel electrode was used as the anode, and stainless steel was used as the cathode, the distance between the two electrodes was 2.2 cm, the effective area of the diaphragm was 25 cm 2 , and a caustic potassium aqueous solution was electrolyzed under the following conditions.
陽極室には、30%KOH水溶液、陰極室にも同
じく30%KOH水溶液を仕込み、陽極室には30%
KOH水溶液を、陰極室には水を両極室液KOH濃
度を20%に保つように供給しつつ100℃で電解し
以下の結果を得た。 The anode chamber is filled with a 30% KOH aqueous solution, the cathode chamber is also filled with a 30% KOH aqueous solution, and the anode chamber is filled with a 30% KOH aqueous solution.
A KOH aqueous solution was electrolyzed at 100°C while water was supplied to the cathode chamber to maintain the KOH concentration in both electrode chambers at 20%, and the following results were obtained.
電流密度(A/dm2) 槽電圧(V)
40 4.2
60 5.0
実施例 2
厚さ125μ、20cm×20cmの大きさのFEPフイル
ム(テトラフルオロエチレンとヘキサフルオロプ
ロピレンとの共重合フイルム)を1,1−ビス−
(トリフルオロメチル)−2,3,3−トリフルオ
ロ−2−プロペン−1−オール中に浸漬し、還流
温度で10時間加熱した後、このモノマー含浸フイ
ルムに線量率0.01メガラツド/時間のCO60γ線を
15時間照射後100℃の真空乾燥器で重量変化がな
くなるまで充分乾燥した。該フイルムをアルミ箔
の間に挾み150℃で軽くプレスして得た膜を8cm
×8cmのイオン交換膜として電槽にセツトした。
該膜のイオン交換容量は1.13ミリ当量/グラム乾
燥樹脂であつた。Current density (A/dm 2 ) Cell voltage (V) 40 4.2 60 5.0 Example 2 A FEP film (a copolymer film of tetrafluoroethylene and hexafluoropropylene) with a thickness of 125 μm and a size of 20 cm x 20 cm was 1-bis-
After immersion in (trifluoromethyl)-2,3,3-trifluoro-2-propen-1-ol and heating at reflux temperature for 10 hours, the monomer-impregnated film was exposed to CO 60 at a dose rate of 0.01 Mrad/h. gamma rays
After irradiation for 15 hours, it was sufficiently dried in a vacuum dryer at 100°C until there was no change in weight. The film was sandwiched between aluminum foils and lightly pressed at 150°C, resulting in a film of 8 cm.
An ion exchange membrane of 8cm x 8cm was set in a battery container.
The ion exchange capacity of the membrane was 1.13 meq/gram dry resin.
実施例1と同様の条件下で電解を行なつたとこ
ろ、次の結果が得られた。 When electrolysis was carried out under the same conditions as in Example 1, the following results were obtained.
40A/dm2:4.8V 60A/dm2:5.7V40A/ dm2 : 4.8V 60A/ dm2 : 5.7V
Claims (1)
より水を電解して水素を製造するに当り、−C
(CF2X)(CF2X′)−OH(こゝで、X、X′は、水
素原子、塩素原子、フツ素原子又はフルオロアル
キル基である)からなる水酸基をイオン交換器と
し交換容量が0.1〜4.0ミリ当量/グラム乾燥樹脂
である含フツ素陽イオン交換樹脂膜を使用するこ
とを特徴とする水素の製造法。1 When producing hydrogen by electrolyzing water by diaphragm electrolysis using a cation exchange resin membrane as a diaphragm, -C
A hydroxyl group consisting of (CF 2 X) (CF 2 A method for producing hydrogen, comprising using a fluorine-containing cation exchange resin membrane having a dry resin of 0.1 to 4.0 milliequivalents/gram.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56078707A JPS57194276A (en) | 1981-05-26 | 1981-05-26 | Production of hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56078707A JPS57194276A (en) | 1981-05-26 | 1981-05-26 | Production of hydrogen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57194276A JPS57194276A (en) | 1982-11-29 |
JPS6340871B2 true JPS6340871B2 (en) | 1988-08-12 |
Family
ID=13669330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56078707A Granted JPS57194276A (en) | 1981-05-26 | 1981-05-26 | Production of hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57194276A (en) |
-
1981
- 1981-05-26 JP JP56078707A patent/JPS57194276A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57194276A (en) | 1982-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0185228B1 (en) | Multi-layered diaphragm for electrolysis | |
US4012303A (en) | Trifluorostyrene sulfonic acid membranes | |
US4113922A (en) | Trifluorostyrene sulfonic acid membranes | |
EP0029751B1 (en) | Ion exchange membrane cell and electrolytic process using thereof | |
US4212714A (en) | Electrolysis of alkali metal halides in a three compartment cell with self-pressurized buffer compartment | |
CA1185558A (en) | Process for electrolyzing water | |
EP0026979A2 (en) | Electrolytic cell and process for producing an alkali metal hydroxide and chlorine | |
JPH0237936B2 (en) | ||
NO802980L (en) | CLORAL CALCIUM PROCESS AND ELECTROLYTIC CELL WITH SOLID POLYMER ELECTROLYT. | |
EP0165466B1 (en) | Cation exchange fluoropolymer membrane | |
EP0166166B1 (en) | Process for producing potassium hydroxide | |
EP0545068A2 (en) | Wetting of diaphragms | |
US4508603A (en) | Fluorinated cation exchange membrane and use thereof in electrolysis of an alkali metal halide | |
US4140615A (en) | Cell and process for electrolyzing aqueous solutions using a porous anode separator | |
KR100393440B1 (en) | Cation exchange membrane for electrolysis and process for producing potassium hydroxide of high purity | |
JPH0586971B2 (en) | ||
US4046654A (en) | Process for desalination with chlor-alkali production in a mercury diaphragm cell | |
JPS58199884A (en) | Improved cation exchange membrane for electrolysis | |
WO1984003904A1 (en) | Improved process for electrolysis of brine with iodide impurities | |
US4066519A (en) | Cell and process for electrolyzing aqueous solutions using a porous metal separator | |
EP0680524A1 (en) | Membrane-electrode structure for electrochemical cells. | |
US4020235A (en) | Novel composite diaphragm material | |
CA1206439A (en) | Ion exchange membrane of fluorinated polymer with porous non-electrode layer | |
JPS6340871B2 (en) | ||
EP0021625A1 (en) | Electrolytic membrane cell |