JPS6340809B2 - - Google Patents

Info

Publication number
JPS6340809B2
JPS6340809B2 JP53163010A JP16301078A JPS6340809B2 JP S6340809 B2 JPS6340809 B2 JP S6340809B2 JP 53163010 A JP53163010 A JP 53163010A JP 16301078 A JP16301078 A JP 16301078A JP S6340809 B2 JPS6340809 B2 JP S6340809B2
Authority
JP
Japan
Prior art keywords
propylene
copolymer
catalyst
titanium trichloride
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53163010A
Other languages
Japanese (ja)
Other versions
JPS5590514A (en
Inventor
Akinobu Shiga
Noryoshi Matsuyama
Masahiro Kakugo
Yukio Naito
Akira Fuse
Masaharu Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP16301078A priority Critical patent/JPS5590514A/en
Priority to CA000342683A priority patent/CA1152697A/en
Priority to IT51211/79A priority patent/IT1162495B/en
Priority to BR7908553A priority patent/BR7908553A/en
Priority to BE0/198807A priority patent/BE880943A/en
Priority to FR7932004A priority patent/FR2445346B1/en
Priority to GB7944546A priority patent/GB2044275B/en
Priority to DE19792952579 priority patent/DE2952579A1/en
Priority to NL7909350A priority patent/NL191630C/en
Publication of JPS5590514A publication Critical patent/JPS5590514A/en
Priority to US06/291,701 priority patent/US4367322A/en
Priority to SG284/83A priority patent/SG28483G/en
Publication of JPS6340809B2 publication Critical patent/JPS6340809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高品質のプロピレン共重合体の工業的
に有利な製造方法に関する。さらに詳しくは特定
のチーグラー・ナツタ触媒を特定の範囲の成分比
で用いることにより、工業的に有利にかつフイル
ムの透明性、剛さ、ブロツキング性、ヒートシー
ル性等にすぐれたプロピレン共重合体を製造する
方法に関する。 立体規則性触媒をもつて製造されたアイソタク
チツクポリプロピレンは、剛性、強度、成形性、
成形品の外観、耐熱性にすぐれているため種々の
成形品に広く使用されている。また、ポリプロピ
レンのフイルムは透明性と腰の強さが高く評価さ
れ、種々の包装資材として広く普及している。 ポリプロピレンの欠点の1つは、衝撃強度の温
度依存性が大きく、室温から0℃までの間に衝撃
強度が急激に低下する点、いわゆる耐寒性が悪い
点である。もう1つの欠点はフイルムのヒートシ
ール温度や延伸フイルムの収縮温度が高すぎる点
であり、たとえば二軸延伸フイルムでは、十分な
ヒートシール強度が得られる温度でヒートシール
しようとすると熱収縮が起こり、フイルムの外観
が損われるため事実上ヒートシールできない。 ポリプロピレンのこれらの欠点を改善するた
め、エチレンやブテン−1などのα−オレフイン
を少量共重合したプロピレン−エチレン、プロピ
レン−ブテン−1、プロピレン−エチレン−ブテ
ン−1等のランダム共重合体が製造され、単体も
しくは他の樹脂やゴムとブレンドして、二軸延伸
ポリプロピレンフイルムのヒートシールを受けも
つ層や収縮包装用フイルム、耐寒性ポリプロピレ
ンフイルム等々として使用されている。 これらプロピレン共重合体には製造面および品
質面でいくつかの問題点がある。製造面では、ポ
リプロピレンを製造する場合にくらべて重合媒体
に溶解する無価値な非晶性重合体が多く、モノマ
ーの損失を招いて経済的に不利なばかりでなく、
スラリー粘度の上昇による撹拌動力の増大、重合
槽の伝熱低下等生産上支障をきたしやすい。かか
る現象は耐寒性、ヒートシール性などのすぐれた
コモノマー(エチレン、ブテン−1等)含有量の
高い共重合体を製造しようとするほど著るしい。 一方、品質面では一般にポリプロピレンにくら
べてフイルムのブロツキング、滑り性が悪く、透
明性が経時的に悪化しやすい。かかる欠点は、部
分的には剛性がポリプロピレンにくらべて低いこ
とにも原因があるが、主たる原因は共重合体中に
含まれる低分子量の非晶性重合体が多いためであ
る。 このような製造面と品質面での問題点は一般に
一方を改善しようとすると他方が悪化するという
きつ抗的な関係にある。たとえば、特公昭44−
4992号公報に示されているように三塩化チタン触
媒にあらかじめ少量のポリプロピレンを形成させ
てから共重合する方法では、重合媒体に溶解する
無価値な非晶性重合体は減少するが、共重合体中
に含まれる低分子量の非晶性重合体が増加して前
記の品質面の問題点が顕著になる。また、共重合
体中に含まれる低分子量の非晶性重合体を少くす
るためより溶解力の強い重合媒体を用いると重合
媒体中に溶解する非晶性重合体が増加する。 そこで重合温度を低下させる手段がとられるこ
とがあるが、周知のように低温ほど触媒の重合活
性が低下するので、重合時間が同じであれば、共
重合体中に残存する触媒残渣が増え、熱安定性色
相が悪化する。重合時間を長くすれば生産性が低
下するという重大な問題が発生する。 従来、ポリプロピレンの工業的製造において一
般に用いられる三塩化チタンとトリエチルアルミ
ニウムやジエチルアルミニウムクロライドのよう
な有機アルミニウム化合物とのモル比は1:1〜
20であつた。(日刊工業新聞社刊「ポリプロピレ
ン樹脂」第26頁参照)。これは種々の刊行物(た
とえば、Interscience Publishers刊C.Reichおよ
びA.Schindler著Polymerization by
Organometallic Compounds第章Dや、
Kodansha刊T.Keii著Kinetics of Ziegler−
Natta Polymerization4、2章などおよびそれら
の引用文献)あるいは特開昭47−34478号公報に
示されているように触媒成分のAl/Tiモル比が
1より小さくなると触媒活性および立体規則性
(n−ヘプタン不溶部量や結晶化度で表わされる)
がともに急激に低下し、またAl/Tiモル比が10
程度を越すと触媒活性や立体規則性が低下するか
らである。 プロピレン共重合体の製造においてもたとえば
特開昭49−35487号公報の明細書中にはチタン化
合物(A)と有機アルミニウム化合物(B)とのB/Aモ
ル比が0.5〜20程度、好ましくは1〜10であると
の記載があり、同様の範囲内で実施されるのが常
識であつた。 しかしながら、本発明の目的とするプロピレン
の含有量が80〜99モル%、エチレンおよび/また
は炭素数4〜18のα−オレフインの含有量が1〜
20モル%のプロピレン共重合体を製造するには、
従来の方法ではすでに述べた多くの問題があつ
た。 本発明者らは、プロピレン共重合体の前記製造
面および品質面の問題点の解決のため種々検討を
重ねた結果、特定のチーグラー・ナツタ触媒を従
来の知見からは考えられない範囲の成分比で用い
ることにより、前記製造および品質両面の問題点
が同時に改善されることを見出し、本発明に至つ
た。 即ち、本発明はチーグラー・ナツタ触媒を用い
て、プロピレンの含有量が80〜99モル%、エチレ
ンおよび/または炭素数4〜18のα−オレフイン
の含有量が1〜20モル%のプロピレン共重合体を
製造する方法において、該チーグラー・ナツタ触
媒が (a) 四塩化チタンを有機アルミニウム化合物で還
元して得られた三塩化チタン組成物またはβ型
三塩化チタンを、更に以下の(1)または(2)の方法
で活性化した三塩化チタン固体触媒、 (1) 三塩化チタン組成物を一般式X2(XはCl、
BrおよびIを表わす。)で表わされるハロゲ
ン又は一般式XX′a(XおよびX′はCl、Brお
よびIを表わす。またaは1或いは3であ
る。)で表わされるハロゲン間化合物と一般
式R1−O−R2(R1およびR2は炭素数が1〜
8個の直鎖状アルキル基又は分岐状アルキル
基を表わし、R1とR2は同一の基であつても
良いし、また異なつた基であつても良い。)
で表わされるエーテル化合物との混合物と反
応させる事によつて製造される三塩化チタン
固体触媒、 (2) β型三塩化チタンをエーテル等の錯化剤で
処理をした後、四塩化チタンで処理すること
によつて製造される三塩化チタン固体触媒、 および (b) 有機アルミニウム化合物 からなり、(a)と(b)のモル比(b)/(a)が20〜100であ
ることを特徴とするプロピレン共重合体の製造方
法である。 この触媒は単に三塩化チタン組成物またはβ型
三塩化チタンを熱処理等の公知の方法(たとえば
特公昭39−20501号公報に記載の方法)で得られ
たものに比べ、少なくとも3倍以上の活性を有す
るものである。 さらに具体的には例えば本発明者らが見い出し
た方法(特願昭51−108276)により得ることがで
きる。 また特開昭47−34478号公報に記載の方法、す
なわちβ型三塩化チタンをエーテル等の錯化剤処
理後四塩化チタンで処理することによつても得る
ことができる。 本発明が必須とする触媒以外のもの、たとえば
現在市販されているような四塩化チタンを金属ア
ルミニウムで還元し粉砕により活性化処理した
(たとえば、東邦チタニウム社製三塩化チタン
AA)ものや、四塩化チタンを有機アルミニウム
化合物で還元し、熱処理した従来公知の触媒で
は、本発明の効果を達成することはできない。 本発明において触媒成分(b)として使用される有
機アルミニウム化合物としては、具体的にはたと
えばトリアルキルアルミニウム、アルキルアルミ
ニウムハライド、アルキルアルミニウムハイドラ
イド、アルキルアルミニウムアルコキシド、アル
キルアルミニウムアルコキシハライドなどであ
る。これらの中で好適な化合物の具体的例示とし
ては、ジメチルアルミニウムクロライド、ジエチ
ルアルミニウムクロライド、ジイソブチルアルミ
ニウムクロライド、ジエチルアルミニウムブロマ
イド、ジエチルアルミニウムアイオダイド、エチ
ルアルミニウムセスキクロライド、トリエチルア
ルミニウムとジエチルアルミニウムの混合物、ト
リエチルアルミニウムと塩化アルミニウムの混合
物などであり、特に好ましいのはジエチルアルミ
ニウムクロライドである。 本発明において触媒成分(a)と(b)とのモル比(b)/
(a)は重要であつて、20〜100好ましくは30〜70の
範囲内で触媒を用いなければ、重合媒体に溶解す
る無価値な非晶性重合体も、共重合体中に含まれ
る低分子量の非晶性重合体も低減せず、本発明の
効果を達成することができないことは後で実施例
および比較例で示されるとおりである。 本発明において触媒は、本質的に前記特定比率
の二成分を含むものであるが、更に公知の電子供
与性化合物を第三成分として含むこともできる。
かかる第三成分としては、酸素、窒素、イオウ、
リン原子を含む化合物が一般的であるが、他に芳
香族化合物もよく知られている。具体的に例示す
ると、酢酸エチル、メタアクリル酸メチル、安息
香酸エチル、ε−カプロラクトンなどの飽和ある
いは不飽和の脂肪族、脂環族、芳香族エステル
類、ジブチルエーテル、テトラヒドロフランなど
のエーテル類、ブチルチオエーテル、チオフエノ
ールなどの有機含イオウ化合物、トリエチルアミ
ンなどのアミン類、トリ−n−ブチルホスフイ
ン、トリフエニルホスフアイト、トリ−n−ブチ
ルホスフアイト、トリ−n−ブチルホスフエー
ト、ヘキサメチルホスホルアミドなどの有機リン
化合物、ベンゼン、トルエン、アズレンなどの芳
香族化合物などである。これらは二種以上同時に
使用してもよい。 電子供与性化合物と前記二触媒成分との比率
は、電子供与性化合物の種類によつて効果の程度
が異るので、許容できる触媒活性の低下の度合い
とアタクチツクポリマーの発生量との兼合いでそ
れぞれ適当な範囲があるが、一般的には触媒成分
(a)に対してモル比で0.01〜100程度である。 触媒成分(a)、(b)または(a)、(b)および電子供与性
化合物からなる触媒を重合器へ投入する方法はこ
れらを別々に投入してもよいし、可能な2ないし
3の成分の組合せを混合して投入することもでき
る。 本発明の方法が適用される共重合体の組成は、
プロピレンの含有量が80〜99モル%、エチレンお
よび/または炭素数4〜18のα−オレフインの含
有量が1〜20モル%、好ましくはプロピレンの含
有量が85〜97.5モル%、エチレンおよび/または
炭素数4〜18のα−オレフインの含有量が2.5〜
15モル%である。プロピレンの含有量がこれより
大きいと本発明の効果は顕著ではない。またプロ
ピレンの含有量がこれより小さいと本発明の方法
をもつてしても、重合媒体に溶解する非晶性重合
体が多く、工業的には製造が困難である。 重合系に供給するモノマーは、プロピレン、エ
チレンおよび/または炭素数4〜18のα−オレフ
インであるが、α−オレフインとしてはブテン−
1、ペンテン−1、ヘプテン−1、3−メチルペ
ンテン−1、4−メチルペンテン−1、オクテン
−1、デセン−1、ドデセン−1、テトラデセン
−1、ヘキサデセン−1、オクタデセン−1およ
びこれらの2種以上の混合物などを用いることが
できる。これらのうち特に好ましいのはブテン−
1である。従つて、得られる共重合体はプロピレ
ン−エチレン、プロピレン−ブテン−1、プロピ
レン−エチレン−ブテン−1共重合体などであ
る。 重合系に供給するモノマーの比率は、製造条件
(温度、圧力、重合媒体の種類、触媒など)によ
つて決まるモノマー反応性比を考慮して目的の組
成の共重合体が得られるように選ぶ。 重合はブタン、ペンタン、ヘキサン、ヘプタン
のような脂肪族炭化水素、シクロヘキサン、メチ
ルシクロヘキサンのような脂環族炭化水素、ベン
ゼン、トルエンのような芳香族炭化水素などの不
活性有機溶媒中実質的に不活性有機溶媒を含まな
い液相モノマー中もしくは気相中で行われる。 重合温度は0〜200℃好ましくは30〜80℃であ
る。 重合圧力は任意の圧力たとえば常圧〜100Kg/
cm2であり、重合方法により任意に選択することが
できる。 分子量の調節は種々の分子量調節剤を使用して
実施することができるが、水素の使用が一般的で
ある。 重合は、連続的、バツチ式いずれの方法で行う
こともできる。重合時間あるいは重合器での平均
滞留時間は任意であるが、より経済的に製造する
ために触媒残渣除去工程を実質的に省くか、ある
いは簡単にするには触媒成分(a)1重量部あたり
8000重量部以上の共重合体が生成するように与え
られた他の重合条件下で重合時間あるいは平均滞
留時間を選ぶことが望ましい。 本発明方法をさらに明確に説明するために以下
に比較例ならびに実施例を記すが本発明はこれら
の実施例によつてのみ限定されるものではない。
なお以下の実施例中の特性値は下記の方法で測定
したものである。 (1) メルトインデツクス(MI) JIS K6758によつた。 (2) ヒートシール温度 フイルムどうしをヒートシーラーを用いて所
定の温度で2Kg/cm2の荷重をかけ2秒間圧着し
て得た幅25mmの試料を剥離速度200mm/min、
剥離角度180゜で剥離を行なつて得た剥離抵抗力
が300g/25mmのときの温度をヒートシール温
度とした。 (3) 透明性(ヘイズ) ASTM D1003によつた。 (4) 開口性(ブロツキング) 40g/cm2の荷重下で60℃、3時間処理してブ
ロツキングさせた試片を島津製作所製ブロツキ
ングテスターで測定した。 (5) 剛性(スチフネス) ASTM D747によつた。 ヘイズ、ヒートシール温度、ブロツキングは、
酸化防止剤、抗ブロツキング剤、滑剤を添加した
粉末共重合体を造粒機で造粒し、これをTダイ成
形機にて製膜した厚さ30ミクロンのフイルムにつ
いて測定した。 実施例 1 (1) 触媒の調製 (1) 調製法(還元生成物の調製) 200の反応容器をアルゴン置換した後、
乾燥ヘキサン40、四塩化チタン10を投入
し、この溶液を−5℃に保ち乾燥ヘキサン30
、エチルアルミニウムセスキクロライド
23.2より成る溶液を反応系の温度が−3℃
以下に保たれる様な条件で滴下した。ついで
そのままの温度で2時間撹拌を続けた。反応
後静置して得られた還元生成物を0℃で固液
分離し、40のヘキサンで2回洗浄し16Kgの
還元生成物を得た。 (2) 調製法 調製法で得られた還元生成物をn−デカ
リンにスラリー化し、スラリー濃度を0.2
g/c.c.として140℃で2時間熱処理した。反
応後上澄み液を抜き出し、40のヘキサンで
2回洗浄し、三塩化チタン組成物(A)を得た。 (3) 調製法 調製法に従つて調製した三塩化チタン組
成物(A)11Kgをトルエン55にスラリー化し、
三塩化チタン組成物(A)/I2/ジイソアミルエ
ーテル=1/0.1/1.0モル比になる様にヨウ
素及びイソアミルエーテルを投入し、80℃で
1時間反応させることにより三塩化チタン固
体触媒(B)を得た。 (2) プロピレン共重合体の製造 内容積200の撹拌機付重合器を充分にプロ
ピレンで置換した後、ヘプタン68、プロピレ
ン13.6Kg、エチレン0.08Kgを送入した。重合器
を60℃に昇温し、圧力が10Kg/cm2ゲージ、気相
中のエチレンおよび水素の濃度がそれぞれ2.2
および8モル%になるように、プロピレン、エ
チレンおよび水素を送入した。 前記三塩化チタン固体触媒(B)を0.02モル
(3.1g)、ジエチルアルミニウムクロライド
(DEAC)を0.7モル(84.4g)投入して、ヘプ
タン2で洗い込み共重合を開始した。以後、
温度、圧力、気相組成が一定に維持されるよう
にモノマーを連続的に供給して8時間共重合を
続けた。 イソブタノールを投入して共重合を停止した
後、60℃のヘプタン70を加え30分間撹拌し
た。遠心分離器で粉末共重合体を分離し、乾燥
して26.5Kgの粉末共重合体を得た。また、粉末
共重合体を分離した残りのヘプタンを濃縮して
2.0Kgの非晶性重合体を得た。 全生成重合体に対する粉末共重合体の重量百
分率(HIP%)は93%であり、三塩化チタン触
媒成分あたりの全生成重合体量は9200g/gで
ある。 粉末共重合体の共重合体組成および性質を第
1表に示す。 実施例 2 エチレンのかわりに、目的の共重合体組成にな
るように計算したブテン−1を投入した以外は実
施例1と同様に行なつた。結果を第1表に示す。 実施例 3 エチレンのかわりに目的の共重合組成になるよ
うに計算したエチレンとブテン−1を投入した以
外は実施例1と同様に行なつた。結果を第1表に
示す。 実施例 4 目的の共重合体組成を変えた以外は実施例3と
同様に行なつた。結果を第1表に示す。 実施例5、比較例1 ジエチルアルミニウムクロライドの投入量を変
えた以外は実施例3と同様に行なつた。結果を第
1表に示す。 比較例 2、3 実施例1の(1)で調製した三塩化チタン固体触媒
(B)のかわりに東邦チタニウム社製三塩化チタン
AAを10g投入し、ジエチルアルミニウムクロラ
イドの投入量を変えた以外は実施例3と同様に行
なつた。結果を第1表に示す。 実施例 6 (1) 触媒の調製 (1) 調製法(β型三塩化チタンの調製) 200の反応器をアルゴン置換した後、乾
燥ヘキサン40四塩化チタン10を投入し、
この溶液を−5℃に保つた。 ついで乾燥ヘキサン30、ジエチルアルミ
ニウムクロリド11.6より成る溶液を反応系
の温度が−3℃以下に保たれる様な条件で滴
下した。滴下完了後さらに30分間撹拌を続
け、ついで70℃まで昇温し、さらに1時間撹
拌を続けた。 ついで静置してβ型三塩化チタンを固液分
離し、更に40のヘキサンで3回洗浄し15Kg
の還元生成物を得た。 該三塩化チタンは4.60重量%のAlを含有す
る。 (2) 調製法(ルイス塩基処理固体の調製) 上記調製法で得られたβ型三塩化チタン
を40の乾燥ヘキサンに懸濁させ、ついでβ
型三塩化チタンに対して1.2モル比のジイソ
アミルエーテルを添加し、40℃で1時間撹拌
した。 反応終了後、上澄み液を抜き出し、更に40
のヘキサンで3回洗浄し乾燥した。 (3) 調製法 上記、調製法に従がつて調製したルイス
塩基処理固体10Kgを乾燥ヘプタン30、四塩
化チタン20より成る溶液に投入し70℃で2
時間処理した。 反応後上澄み液を抜き出し、さらに30の
ヘキサンで3回洗浄後、乾燥して三塩化チタ
ン固体触媒(C)を得た。 (2) プロピレン共重合体の製造 内容積200の撹拌機付重合器を充分にプロ
ピレンで置換した後、プロピレン50Kg、エチレ
ン0.075Kgを送入した。 前記三塩化チタン固体触媒(C)を0.013モル
(2.0g)、ジエチルアルミニウムクロライド
(DEAC)を0.54モル(65g)、メタクリル酸メ
チル0.02モル(2.0g)を投入し、ただちに重
合器を60℃に昇温した。以後、温度、圧力、気
相組成が一定に維持されるようにモノマーを連
続的に供給し、4時間共重合を続けた。なお、
分子量の調製は水素で行つた。 イソブタノールを投入して共重合を停止した
後、50Kgの液相プロピレンで2回スラリーを洗
浄した。かくして、24.2Kgの粉末共重合体を得
た。また洗浄プロピレンに溶解した非晶性重合
体0.4Kgを回収した。 全生成共重合体に対する非晶性重合体の割合
(回収AP割合)は1.6重量%であり、三塩化チ
タン触媒成分あたりの全生成重合体量は12.100
g/g−Ticl3である。 粉末共重合体の共重合体組成および性質を第
1表に示した。 実施例 7 エチレンのかわりに目的の共重合体組成になる
ように計算したブテン−1を投入した以外は実施
例6と同様に行なつた。結果を第2表に示す。 実施例 8 エチレンのかわりに目的の共重合体組成になる
ように計算したエチレンとブテン−1を投入した
以外は実施例6と同様に行なつた。結果を第2表
に示す。 実施例 9 目的の共重合体組成を変えた以外は実施例8と
同様に行なつた。結果を第2表に示す。 実施例10、比較例4 ジエチルアルミニウムクロライドの投入量を変
えた以外は、実施例8と同様に行なつた。結果を
第2表に示す。
The present invention relates to an industrially advantageous method for producing high quality propylene copolymers. More specifically, by using a specific Ziegler-Natsuta catalyst in a specific range of component ratios, we can produce propylene copolymers that are industrially advantageous and have excellent film transparency, stiffness, blocking properties, heat-sealing properties, etc. Relating to a method of manufacturing. Isotactic polypropylene produced with stereoregular catalysts has excellent stiffness, strength, formability,
It is widely used in various molded products because of its excellent appearance and heat resistance. Furthermore, polypropylene films are highly valued for their transparency and stiffness, and are widely used as various packaging materials. One of the drawbacks of polypropylene is that its impact strength is highly dependent on temperature, and its impact strength rapidly decreases from room temperature to 0°C, that is, it has poor cold resistance. Another drawback is that the heat sealing temperature of the film and the shrinkage temperature of the stretched film are too high.For example, with biaxially stretched films, if you try to heat seal them at a temperature that provides sufficient heat sealing strength, heat shrinkage will occur. Heat sealing is virtually impossible because the appearance of the film is impaired. In order to improve these drawbacks of polypropylene, random copolymers such as propylene-ethylene, propylene-butene-1, and propylene-ethylene-butene-1, which are copolymerized with a small amount of α-olefin such as ethylene or butene-1, have been produced. It is used alone or blended with other resins or rubbers as a heat-sealing layer for biaxially oriented polypropylene films, shrink wrapping films, cold-resistant polypropylene films, etc. These propylene copolymers have several problems in terms of production and quality. In terms of production, compared to the production of polypropylene, there is a large amount of worthless amorphous polymer dissolved in the polymerization medium, which not only causes loss of monomer and is economically disadvantageous;
Increased slurry viscosity tends to cause problems in production, such as increased stirring power and decreased heat transfer in the polymerization tank. This phenomenon becomes more pronounced as the attempt is made to produce a copolymer with a high content of comonomers (ethylene, butene-1, etc.) which has excellent cold resistance and heat sealability. On the other hand, in terms of quality, film blocking and slipperiness are generally poorer than polypropylene, and transparency tends to deteriorate over time. This drawback is partially due to the fact that the rigidity is lower than that of polypropylene, but the main cause is that the copolymer contains a large amount of low molecular weight amorphous polymer. These manufacturing and quality issues are generally in a hostile relationship in that trying to improve one will worsen the other. For example,
4992, in which a small amount of polypropylene is formed on a titanium trichloride catalyst in advance and then copolymerized, the amount of worthless amorphous polymer dissolved in the polymerization medium is reduced; As the amount of low molecular weight amorphous polymers contained in the coalescence increases, the above-mentioned quality problems become more noticeable. Furthermore, if a polymerization medium with stronger dissolving power is used to reduce the amount of low molecular weight amorphous polymer contained in the copolymer, the amount of amorphous polymer dissolved in the polymerization medium increases. Therefore, measures are sometimes taken to lower the polymerization temperature, but as is well known, the lower the temperature, the lower the polymerization activity of the catalyst, so if the polymerization time is the same, the amount of catalyst residue remaining in the copolymer increases. Heat stability hue deteriorates. If the polymerization time is increased, a serious problem arises in that productivity decreases. Conventionally, the molar ratio of titanium trichloride and organoaluminum compounds such as triethylaluminum and diethylaluminum chloride, which are generally used in the industrial production of polypropylene, is 1:1 to 1.
It was 20. (See page 26 of "Polypropylene Resin" published by Nikkan Kogyo Shimbun). This can be found in various publications (e.g. Polymerization by C. Reich and A. Schindler, Interscience Publishers).
Organometallic Compounds Chapter D,
Kinetics of Ziegler by T. Keii published by Kodansha
As shown in JP-A No. 47-34478 (Natta Polymerization 4, Chapter 2, etc. and their cited references), when the Al/Ti molar ratio of the catalyst components is less than 1, the catalytic activity and stereoregularity (n- (expressed by the amount of heptane-insoluble parts and crystallinity)
Both decreased rapidly, and the Al/Ti molar ratio decreased to 10.
This is because if the amount is exceeded, the catalytic activity and stereoregularity will decrease. In the production of a propylene copolymer, for example, in the specification of JP-A-49-35487, the B/A molar ratio of the titanium compound (A) and the organoaluminum compound (B) is about 0.5 to 20, preferably There is a description that the range is 1 to 10, and it was common knowledge to practice within the same range. However, the content of propylene targeted by the present invention is 80 to 99 mol%, and the content of ethylene and/or α-olefin having 4 to 18 carbon atoms is 1 to 99 mol%.
To produce 20 mol% propylene copolymer,
Conventional methods have had many of the problems already mentioned. The present inventors have conducted various studies to solve the above-mentioned production and quality problems of propylene copolymers, and as a result, we have developed a specific Ziegler-Natsuta catalyst with a component ratio in a range unimaginable based on conventional knowledge. The inventors have discovered that by using this method, both the manufacturing and quality problems mentioned above can be improved at the same time, leading to the present invention. That is, the present invention uses a Ziegler-Natsuta catalyst to produce a propylene copolymer containing 80 to 99 mol% of propylene and 1 to 20 mol% of ethylene and/or α-olefin having 4 to 18 carbon atoms. In the method for producing a combination, the Ziegler-Natsuta catalyst further comprises (a) a titanium trichloride composition or β-type titanium trichloride obtained by reducing titanium tetrachloride with an organoaluminum compound, and the following (1) or A titanium trichloride solid catalyst activated by the method of (2), (1) a titanium trichloride composition with the general formula X 2 (X is Cl,
Represents Br and I. ) or an interhalogen compound represented by the general formula XX'a (X and X' represent Cl, Br and I, and a is 1 or 3) and the general formula R 1 -O-R 2 (R 1 and R 2 have a carbon number of 1 to
It represents eight straight-chain alkyl groups or branched alkyl groups, and R 1 and R 2 may be the same group or different groups. )
Titanium trichloride solid catalyst produced by reacting with a mixture with an ether compound represented by (2) β-type titanium trichloride is treated with a complexing agent such as ether, and then treated with titanium tetrachloride. and (b) an organoaluminum compound, characterized in that the molar ratio (b)/(a) of (a) and (b) is 20 to 100. This is a method for producing a propylene copolymer. This catalyst has an activity at least three times higher than that obtained by simply heat-treating a titanium trichloride composition or β-type titanium trichloride (for example, the method described in Japanese Patent Publication No. 39-20501). It has the following. More specifically, it can be obtained, for example, by the method discovered by the present inventors (Japanese Patent Application No. 51-108276). It can also be obtained by the method described in JP-A-47-34478, in which β-type titanium trichloride is treated with a complexing agent such as ether and then treated with titanium tetrachloride. Catalysts other than the catalyst essential to the present invention, such as titanium tetrachloride currently on the market, are reduced with metal aluminum and activated by pulverization (for example, titanium trichloride manufactured by Toho Titanium Co., Ltd.).
The effects of the present invention cannot be achieved with catalysts such as AA) or conventionally known catalysts in which titanium tetrachloride is reduced with an organoaluminum compound and heat treated. Specific examples of the organoaluminum compound used as the catalyst component (b) in the present invention include trialkylaluminum, alkylaluminum halide, alkylaluminum hydride, alkylaluminum alkoxide, and alkylaluminum alkoxyhalide. Specific examples of suitable compounds among these include dimethylaluminum chloride, diethylaluminum chloride, diisobutylaluminum chloride, diethylaluminum bromide, diethylaluminium iodide, ethylaluminum sesquichloride, a mixture of triethylaluminum and diethylaluminium, triethylaluminum and aluminum chloride, and particularly preferred is diethylaluminum chloride. In the present invention, the molar ratio of catalyst components (a) and (b) (b)/
(a) is important; unless a catalyst is used within the range of 20 to 100, preferably 30 to 70, the valueless amorphous polymer dissolved in the polymerization medium will also be reduced. As will be shown later in Examples and Comparative Examples, the molecular weight of the amorphous polymer is not reduced and the effects of the present invention cannot be achieved. In the present invention, the catalyst essentially contains the two components in the above-mentioned specific ratio, but may further contain a known electron-donating compound as a third component.
Such third components include oxygen, nitrogen, sulfur,
Compounds containing phosphorus atoms are common, but aromatic compounds are also well known. Specific examples include saturated or unsaturated aliphatic, alicyclic, and aromatic esters such as ethyl acetate, methyl methacrylate, ethyl benzoate, and ε-caprolactone; ethers such as dibutyl ether and tetrahydrofuran; and butyl. Organic sulfur-containing compounds such as thioether and thiophenol, amines such as triethylamine, tri-n-butylphosphine, triphenylphosphite, tri-n-butylphosphite, tri-n-butylphosphate, hexamethylphosphor These include organic phosphorus compounds such as amides, and aromatic compounds such as benzene, toluene, and azulene. Two or more of these may be used simultaneously. The ratio of the electron-donating compound to the two catalyst components has different effects depending on the type of electron-donating compound, so it is important to find a balance between the allowable degree of reduction in catalyst activity and the amount of atactic polymer generated. There is an appropriate range for each, but in general, the catalyst component
The molar ratio to (a) is about 0.01 to 100. The catalyst consisting of catalyst components (a), (b) or (a), (b) and an electron-donating compound may be charged into the polymerization vessel separately, or in two or three possible ways. Mixed combinations of ingredients can also be used. The composition of the copolymer to which the method of the present invention is applied is:
The content of propylene is 80 to 99 mol%, the content of ethylene and/or α-olefin having 4 to 18 carbon atoms is 1 to 20 mol%, preferably the content of propylene is 85 to 97.5 mol%, ethylene and/or Or the content of α-olefin having 4 to 18 carbon atoms is 2.5 to 2.5
It is 15 mol%. If the content of propylene is higher than this, the effect of the present invention is not significant. Furthermore, if the propylene content is smaller than this, even if the method of the present invention is used, a large amount of amorphous polymer will be dissolved in the polymerization medium, making industrial production difficult. The monomers supplied to the polymerization system are propylene, ethylene and/or α-olefin having 4 to 18 carbon atoms, but butene-olefin is used as α-olefin.
1, pentene-1, heptene-1, 3-methylpentene-1, 4-methylpentene-1, octene-1, decene-1, dodecene-1, tetradecene-1, hexadecene-1, octadecene-1 and these A mixture of two or more types can be used. Particularly preferred among these is butene-
It is 1. Therefore, the resulting copolymers include propylene-ethylene, propylene-butene-1, propylene-ethylene-butene-1 copolymers, and the like. The ratio of monomers supplied to the polymerization system is selected so as to obtain a copolymer with the desired composition, taking into account the monomer reactivity ratio determined by the production conditions (temperature, pressure, type of polymerization medium, catalyst, etc.) . The polymerization is carried out substantially in an inert organic solvent such as aliphatic hydrocarbons such as butane, pentane, hexane, heptane, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, aromatic hydrocarbons such as benzene, toluene, etc. It is carried out in a liquid phase monomer containing no inert organic solvent or in a gas phase. The polymerization temperature is 0 to 200°C, preferably 30 to 80°C. Polymerization pressure can be any pressure such as normal pressure to 100Kg/
cm 2 and can be arbitrarily selected depending on the polymerization method. Molecular weight adjustment can be carried out using various molecular weight modifiers, but the use of hydrogen is common. Polymerization can be carried out either continuously or batchwise. The polymerization time or the average residence time in the polymerization vessel is arbitrary, but in order to produce more economically, the catalyst residue removal step may be substantially omitted, or in order to simplify it, it may be necessary to
It is desirable to select the polymerization time or average residence time under the other polymerization conditions provided so that 8000 parts by weight or more of the copolymer is produced. In order to explain the method of the present invention more clearly, comparative examples and examples are described below, but the present invention is not limited only by these examples.
Note that the characteristic values in the following examples were measured by the following method. (1) Melt index (MI) Based on JIS K6758. (2) Heat sealing temperature A sample with a width of 25 mm obtained by pressing films together using a heat sealer at a predetermined temperature for 2 seconds under a load of 2 kg/cm 2 was peeled off at a speed of 200 mm/min.
The temperature at which the peeling resistance obtained by peeling at a peeling angle of 180° was 300 g/25 mm was defined as the heat sealing temperature. (3) Transparency (haze) Based on ASTM D1003. (4) Opening property (blocking) Test pieces that were blocked by treatment at 60° C. for 3 hours under a load of 40 g/cm 2 were measured using a blocking tester manufactured by Shimadzu Corporation. (5) Stiffness Based on ASTM D747. Haze, heat seal temperature, and blocking are
A powder copolymer containing an antioxidant, an anti-blocking agent, and a lubricant was granulated using a granulator, and a 30 micron thick film formed using a T-die molding machine was measured. Example 1 (1) Preparation of catalyst (1) Preparation method (preparation of reduction product) After replacing the 200 reaction vessels with argon,
Add 40% dry hexane and 10% titanium tetrachloride, keep this solution at -5℃ and add 30% dry hexane.
, ethylaluminum sesquichloride
A solution consisting of 23.2 was prepared at a temperature of -3°C.
The dropwise addition was carried out under the following conditions. Stirring was then continued at the same temperature for 2 hours. After the reaction, the resulting reduced product was allowed to stand still and was subjected to solid-liquid separation at 0°C, and washed twice with 40 kg of hexane to obtain 16 kg of reduced product. (2) Preparation method The reduction product obtained by the preparation method is slurried in n-decalin, and the slurry concentration is 0.2.
It was heat treated at 140°C for 2 hours as g/cc. After the reaction, the supernatant was extracted and washed twice with 40 ml of hexane to obtain a titanium trichloride composition (A). (3) Preparation method 11 kg of titanium trichloride composition (A) prepared according to the preparation method was slurried in 55% toluene,
Iodine and isoamyl ether were added so that the molar ratio of titanium trichloride composition (A)/I 2 /diisoamyl ether was 1/0.1/1.0, and the titanium trichloride solid catalyst ( B) was obtained. (2) Production of propylene copolymer A polymerization vessel with an internal volume of 200 and equipped with a stirrer was sufficiently replaced with propylene, and then 68 kg of heptane, 13.6 kg of propylene, and 0.08 kg of ethylene were introduced. The temperature of the polymerization vessel was raised to 60℃, the pressure was 10Kg/ cm2 gauge, and the concentrations of ethylene and hydrogen in the gas phase were each 2.2
and 8 mol % of propylene, ethylene and hydrogen. 0.02 mol (3.1 g) of the titanium trichloride solid catalyst (B) and 0.7 mol (84.4 g) of diethylaluminum chloride (DEAC) were added, and copolymerization was started by washing with 2 heptanes. From then on,
Copolymerization was continued for 8 hours by continuously supplying the monomer so that the temperature, pressure, and gas phase composition were maintained constant. After adding isobutanol to stop the copolymerization, 70°C of heptane at 60°C was added and stirred for 30 minutes. The powder copolymer was separated using a centrifuge and dried to obtain 26.5 kg of powder copolymer. In addition, the remaining heptane after separating the powder copolymer is concentrated.
2.0Kg of amorphous polymer was obtained. The weight percentage of powder copolymer to total polymer produced (HIP%) is 93%, and the total amount of polymer produced per titanium trichloride catalyst component is 9200 g/g. The copolymer composition and properties of the powder copolymer are shown in Table 1. Example 2 The same procedure as in Example 1 was carried out except that butene-1, which was calculated to give the desired copolymer composition, was added instead of ethylene. The results are shown in Table 1. Example 3 The same procedure as in Example 1 was carried out except that ethylene and butene-1 calculated to obtain the desired copolymerization composition were added instead of ethylene. The results are shown in Table 1. Example 4 The same procedure as Example 3 was carried out except that the target copolymer composition was changed. The results are shown in Table 1. Example 5, Comparative Example 1 The same procedure as Example 3 was carried out except that the amount of diethylaluminium chloride added was changed. The results are shown in Table 1. Comparative Examples 2 and 3 Titanium trichloride solid catalyst prepared in (1) of Example 1
Titanium trichloride manufactured by Toho Titanium Co., Ltd. instead of (B)
The same procedure as in Example 3 was conducted except that 10 g of AA was added and the amount of diethylaluminum chloride was changed. The results are shown in Table 1. Example 6 (1) Preparation of catalyst (1) Preparation method (preparation of β-type titanium trichloride) After replacing the reactor with argon, 40 parts of dry hexane and 10 parts of titanium tetrachloride were charged.
This solution was kept at -5°C. Then, a solution consisting of 30% of dry hexane and 11.6% of diethylaluminum chloride was added dropwise under such conditions that the temperature of the reaction system was maintained at -3°C or lower. After the dropwise addition was completed, stirring was continued for another 30 minutes, then the temperature was raised to 70°C, and stirring was continued for an additional hour. Next, the β-type titanium trichloride was allowed to stand still for solid-liquid separation, and then washed three times with 40% hexane to yield 15kg.
The reduction product was obtained. The titanium trichloride contains 4.60% by weight Al. (2) Preparation method (Preparation of Lewis base treated solid) β-type titanium trichloride obtained by the above preparation method was suspended in 40% dry hexane, and then β
Diisoamyl ether was added at a molar ratio of 1.2 to the type titanium trichloride, and the mixture was stirred at 40°C for 1 hour. After the reaction was completed, the supernatant liquid was extracted and
It was washed three times with hexane and dried. (3) Preparation method 10 kg of the Lewis base-treated solid prepared according to the above preparation method was added to a solution consisting of 30% dry heptane and 20% titanium tetrachloride, and the mixture was heated at 70°C for 2 hours.
Time processed. After the reaction, the supernatant liquid was extracted, washed three times with 30% hexane, and dried to obtain a titanium trichloride solid catalyst (C). (2) Production of propylene copolymer A polymerization vessel with an internal volume of 200 and equipped with a stirrer was sufficiently replaced with propylene, and then 50 kg of propylene and 0.075 kg of ethylene were introduced. 0.013 mol (2.0 g) of the titanium trichloride solid catalyst (C), 0.54 mol (65 g) of diethylaluminum chloride (DEAC), and 0.02 mol (2.0 g) of methyl methacrylate were added, and the polymerization vessel was immediately heated to 60°C. The temperature rose. Thereafter, monomers were continuously supplied so that the temperature, pressure, and gas phase composition were maintained constant, and copolymerization was continued for 4 hours. In addition,
Molecular weight preparation was done with hydrogen. After the copolymerization was stopped by adding isobutanol, the slurry was washed twice with 50 kg of liquid phase propylene. In this way, 24.2 kg of powdered copolymer was obtained. Additionally, 0.4 kg of amorphous polymer dissolved in washed propylene was recovered. The ratio of amorphous polymer to the total copolymer produced (recovered AP ratio) was 1.6% by weight, and the total amount of polymer produced per titanium trichloride catalyst component was 12.100%.
g/g-Ticl 3 . The copolymer composition and properties of the powder copolymer are shown in Table 1. Example 7 The same procedure as Example 6 was carried out except that butene-1, which was calculated to give the desired copolymer composition, was added instead of ethylene. The results are shown in Table 2. Example 8 The same procedure as in Example 6 was carried out except that ethylene and butene-1 calculated to obtain the desired copolymer composition were added instead of ethylene. The results are shown in Table 2. Example 9 The same procedure as Example 8 was carried out except that the target copolymer composition was changed. The results are shown in Table 2. Example 10, Comparative Example 4 The same procedure as Example 8 was carried out except that the amount of diethylaluminium chloride added was changed. The results are shown in Table 2.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の理解を助けるた
めのフローチヤート図である。
1 and 2 are flowcharts to aid understanding of the present invention.

Claims (1)

【特許請求の範囲】 1 チーグラー・ナツタ触媒を用いて、プロピレ
ンの含有量が80〜99モル%、エチレンおよび/ま
たは炭素数4〜18のα−オレフインの含有量が1
〜20モル%のプロピレン共重合体を製造する方法
において、該チーグラー・ナツタ触媒が (a) 四塩化チタンを有機アルミニウム化合物で還
元して得られた三塩化チタン組成物またはβ型
三塩化チタンを、更に以下の(1)または(2)の方法
で活性化した三塩化チタン固体触媒、 (1) 三塩化チタン組成物を一般式X2(XはCl、
BrおよびIを表わす。)で表わされるハロゲ
ン又は一般式XX′a(XおよびX′はCl、Brお
よびIを表わす。またaは1或いは3であ
る。)で表わされるハロゲン間化合物と一般
式R1−O−R2(R1およびR2は炭素数が1〜
8個の直鎖状アルキル基又は分岐状アルキル
基を表わし、R1とR2は同一の基であつても
良いし、また異なつた基であつても良い。)
で表わされるエーテル化合物との混合物と反
応させる事によつて製造される三塩化チタン
固体触媒、 (2) β型三塩化チタンをエーテル等の錯化剤で
処理をした後、四塩化チタンで処理すること
によつて製造される三塩化チタン固体触媒、 および (b) 有機アルミニウム化合物 からなり、(a)と(b)のモル比(b)/(a)が20〜100であ
ることを特徴とするプロピレン共重合体の製造方
法。 2 触媒成分(b)がアルモルアルミニウムハライド
である特許請求の範囲第1項記載の方法。 3 触媒成分(a)と(b)のモル比(b)/(a)が30〜70であ
る特許請求の範囲第1項記載の方法。 4 プロピレン共重合体のプロピレン含有量が85
〜97.5モル%、エチレンおよび/または炭素数4
〜18のα−オレフインの含有量が2.5〜15モル%
である特許請求の範囲第1項記載の方法。 5 プロピレン共重合体がプロピレン−エチレン
共重合体である特許請求の範囲第1項記載の方
法。 6 プロピレン共重合体がプロピレン−ブテン−
1共重合体である特許請求の範囲第1項記載の方
法。 7 プロピレン共重合体がプロピレン−エチレン
−ブテン−1共重合体である特許請求の範囲第1
項記載の方法。 8 重合を不活性有機溶媒中で行う特許請求の範
囲第1項記載の方法。 9 重合を実質的に不活性有機溶媒を含まない液
相モノマー中で行う特許請求の範囲第1項記載の
方法。 10 触媒成分(a)の1重量部あたり8000重量部以
上の共重合体を生成させる特許請求の範囲第1項
記載の方法。
[Claims] 1 Using a Ziegler-Natsuta catalyst, the content of propylene is 80 to 99 mol%, and the content of ethylene and/or α-olefin having 4 to 18 carbon atoms is 1.
In the method for producing ~20 mol % propylene copolymer, the Ziegler-Natsuta catalyst (a) reduces titanium tetrachloride with an organoaluminum compound to obtain a titanium trichloride composition or β-type titanium trichloride; , furthermore, a titanium trichloride solid catalyst activated by the method (1) or (2) below, (1) a titanium trichloride composition with the general formula X 2 (X is Cl,
Represents Br and I. ) or an interhalogen compound represented by the general formula XX'a (X and X' represent Cl, Br and I, and a is 1 or 3) and the general formula R 1 -O-R 2 (R 1 and R 2 have a carbon number of 1 to
It represents eight straight-chain alkyl groups or branched alkyl groups, and R 1 and R 2 may be the same group or different groups. )
Titanium trichloride solid catalyst produced by reacting with a mixture with an ether compound represented by (2) β-type titanium trichloride is treated with a complexing agent such as ether, and then treated with titanium tetrachloride. and (b) an organoaluminum compound, characterized in that the molar ratio (b)/(a) of (a) and (b) is 20 to 100. A method for producing a propylene copolymer. 2. The method according to claim 1, wherein the catalyst component (b) is an aluminium halide. 3. The method according to claim 1, wherein the molar ratio (b)/(a) of catalyst components (a) and (b) is from 30 to 70. 4 The propylene content of the propylene copolymer is 85
~97.5 mol%, ethylene and/or carbon number 4
The content of ~18 α-olefins is 2.5-15 mol%
The method according to claim 1. 5. The method according to claim 1, wherein the propylene copolymer is a propylene-ethylene copolymer. 6 Propylene copolymer is propylene-butene-
1. The method according to claim 1, which is a copolymer. 7 Claim 1 in which the propylene copolymer is a propylene-ethylene-butene-1 copolymer
The method described in section. 8. The method according to claim 1, wherein the polymerization is carried out in an inert organic solvent. 9. The method according to claim 1, wherein the polymerization is carried out in a liquid phase monomer substantially free of inert organic solvents. 10. The method according to claim 1, wherein 8000 parts by weight or more of the copolymer is produced per 1 part by weight of the catalyst component (a).
JP16301078A 1978-12-28 1978-12-28 Preparation of propylene copolymer Granted JPS5590514A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP16301078A JPS5590514A (en) 1978-12-28 1978-12-28 Preparation of propylene copolymer
CA000342683A CA1152697A (en) 1978-12-28 1979-12-27 Process for producing propylene copolymer
IT51211/79A IT1162495B (en) 1978-12-28 1979-12-27 PRODUCTION FOR PRODUCING PROPYLENE COPOLYMERS
BR7908553A BR7908553A (en) 1978-12-28 1979-12-27 PROCESSING IN PROCESS TO PRODUCE PROPYLENE COPOLYMER
FR7932004A FR2445346B1 (en) 1978-12-28 1979-12-28 PROCESS FOR PREPARING A PROPYLENE COPOLYMER
BE0/198807A BE880943A (en) 1978-12-28 1979-12-28 PROCESS FOR THE PREPARATION OF A PROPYLENE COPOLYMER
GB7944546A GB2044275B (en) 1978-12-28 1979-12-28 Process for producing propylene copolymer
DE19792952579 DE2952579A1 (en) 1978-12-28 1979-12-28 METHOD FOR PRODUCING A PROPYLENE COPOLYMER
NL7909350A NL191630C (en) 1978-12-28 1979-12-28 Process for preparing propylene copolymer and articles made therefrom.
US06/291,701 US4367322A (en) 1978-12-28 1981-08-10 Process for producing propylene copolymer
SG284/83A SG28483G (en) 1978-12-28 1983-05-24 Process for producing propylene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16301078A JPS5590514A (en) 1978-12-28 1978-12-28 Preparation of propylene copolymer

Publications (2)

Publication Number Publication Date
JPS5590514A JPS5590514A (en) 1980-07-09
JPS6340809B2 true JPS6340809B2 (en) 1988-08-12

Family

ID=15765471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16301078A Granted JPS5590514A (en) 1978-12-28 1978-12-28 Preparation of propylene copolymer

Country Status (2)

Country Link
JP (1) JPS5590514A (en)
BE (1) BE880943A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755906A (en) * 1980-09-19 1982-04-03 Sumitomo Chem Co Ltd Polymerization of olefin
JPS58181613A (en) * 1982-04-20 1983-10-24 Showa Denko Kk Water-cooled inflation film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326882A (en) * 1976-08-24 1978-03-13 Hoechst Ag Propylene terpolymers and process for producing same
JPS5326883A (en) * 1976-08-24 1978-03-13 Hoechst Ag Copolymers film and process for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326882A (en) * 1976-08-24 1978-03-13 Hoechst Ag Propylene terpolymers and process for producing same
JPS5326883A (en) * 1976-08-24 1978-03-13 Hoechst Ag Copolymers film and process for producing same

Also Published As

Publication number Publication date
JPS5590514A (en) 1980-07-09
BE880943A (en) 1980-04-16

Similar Documents

Publication Publication Date Title
US4304890A (en) Method for producing propylene copolymers using a catalyst activated prior to copolymerization
US4367322A (en) Process for producing propylene copolymer
JPH0134250B2 (en)
JPS6011925B2 (en) Method for producing ethylene copolymer
JPH0257770B2 (en)
US4670529A (en) Packaging shrink film
GB2027720A (en) Process for Producing a Propylene Copolymer and a Multilayer Polypropylene Film
US4550145A (en) Process for the production of propylene block copolymers by a three step method
US6451936B1 (en) Polypropylene random copolymer and film thereof
US5521251A (en) Propylene random copolymer composition
US4433110A (en) Process for producing propylene block copolymers
JP2882237B2 (en) Polypropylene random copolymer and its film
US4761462A (en) Packaging propylene copolymer film
GB2034337A (en) Preparation of ethylene-propylene
EP0633133B1 (en) Polypropylene laminate film
EP0579510A2 (en) Propylene polymers and process for preparing the same
JP3569737B2 (en) Method for producing propylene-based random copolymer
JPS646211B2 (en)
JPS6340809B2 (en)
US6106938A (en) Polypropylene composition and laminated and oriented film therefrom
JPS6316403B2 (en)
JP2733060B2 (en) Propylene copolymer composition
JPS646212B2 (en)
JP3569738B2 (en) Method for producing propylene-based random copolymer
JPH0379367B2 (en)