JPS634070B2 - - Google Patents

Info

Publication number
JPS634070B2
JPS634070B2 JP55047598A JP4759880A JPS634070B2 JP S634070 B2 JPS634070 B2 JP S634070B2 JP 55047598 A JP55047598 A JP 55047598A JP 4759880 A JP4759880 A JP 4759880A JP S634070 B2 JPS634070 B2 JP S634070B2
Authority
JP
Japan
Prior art keywords
gas
valve body
valve
type
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55047598A
Other languages
Japanese (ja)
Other versions
JPS56143880A (en
Inventor
Kazuo Okamura
Akira Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Mikuni Kogyo Co Ltd
Original Assignee
Tohoku Mikuni Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Mikuni Kogyo Co Ltd filed Critical Tohoku Mikuni Kogyo Co Ltd
Priority to JP4759880A priority Critical patent/JPS56143880A/en
Publication of JPS56143880A publication Critical patent/JPS56143880A/en
Publication of JPS634070B2 publication Critical patent/JPS634070B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves

Landscapes

  • Lift Valve (AREA)
  • Magnetically Actuated Valves (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガス種によつてもソレノイドの始動電
流が変らないようにした比例制御弁に関する。 市販されている燃料ガスは、大別して液化石油
ガス、天然ガス、製造ガス(都市ガス)があり、
これらは供給圧力が異なることは周知の通りであ
る。これらのガスを用いる器具において同一圧力
としてガスを供給しても、ガス種によつて発熱量
などの特性が異なるため、器具に装着されている
ガスカバナーの2次圧を各ガス種毎に調整してい
るのが現状である。 従つて弁と弁座の間隙を制御してガス流量を制
御しようとするガスの比例制御弁としては、ガス
流量=0(全閉状態)からガス流量最大(全開状
態)に至る全域で弁体のまわりに生じさせる圧力
損失はガス種毎に変るものと考えてよい。 一方、弁座内径とガス流量、比例制御弁の圧力
損失との関係は、流量係数1とした場合に下式で
表わされる。 但し、 D:弁座内径 Qnax:ガス流量(最大) γ:ガスの比重量 g:重力の加速度 △PVnio:最大ガス流量流れたときに許
容される比例制御弁の圧力損失 上式(1)から明らかなように、弁及び弁座の形式
がどのようであれ、弁座内径Dの最小径は、ガス
の発熱量、比重量及び最大ガス流量を流したとき
に、許容される比例制御弁の圧力損失によつて必
然的に定められる。従つて弁体の外径は、弁座内
径Dよりやゝ大きめに定められることになる。 更に、弁体を動作させるアクチエータとしてソ
レノイドを用いるときは、ソレノイドの特性とし
て弁体の変位と励磁電流との関係はヒステリシス
の小さいことが望ましい。また励磁電流と弁体の
変位の関係が直線的に比例するものも提案されて
いるが、いづれも磁束の漏洩が多いためソレノイ
ドの力はその大きさに比較して小さい。このよう
に弁体の外径はガス種によつて異なり弁体の前後
に生ずる圧力差(弁体のまわりの圧力損失)もガ
ス種になつて異なる以上、この圧力差が弁体に作
用する力はソレノイドの比較して無視し得ないた
め、ガス種が変ると弁体に作用する弁体のまわり
の圧力損失が異なり、これがソレノイドの制御電
流に影響を及ぼすものと考えられる。 本発明は、ガス種によつてソレノイドの制御電
流が変らないように弁体の外径を定めた比例制御
弁を提供するものである。 即ち、発明の構成として、ガス比例制御弁を弁
体を動作させるアクチエータとして、ソレノイド
を用い、弁体と弁座との間隙をソレノイドの励磁
電流で制御して流体流量を制御するガスの絞り弁
に於て、ガス種によつて変るガスの供給圧力、あ
るいはガス種によつて異なるガスガバナーの二次
圧に応じて使用されるガス種のそれぞれについて
求められる弁座内径を有する弁座と、前記弁座内
径より定められる外径を有する弁体とにより構成
され、更に、使用されるそれぞれのガス種につい
て、弁体のまわりに生ずる圧力損失が弁体に作用
する力の最大値に等しくなるように弁体の外径な
らびに弁座の内径を修正することによりソレノイ
ドの始動電流をガス種に無関係に一定とした構成
とすることによつて、前述の問題点を解決し得た
ものである。 本発明は、前述の構成とすることにより、市販
されている燃料ガスのガス種、供給圧力等の相違
により発熱量等の特性が異なる場合にも、ガス種
によつて変るガスの供給圧力、あるいはガス種に
よつて異なるガスガバナーの二次圧力に応じた弁
座および弁体を定めることによりソレノイドの始
動電流をガス種に関係なく一定とすることがで
き、ガス流量を最小流量から最大流量まで正確に
制御しうる作用を呈し得る。 以下、ガス器具(ガス燃焼器)を例にとつて説
明する。 第1図はガバナ1を経てガス器具2に燃焼ガス
を供給する場合のブロツク図である。従来のガス
器具において、ガバナ1の出口からガス器具2の
ノズル出口に至る間のガスの保有する水頭圧の収
支は次式で与えられる。 P2+γ/2gW2 Gnax=△Pnax+γ/2gW2 Nnax …(2) 但し、P2…ガバナの二次圧 γ…ガスの比重量 g…重力の加速度 WGnax…ガバナ出口のガスの最大流速 WNanx…ノズル出口におけるガスの最大
流速 △Pnax…ガスが最大流量流れたときのガ
ス器具のガバナ出口からノズル出口
に至るまでの圧力損失 (2)式で表わされる従来のガス器具に、第2図の
如く比例制御弁3を介設した場合には、 P2+△PVnio+γ/2gW2 Gnax =△Pnax+γ/2gW2 Nnax+△PVnio …(3) 但し、△PVnio…ガスが最大流量流れたときの
絞り弁の圧力損失 また、任意のガス流量が流れているときは、 P2+△PVnio+γ/2gW2 G =△P+γ/2gW2 N+△PV …(4) (4)式において左辺第2項の△PVnioが△PVに直
つていないのは、ガスの通過する系に比例制御弁
を設けたことにより、ガスが最大流量流れたとき
の絞り弁の圧力損失(△PVnio)分だけ系の圧力
損失が増大するので、ガバナの二次圧(P2)を
△PVnioだけ高くした事を意味する。ガバナの二
次圧を高くせずに何らかに方法でガバナ出口から
ノズル出口までの系の圧力損失を△PVnioだけ減
少させる方法、例えば配管系を太くしてもよい。 さらに、P2+△PVnio=P2S・Q/Qnax=ε(Q
はガス流量)とおき、WG=WGnaxε・WN
WNnaxε・△P=△Pnaxε2および(2)式を(4)式に代
入して △PV−△PVnio/P2S−△PVnio=1−ε2 …(5) を得る。(5)式は流体の供給圧力(ガバナの二次圧
P2S)が一定のガス器具における絞り弁3の絞り
特性を示す式である。 しかし、一般にガバナの二次圧P2とガス流量
Qとの関係(以下P2〜Q特性という)は、第3
図a,bに示すとおりである。従つて実用的には
ガス流量の変化に伴つてガバナの二次圧が変動す
るものとして絞り特性を示した方が望ましい。 ガバナのP2〜Q特性を示す式を P′2SG(Q)=G(ε) …(6) 但し、P′2S…任意のガス流量Qが流れたときの
ガバナ二次圧 G…ガス流量Qの関数、即ちεの関数 として(5)式のP2Sの代りに(6)式を代入すれば、(7)
式を得る。 △PV=(1−ε2){(ε)−△PVnio} +△PVnio …(7) (7)式はガバナの二次圧がガス流量の変化に伴な
つて変動する場合の比例制御弁の絞り特性を示す
一般式である。 次に、同一のガス器具(ガス燃焼器具)におい
て、3種類のガスに対応する場合を考えてみよ
う。説明を簡単にするため、ガスの特性は単位体
積当りの発熱量が異なる以外は同一のものである
と仮定する。3種類のガスをG1,G2,G3と
し、それらガスの単位体積当りの発熱量HをH1
>H2>H3とすれば、それぞれのガスの最大ガス
流量はQnax1<Qnax2<Qnax3となり、(7)式で与え
られた絞り特性も同一のものとすれば(1)式より弁
座内径は、D1<D2<D3となる。弁体に作用する
力は、弁体の面積と弁体のまわりに生ずる圧力損
失の積で与えられるから、その力をFとすれば、
一般式は F=△PV・π/4D2=π/4D2〔(1−ε2){
(ε)△PVnio}+△PVnio〕…(8) として表わすことができる。但し、この場合、弁
体の外径と弁座内径を等しいものとした。このF
を浮力と定義する。 第5図はアクチエータとしてソレノイド9を用
いた比例制御弁を示す。図中10はヨーク、11
はコイル、12はプランジヤ、13はスプリン
グ、14はプランジヤ下端に形成した弁軸であ
る。コイル11の中心に摺動自在に設けられたプ
ランジヤ12は、コイルに通電することによつて
コイルボビン内に吸収されるが、その変位はプラ
ンジヤの動作に反発する方向に装着されたスプリ
ング13の強さと励磁電流の大きさによつて決ま
り、このプランジヤ12の変位が、すなわち弁体
4の変位となる。 プランジヤ12の変位とソレノイドコイルの励
磁電流との間には、一般に一次比例の関係はな
い。一次比例の関係をもたせるには磁束の漏洩を
多くしなければならない。すなわち、吸引力が同
じならば、一次比例するソレノイドは一般のもの
に比較してコイルが大きくなると共に、消費電力
も大きくなる。 本発明によれば、ソレノイドをアクチエータと
して採用する場合には、励磁電流と弁体(プラン
ジヤ)のストロークとの間には、一次比例の関係
は、かえつて望ましいものではなく、ただヒステ
リシスだけを小さくしておけばよい。 第5図において、弁体4と弁座6が当接してい
るとき、すなわち弁が全閉状態にあつてガス流量
が「0」の場合、(7)式のεが0となつて、(ε)
は第3図a,bに示す圧力Piが弁体4に作用す
る。弁の全閉状態を維持するためには、ソレノイ
ドのスプリング13の取付荷重FBはFB≧π/4D2Pi でなければならない。 しかるに、先に説明したように弁体内径D1
D2<D3の関係があるから、ガス種によつてπ/4 D2Piの値FB(浮力)が異なる。このガス種毎に異
る浮力に対応するため、ソレノイドのスプリング
の取付荷重をガス種毎に換えたり、調整したりす
ることは容易に考えられるが、本発明では前記
FBを最大値FB0と一定にし、一番大きな浮力を生
ずるガス種と同じ浮力に他のガス種の浮力を合せ
るため、弁体の外径dを大きくすることにある。
すなわちG3のガスにおける浮力が3種類の中で
一番大きく、その浮力をF3とすれば
The present invention relates to a proportional control valve in which the starting current of a solenoid does not change depending on the type of gas. Commercially available fuel gas can be roughly divided into liquefied petroleum gas, natural gas, and manufactured gas (city gas).
It is well known that these have different supply pressures. Even if gases are supplied at the same pressure to appliances that use these gases, the characteristics such as calorific value differ depending on the gas type, so the secondary pressure of the gas cover installed in the appliance must be adjusted for each gas type. The current situation is that Therefore, in a gas proportional control valve that attempts to control the gas flow rate by controlling the gap between the valve and the valve seat, the valve body must be adjusted in the entire range from gas flow rate = 0 (fully closed state) to maximum gas flow rate (fully open state). It can be considered that the pressure loss caused around the gas varies depending on the gas type. On the other hand, the relationship between the inner diameter of the valve seat, the gas flow rate, and the pressure loss of the proportional control valve is expressed by the following equation when the flow rate coefficient is 1. However, D: Valve seat inner diameter Q nax : Gas flow rate (maximum) γ: Specific weight of gas g: Acceleration of gravity △P Vnio : Maximum gas flow rate Allowable pressure loss of the proportional control valve when flowing Equation (1) ), no matter what the type of valve and valve seat, the minimum diameter of the valve seat inner diameter D is determined by the allowable proportional control when the calorific value, specific weight, and maximum gas flow rate of the gas are flowed. determined by the pressure loss of the valve. Therefore, the outer diameter of the valve body is set to be slightly larger than the inner diameter D of the valve seat. Furthermore, when a solenoid is used as an actuator for operating a valve body, it is desirable that the relationship between the displacement of the valve body and the excitation current has small hysteresis as a characteristic of the solenoid. There have also been proposals in which the relationship between the excitation current and the displacement of the valve body is linearly proportional, but in either case there is a lot of magnetic flux leakage, so the force of the solenoid is small compared to its size. In this way, the outer diameter of the valve body varies depending on the type of gas, and since the pressure difference that occurs before and after the valve body (pressure loss around the valve body) also differs depending on the type of gas, this pressure difference acts on the valve body. Since the force cannot be ignored compared to a solenoid, the pressure loss around the valve body that acts on the valve body changes when the type of gas changes, and this is thought to affect the control current of the solenoid. The present invention provides a proportional control valve in which the outer diameter of the valve body is determined so that the control current of the solenoid does not change depending on the type of gas. That is, as a configuration of the invention, a gas throttle valve uses a solenoid as an actuator for operating a valve body of a gas proportional control valve, and controls the fluid flow rate by controlling the gap between the valve body and the valve seat with the excitation current of the solenoid. a valve seat having a valve seat inner diameter determined for each type of gas used depending on the gas supply pressure that changes depending on the gas type or the secondary pressure of the gas governor that differs depending on the gas type; and a valve body having an outer diameter determined by the inner diameter of the valve seat, and furthermore, for each type of gas used, the pressure loss generated around the valve body is equal to the maximum value of the force acting on the valve body. The above-mentioned problem was solved by modifying the outer diameter of the valve body and the inner diameter of the valve seat so that the starting current of the solenoid was constant regardless of the gas type. . By having the above-mentioned structure, the present invention has the advantage that even when commercially available fuel gases have different characteristics such as calorific value due to differences in gas type, supply pressure, etc., the gas supply pressure that changes depending on the gas type, Alternatively, by determining the valve seat and valve body according to the secondary pressure of the gas governor, which varies depending on the gas type, the solenoid starting current can be made constant regardless of the gas type, and the gas flow rate can be changed from the minimum flow rate to the maximum flow rate. It is possible to exhibit effects that can be precisely controlled up to a point. Hereinafter, a description will be given using a gas appliance (gas combustor) as an example. FIG. 1 is a block diagram when combustion gas is supplied to a gas appliance 2 via a governor 1. In a conventional gas appliance, the balance of the head pressure of gas between the outlet of the governor 1 and the nozzle outlet of the gas appliance 2 is given by the following equation. P 2 + γ / 2gW 2 Gnax = △P nax + γ / 2gW 2 Nnax …(2) However, P 2 … Secondary pressure of governor γ … Specific weight of gas g … Acceleration of gravity W Gnax … Maximum of gas at governor outlet Flow velocity W Nanx ...Maximum flow velocity of gas at the nozzle outlet △P nax ...Pressure loss from the governor outlet to the nozzle outlet of the gas appliance when the gas flows at the maximum flow rate. When the proportional control valve 3 is installed as shown in Fig. 2, P 2 +△P Vnio +γ/2gW 2 Gnax =△P nax +γ/2gW 2 Nnax +△P Vnio …(3) However, △P Vnio …Pressure loss of the throttle valve when gas flows at maximum flow rate Also, when any gas flow rate is flowing, P 2 +△P Vnio +γ/2gW 2 G =△P+γ/2gW 2 N +△P V … (4) In equation (4), △P Vnio in the second term on the left side does not equal △P V when the gas flows at its maximum flow rate due to the provision of a proportional control valve in the system through which the gas passes. Since the system pressure loss increases by the pressure loss of the throttle valve (△P Vnio ), this means that the governor's secondary pressure (P 2 ) is increased by △P Vnio . There may be some method for reducing the pressure loss in the system from the governor outlet to the nozzle outlet by ΔP Vnio without increasing the secondary pressure of the governor, for example, by increasing the thickness of the piping system. Furthermore, P 2 +△P Vnio = P 2S・Q/Q nax = ε(Q
is the gas flow rate), W G = W Gnax ε・W N =
W Nnax ε・△P=△P nax ε 2 and substituting equation (2) into equation (4), △P V −△P Vnio /P 2S −△P Vnio =1−ε 2 …(5) obtain. Equation (5) is the fluid supply pressure (the governor's secondary pressure
P 2S ) is an equation showing the throttle characteristic of the throttle valve 3 in a certain gas appliance. However, in general, the relationship between the governor's secondary pressure P 2 and the gas flow rate Q (hereinafter referred to as P 2 ~Q characteristic) is
As shown in Figures a and b. Therefore, in practical terms, it is preferable to express the throttling characteristics as a variable in the secondary pressure of the governor as the gas flow rate changes. The formula showing the P 2 ~Q characteristics of the governor is P' 2S = G (Q) = G (ε)...(6) However, P' 2S ...Governor secondary pressure G when an arbitrary gas flow rate Q flows... If we substitute equation (6) in place of P 2S in equation (5) as a function of gas flow rate Q, that is, a function of ε, we get (7)
Get the formula. △P V = (1 - ε 2 ) {(ε) - △P Vnio } + △P Vnio ...(7) Equation (7) is used when the secondary pressure of the governor changes with changes in the gas flow rate. This is a general formula showing the throttle characteristics of a proportional control valve. Next, let's consider a case where the same gas appliance (gas combustion appliance) is compatible with three types of gas. To simplify the explanation, it is assumed that the gases have the same properties except for the difference in calorific value per unit volume. Three types of gases are G1, G2, and G3, and the calorific value H per unit volume of these gases is H 1
>H 2 >H 3 , the maximum gas flow rate of each gas is Q nax1 <Q nax2 <Q nax3 , and if the throttling characteristics given by formula (7) are also the same, then from formula (1) The inner diameter of the valve seat is D 1 <D 2 <D 3 . The force acting on the valve body is given by the product of the area of the valve body and the pressure loss that occurs around the valve body, so if that force is F, then
The general formula is F=△P V・π/4D 2 =π/4D 2 [(1−ε 2 ){
(ε)△P Vnio }+△P Vnio ]...(8) However, in this case, the outer diameter of the valve body and the inner diameter of the valve seat were made equal. This F
is defined as buoyancy. FIG. 5 shows a proportional control valve using a solenoid 9 as an actuator. In the figure, 10 is a yoke, 11
12 is a coil, 12 is a plunger, 13 is a spring, and 14 is a valve shaft formed at the lower end of the plunger. The plunger 12, which is slidably provided at the center of the coil 11, is absorbed into the coil bobbin by energizing the coil, but its displacement is caused by the strength of the spring 13 installed in the direction of repelling the action of the plunger. The displacement of the plunger 12, that is, the displacement of the valve body 4, is determined by the magnitude of the excitation current. Generally, there is no linear proportional relationship between the displacement of the plunger 12 and the excitation current of the solenoid coil. In order to have a linear proportional relationship, the leakage of magnetic flux must be increased. That is, if the attraction force is the same, a linear proportional solenoid has a larger coil and consumes more power than a general solenoid. According to the present invention, when a solenoid is used as an actuator, a linear proportional relationship between the excitation current and the stroke of the valve body (plunger) is not desirable, but only the hysteresis is reduced. Just do it. In FIG. 5, when the valve body 4 and the valve seat 6 are in contact with each other, that is, when the valve is fully closed and the gas flow rate is "0", ε in equation (7) becomes 0, and ( ε)
A pressure P i shown in FIGS. 3a and 3b acts on the valve body 4. In order to maintain the fully closed state of the valve, the mounting load F B of the solenoid spring 13 must satisfy F B ≧π/4D 2 P i . However, as explained earlier, the inner diameter of the valve body D 1 <
Since there is a relationship of D 2 <D 3 , the value F B (buoyancy) of π/4 D 2 P i differs depending on the gas type. In order to cope with the different buoyancy forces for each type of gas, it is easy to think of changing or adjusting the mounting load of the solenoid spring for each type of gas.
The purpose is to make the outer diameter d of the valve body large in order to keep F B constant at the maximum value F B0 and to match the buoyancy of other gas types to the same buoyancy of the gas type that produces the largest buoyancy.
In other words, if the buoyancy force in G 3 gas is the largest among the three types, and that buoyancy force is F 3 , then

【式】なる条件を満足するよう 弁体の外径をdに修正する。すなわちFB0=π/4 d2Piによりdを求める。これによつて (1) ソレノイドのスプリングの取付荷重をFB0
固定できるため、調整の手間がかからない、 (2) 始動電流がガス種によつて変らない、 などの利点がある。 ガスの流れの方向が、第5図と逆の場合には、
弁体に作用する力は F=FB+π/4D2Pi …(9) となつて、やはり弁体の外径によつて浮力が異な
る。 第4図は、プランジヤ12の変位(弁体4の変
位)と励磁電流の関係を例示したものであるが、
プランジヤの変位Sはコイルバネ13の荷重と励
磁電流のバランスによつて定まるので、ソレノイ
ドの吸引力と読み変えることができる。従つて
(FB+π/4D2Pi)なる弁体に作用する力にソレノ イドの吸引力がバランスする点以上の励磁電流を
流さないと弁が開きはじめることができない。こ
の弁の開きはじめの電流は、(9)式で判るように浮
力によつて変るものであり、その対策も前と同様
に、一番大きなガス種と同じ浮力に、他のガス種
の浮力を合わせるように弁径を大きくするもので
ある。 なお、以上の説明では弁体が弁座に当接してい
る場合(全閉状態)について述べたが、弁に全閉
機能を持たせず、弁と弁座の間にわずかに隙間を
設けたり、主弁の他にバイパスを設けて主弁が閉
止状態であつてもバイパスからガスが流れるよう
にした場合においても、そのガス流量に応じて弁
の前後に生ずる圧力差は(7)式を満足するので、本
発明を実施するものといえる。 上述のように、本発明はガスの供給圧力、或は
ガス種によつて異なるガスガバナーの二次圧に応
じて弁体のまわりに生ずる圧力損失が弁体に作用
する力を等しくなるように弁体の径を定めたの
で、ソレノイドの始動電流をガス種に関係なく一
定とすることができ、ガス流量を最小から最大ま
で正確に制御することができる。
The outer diameter of the valve body is corrected to d so that the following condition is satisfied. That is, d is determined by F B0 =π/4 d 2 P i . This has the following advantages: (1) The mounting load of the solenoid spring can be fixed at F B0 , so there is no need for adjustment, and (2) the starting current does not change depending on the gas type. If the direction of gas flow is opposite to that in Figure 5,
The force acting on the valve body is F=F B +π/4D 2 P i (9), and the buoyancy varies depending on the outer diameter of the valve body. FIG. 4 illustrates the relationship between the displacement of the plunger 12 (displacement of the valve body 4) and the exciting current.
Since the displacement S of the plunger is determined by the balance between the load of the coil spring 13 and the excitation current, it can be read as the attraction force of the solenoid. Therefore, the valve cannot begin to open unless an excitation current exceeding the point at which the attraction force of the solenoid balances the force acting on the valve body (F B +π/4D 2 P i ) is applied. The current at the beginning of opening of this valve changes depending on the buoyancy force, as shown in equation (9), and the countermeasure for this is, as before, by increasing the buoyancy force of the largest gas type and the buoyancy force of other gas types. The valve diameter is increased to match. In addition, in the above explanation, we talked about the case where the valve body is in contact with the valve seat (fully closed state), but the valve does not have a fully closing function and there is a slight gap between the valve and the valve seat. Even if a bypass is provided in addition to the main valve so that gas flows from the bypass even when the main valve is closed, the pressure difference that occurs before and after the valve depending on the gas flow rate can be expressed by equation (7). Since the conditions are satisfied, it can be said that the present invention is put into practice. As described above, the present invention is designed to equalize the force acting on the valve body from the pressure loss that occurs around the valve body depending on the gas supply pressure or the secondary pressure of the gas governor, which varies depending on the type of gas. Since the diameter of the valve body is determined, the starting current of the solenoid can be made constant regardless of the gas type, and the gas flow rate can be accurately controlled from the minimum to the maximum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガバナーとガス器具とからなる燃焼装
置のブロツク図、第2図はガバナーとガス器具の
間に比例制御弁を介置させた場合のブロツク図、
第3図a,bはガバナー二次圧とガス流量との関
係を示す線図、第4図はソレノイド励磁電流とプ
ランジヤ(弁体)の変位との関係を示す線図、第
5図は比例制御弁の1例を示す断面図である。 1…ガバナー、2…ガス器具、3…比例制御
弁、4…弁体、6…弁座、9…アクチエータ(ソ
レノイド)、11…コイル、12…プランジヤ、
13…スプリング。
Figure 1 is a block diagram of a combustion device consisting of a governor and gas appliances, Figure 2 is a block diagram of a case where a proportional control valve is interposed between the governor and gas appliances,
Figures 3a and b are diagrams showing the relationship between governor secondary pressure and gas flow rate, Figure 4 is a diagram showing the relationship between solenoid excitation current and plunger (valve body) displacement, and Figure 5 is a diagram showing the relationship between the governor's secondary pressure and gas flow rate. It is a sectional view showing one example of a control valve. DESCRIPTION OF SYMBOLS 1... Governor, 2... Gas appliance, 3... Proportional control valve, 4... Valve body, 6... Valve seat, 9... Actuator (solenoid), 11... Coil, 12... Plunger,
13...Spring.

Claims (1)

【特許請求の範囲】[Claims] 1 弁体を動作させるアクチエータとして、ソレ
ノイドを用い、弁体と弁座との間隙をソレノイド
の励磁電流で制御して流体流量を制御するガスの
絞り弁に於て、ガス種によつて変るガスの供給圧
力、或はガス種によつて異なるガスガバナーの二
次圧に応じて使用されるガス種のそれぞれについ
て求められる弁座内径を有する弁座と、前記弁座
内径より定められる外径を有する弁体とにより構
成され、更に、使用されるそれぞれのガス種につ
いて、弁体のまわりに生ずる圧力損失が弁体に作
用する力の最大値に等しくなるように弁体の径を
修正することによりソレノイドの始動電流をガス
種に無関係に一定としたことを特徴とするガスの
比例制御弁。
1. In a gas throttle valve that uses a solenoid as an actuator to operate the valve body and controls the fluid flow rate by controlling the gap between the valve body and the valve seat with the excitation current of the solenoid, the gas that changes depending on the gas type is used. A valve seat having an inner diameter determined for each type of gas used according to the supply pressure of the gas governor or the secondary pressure of the gas governor which varies depending on the type of gas, and an outer diameter determined from the inner diameter of the valve seat. Furthermore, for each type of gas used, the diameter of the valve body is modified so that the pressure loss occurring around the valve body is equal to the maximum value of the force acting on the valve body. A gas proportional control valve characterized in that the starting current of the solenoid is constant regardless of the type of gas.
JP4759880A 1980-04-11 1980-04-11 Proportional control valve for gas Granted JPS56143880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4759880A JPS56143880A (en) 1980-04-11 1980-04-11 Proportional control valve for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4759880A JPS56143880A (en) 1980-04-11 1980-04-11 Proportional control valve for gas

Publications (2)

Publication Number Publication Date
JPS56143880A JPS56143880A (en) 1981-11-09
JPS634070B2 true JPS634070B2 (en) 1988-01-27

Family

ID=12779674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4759880A Granted JPS56143880A (en) 1980-04-11 1980-04-11 Proportional control valve for gas

Country Status (1)

Country Link
JP (1) JPS56143880A (en)

Also Published As

Publication number Publication date
JPS56143880A (en) 1981-11-09

Similar Documents

Publication Publication Date Title
CA2108387C (en) Vapor management valve
US4469079A (en) Exhaust gas recirculation (EGR) system
JP2001099344A (en) Back pressure control valve
JPH0215751B2 (en)
CA1235616A (en) Idle speed control device
EP0435938A1 (en) High pressure, fast response, pressure balanced, solenoid control valve.
US4527534A (en) Fuel intake control system for supercharged engine
US4793372A (en) Electronic vacuum regulator (EVR) with bi-metallic armature disk temperature compensator
JP2945986B2 (en) Gas fuel pressure regulator
JPS634070B2 (en)
JPS59147176A (en) Flow control valve
JPH02163425A (en) Electric and pneumatic regulator
US6675751B1 (en) Two-mass bi-directional hydraulic damper
CA2080909A1 (en) Exhaust emissions control in gaseous fuelled engines
US4164918A (en) Exhaust gas recirculation control
US4421083A (en) Engine air flow regulator
JPH0114603B2 (en)
JPS6140874B2 (en)
JP2001227656A (en) Pressure reducing valve
JPS6143958Y2 (en)
JPS60168975A (en) Gas flow-rate controller
JP3074709B2 (en) Flow control valve
JPH07113432B2 (en) Proportional control valve for gas
JPS599283Y2 (en) control valve
JPS589287Y2 (en) Solenoid flow control valve