JPS6143958Y2 - - Google Patents

Info

Publication number
JPS6143958Y2
JPS6143958Y2 JP15962480U JP15962480U JPS6143958Y2 JP S6143958 Y2 JPS6143958 Y2 JP S6143958Y2 JP 15962480 U JP15962480 U JP 15962480U JP 15962480 U JP15962480 U JP 15962480U JP S6143958 Y2 JPS6143958 Y2 JP S6143958Y2
Authority
JP
Japan
Prior art keywords
valve
air
valves
pressure
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15962480U
Other languages
Japanese (ja)
Other versions
JPS5783251U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15962480U priority Critical patent/JPS6143958Y2/ja
Publication of JPS5783251U publication Critical patent/JPS5783251U/ja
Application granted granted Critical
Publication of JPS6143958Y2 publication Critical patent/JPS6143958Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、内燃機関のアイドル回転制御弁に係
り、特に、2バルブ方式の比例ソレノイド空気弁
に関する。従来、特開昭55−87837号公報にみら
れるようにアイドル回転を制御するアクチユエー
タとして、1バルブ式の比例ソレノイド空気弁が
知られている。しかし、本空気弁はエンジン吸入
負圧がバルブシート部に直接作用するため、バル
ブの開閉を行なわせるには圧力に打ち勝つソレノ
イドが必要となる。しかも制御する空気量を多く
すればするほどバルブ径も大きくなり、増々バル
ブ制御力を大きくしなければならない。従つて、
ソレノイドも大きくなる欠点を有している。その
ため、吸入負圧の影響を少なくした2バルブ方式
が考案されている。その中で構造上簡単なものと
して同一軸にバルブを2個設けた方式が考案され
ているが、同一軸で同径の2バルブは方式は理論
上製作が不可能である。そのため違径のバルブが
考案されているが吸入負圧の影響を受け、ソレノ
イドコイルに同一電流を流しても圧力が変わると
バルブストロークが変わり、制御空気量も変わる
という欠点を有していた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an idle rotation control valve for an internal combustion engine, and more particularly to a two-valve type proportional solenoid air valve. Conventionally, a one-valve proportional solenoid air valve has been known as an actuator for controlling idle rotation, as disclosed in Japanese Patent Application Laid-Open No. 55-87837. However, in this air valve, engine intake negative pressure acts directly on the valve seat, so a solenoid that can overcome the pressure is required to open and close the valve. Moreover, as the amount of air to be controlled increases, the valve diameter also increases, and the valve control force must be increased. Therefore,
Solenoids also have the disadvantage of being large. Therefore, a two-valve system has been devised that reduces the influence of negative suction pressure. Among them, a system in which two valves are installed on the same shaft has been devised as a simple structure, but it is theoretically impossible to manufacture a system with two valves on the same shaft and the same diameter. Therefore, valves with different diameters have been devised, but they have the disadvantage that they are affected by negative suction pressure, and even if the same current is passed through the solenoid coil, if the pressure changes, the valve stroke changes and the amount of controlled air changes.

本考案の目的は、エンジン吸入負圧による影響
を解消した比例ソレノイド空気弁を提供すること
にある。
An object of the present invention is to provide a proportional solenoid air valve that eliminates the influence of negative engine intake pressure.

その手段として、バルブに作用する圧力をオリ
フイスによつて制御し、バルブに圧力が直接作用
しない構造にしたものである。
As a means for this, the pressure acting on the valve is controlled by an orifice, and the structure is such that pressure does not directly act on the valve.

以下、一実施例を第1図によつて説明する。2
バルブ方式の比例ソレノイド空気弁は、バルブ本
体1とソレノイド部2から成り、ソレノイド部2
は、ソレノイドコイル3、プランジヤ4、スプリ
ング5で構成されている。バルブ本体1は、バル
ブ6、弁座a7、弁座b8、及び調整オリフイス
9、リターンスプリング10から成り、さらに、
バルブ本体1にパイプa11、パイプb12が接
続されている。また、弁座7と8はバルブ6を組
込む上で弁座a7の方が直径が大きくなつてい
る。
Hereinafter, one embodiment will be described with reference to FIG. 2
A valve type proportional solenoid air valve consists of a valve body 1 and a solenoid part 2.
is composed of a solenoid coil 3, a plunger 4, and a spring 5. The valve body 1 consists of a valve 6, a valve seat a7, a valve seat b8, an adjustment orifice 9, and a return spring 10, and further includes:
A pipe a11 and a pipe b12 are connected to the valve body 1. Further, among the valve seats 7 and 8, the valve seat a7 has a larger diameter in order to accommodate the valve 6.

流体の流れは、パイプa11からパイプb12
へと流れる。
The fluid flow is from pipe a11 to pipe b12.
flows to.

作動はソレノイドコイル3に通電しないときは
リターンスプリング10の力によつてバルブ6は
閉じられているが、ソレノイドコイル3に電流を
流すと磁力によりプランジヤ4が作動する。プラ
ンジヤ4の端部にはバルブ6の軸の端部がリター
ンスプリング10の力によつて接しており、プラ
ンジヤ4の動きが直接バルブ6の動きとなる。し
たがつて、通電するとバルブ6は開く方向に作動
する。作動ストロークは電流量によつて決まる。
従つて電流を制御すれば空気量の制御が可能とな
る。
In operation, when the solenoid coil 3 is not energized, the valve 6 is closed by the force of the return spring 10, but when the solenoid coil 3 is energized, the plunger 4 is operated by magnetic force. The end of the shaft of the valve 6 is in contact with the end of the plunger 4 by the force of the return spring 10, and the movement of the plunger 4 directly causes the movement of the valve 6. Therefore, when energized, the valve 6 operates in the opening direction. The operating stroke is determined by the amount of current.
Therefore, if the current is controlled, the amount of air can be controlled.

電流と空気流量の関係はバルブ6の形状によつ
てきまるが、第2図に従来の特性曲線を示す。こ
れからも明らかなように同一電流でも吸入圧力の
違いにより空気流量も異なつている吸入負圧が
300mmHg以上のときは空気流速が音速以上となり
空気流量は変化しないはずである。この現象はア
イドル運転時に回転変動が生じたとき、たとえ
ば、回転が下がつたとき吸入負圧もまた、変動し
下がるので、バルブ特性上空気流量が少なくな
る。そのため、回転低下を増々大きくする欠点と
なつている。空気流量変化の要因は、弁座7側の
バルブと弁座8側のバルブに作用する力が違うた
めで、弁座7側のバルブには負圧によつて開く方
向に、弁座8側のバルブは閉じる方向に力が作用
する。弁座に作用する力は、π(d)/4・P
で表わせる。ここに d=弁座直径 P=弁前後の圧力差 を示す。したがつて、弁座前後の圧力差は同じで
あるから弁座直径が違うと力の差が生じる結果と
なる。
Although the relationship between current and air flow rate depends on the shape of the valve 6, a conventional characteristic curve is shown in FIG. As is clear from this, even with the same current, the air flow rate varies depending on the suction pressure.The suction negative pressure
When the temperature is 300 mmHg or higher, the air flow velocity will exceed the speed of sound and the air flow rate should not change. This phenomenon occurs when rotational fluctuations occur during idling operation, for example, when the rotational speed decreases, the suction negative pressure also fluctuates and decreases, so the air flow rate decreases due to the valve characteristics. This has resulted in a drawback that the rotational speed decreases more and more. The reason for the change in air flow rate is that the forces acting on the valve on the valve seat 7 side and the valve on the valve seat 8 side are different. A force acts on the valve in the direction of closing. The force acting on the valve seat is π(d) 2 /4・P
It can be expressed as Here, d=valve seat diameter P=pressure difference before and after the valve. Therefore, since the pressure difference across the valve seat is the same, a difference in the valve seat diameter will result in a difference in force.

そこで本考案は、調整オリフイス9によつて、
弁座径の差だけ、吸入圧力によつて生じる圧力差
Pを減衰させるようにしたものである。弁座7に
空気の流れが生じると調整オリフイス9の前後に
は P0=(Qa/π/4(d022/2g ここに、P0=調整オリフイス前後の圧力差 Qa=空気流量 d0=オリフイス直径 g=加速度 の圧力減衰が生じる。したがつて、弁座7に作用
する力は、(P−P0)となり圧力減衰分だけ弱くな
る。この圧力減衰量を調整オリフイスd0を適正な
値となるように適合し、弁座7側のバルブに作用
する力を近似的にバランスするようにしたもので
ある。
Therefore, the present invention uses the adjusting orifice 9 to
The pressure difference P caused by the suction pressure is attenuated by the difference in valve seat diameter. When air flows through the valve seat 7, the pressure difference before and after the adjusting orifice 9 is P 0 = (Q a /π/4(d 0 ) 2 ) 2 /2g where, P 0 = pressure difference before and after the adjusting orifice Q a = Air flow rate d 0 = Orifice diameter g = Pressure attenuation of acceleration occurs. Therefore, the force acting on the valve seat 7 becomes (P- P0 ), which becomes weaker by the pressure attenuation. This pressure attenuation amount is adjusted so that the orifice d 0 is adjusted to an appropriate value, and the force acting on the valve on the valve seat 7 side is approximately balanced.

本考案になる比例ソレノイド空気弁の特性を第
2図に示す。図において実線は従来の特性、破線
は本考案の特性である。
Figure 2 shows the characteristics of the proportional solenoid air valve according to the present invention. In the figure, the solid line is the conventional characteristic, and the broken line is the characteristic of the present invention.

以上のように、本考案によれば圧力バランスが
とれるので吸入負圧変化によるバルブストローク
の変化がなくなる効果が得られる。したがつて、
ソレノイドコイルも小さくできるので小型でコン
パクトな比例ソレノイド空気弁を提供できる。
As described above, according to the present invention, since the pressure can be balanced, it is possible to eliminate changes in valve stroke due to changes in suction negative pressure. Therefore,
Since the solenoid coil can also be made smaller, a small and compact proportional solenoid air valve can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例である比例ソレノイ
ド空気弁の断面図、第2図は吸入圧力と空気流量
との関係を示す線図である。 1……バルブ本体、2……ソレノイド部、3…
…ソレノイドコイル、4……プランジヤ、5……
スプリング、6……バルブ、7……弁座a、8…
…弁座b、9……調整オリフイス、10……リタ
ーンスプリング、11……パイプa、12……パ
イプb。
FIG. 1 is a sectional view of a proportional solenoid air valve which is an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between suction pressure and air flow rate. 1...Valve body, 2...Solenoid part, 3...
...Solenoid coil, 4...Plunger, 5...
Spring, 6... Valve, 7... Valve seat a, 8...
...valve seat b, 9...adjustment orifice, 10...return spring, 11...pipe a, 12...pipe b.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 機関吸気路に設けた絞り弁をバイパスするバイ
パス通路に介装され、このバイパス通路を通る空
気量を制御して機関の回転を制御する空気弁であ
つて、同軸上に直径の異なる二つのバルブを備
え、両バルブの上下流面に作用する差圧によつて
両バルブに生じる力を打ち消し合うように構成し
たものにおいて、前記バルブのうち直径が大きい
側のバルブの上下流面に作用する差圧が直径が小
さい側のバルブの上下流面に作用する差圧よりも
小さくなるように、直径が大きい側のバルブを通
る空気の流通路に調整オリフイスを設けたことを
特徴とする空気弁。
An air valve that is installed in a bypass passage that bypasses a throttle valve provided in the engine intake passage, and controls the amount of air passing through this bypass passage to control engine rotation, and is composed of two valves with different diameters on the same axis. and is configured to cancel out the forces generated on both valves due to the differential pressure acting on the upstream and downstream surfaces of both valves, the difference acting on the upstream and downstream surfaces of the valve with a larger diameter among the valves. An air valve characterized in that an adjustment orifice is provided in the air flow path passing through the valve on the larger diameter side so that the pressure is smaller than the differential pressure acting on the upstream and downstream surfaces of the valve on the smaller diameter side.
JP15962480U 1980-11-10 1980-11-10 Expired JPS6143958Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15962480U JPS6143958Y2 (en) 1980-11-10 1980-11-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15962480U JPS6143958Y2 (en) 1980-11-10 1980-11-10

Publications (2)

Publication Number Publication Date
JPS5783251U JPS5783251U (en) 1982-05-22
JPS6143958Y2 true JPS6143958Y2 (en) 1986-12-11

Family

ID=29518639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15962480U Expired JPS6143958Y2 (en) 1980-11-10 1980-11-10

Country Status (1)

Country Link
JP (1) JPS6143958Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216040A (en) * 1984-04-11 1985-10-29 Hitachi Ltd Idle controller
JP2015105929A (en) * 2013-12-02 2015-06-08 株式会社東芝 Electromagnetic flow meter

Also Published As

Publication number Publication date
JPS5783251U (en) 1982-05-22

Similar Documents

Publication Publication Date Title
US6152420A (en) Electromagnetically actuated valve for hydraulic motor vehicle brake systems
US3814070A (en) Exhaust gas recirculation flow control system
US5042448A (en) Idle air bypass
US4989564A (en) Idle air bypass
US3841281A (en) Carburetor
JPS6143958Y2 (en)
US4573441A (en) Valve arrangement
JPH02554B2 (en)
JPS6124588B2 (en)
JPH0610459B2 (en) Flow control valve
JPH0531334Y2 (en)
US4198937A (en) Pneumatic control apparatus for internal combustion
JPH04292534A (en) Exhaust control device of internal combustion engine for vehicle
JPH0219656A (en) Idling speed controller for engine
JPH0420989Y2 (en)
JP2586232Y2 (en) Temperature sensing flow control valve
JP2561819B2 (en) Flow control valve
JPS6226355A (en) Device for controlling quantity of exhaust gas returned in internal combustion engine
JP3546571B2 (en) Power fuel control system for carburetor
JPH02538Y2 (en)
JPH0439474A (en) Proportional flow control valve
JPH0439475A (en) Proportional flow control valve
JPH0324949Y2 (en)
JPH0322518Y2 (en)
JPH0450567A (en) Proportional flow control valve