JPS634061A - Magnetron sputtering electrode - Google Patents

Magnetron sputtering electrode

Info

Publication number
JPS634061A
JPS634061A JP14686086A JP14686086A JPS634061A JP S634061 A JPS634061 A JP S634061A JP 14686086 A JP14686086 A JP 14686086A JP 14686086 A JP14686086 A JP 14686086A JP S634061 A JPS634061 A JP S634061A
Authority
JP
Japan
Prior art keywords
target
film
holes
particles
directivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14686086A
Other languages
Japanese (ja)
Inventor
Tamotsu Shimizu
保 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14686086A priority Critical patent/JPS634061A/en
Publication of JPS634061A publication Critical patent/JPS634061A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a film which has the thickness uniform in the bottom and side wall parts of holes by adequately combining particles for film formation having large directivity and small directivity according to the aspect ratio of the holes of a substrate at the time of forming the film by magnetron sputtering on the film substrate having the holes. CONSTITUTION:A 1st target 3 is put into an E type yoke 1 as a magnetron sputtering electrode and a 2nd target 6 is disposed thereon through a filter 5 having the many holes 4. A high voltage is impressed to the 1st target 3 to form plasma 9 over the entire surface of the bottom of the target. The released particles of the film forming material are filtered 5 to the particles 13 having the large directivity. A tunnel-shaped magnetic field 10 is formed to the surface of the 2nd target 6 and a doughnut-shaped plasma 11 is formed by the impression of the high voltage to release the particles 14 having the small directivity. The plasmas 9, 11 are simultaneously formed on the surfaces of the two targets 3, 6, by which the film having the thickness uniform over the entire inside surface of the holes having the large aspect ratio is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマグネトロンスパッタ電極にかかわり、特に、
LSI等の多層配線膜をスノくツタによる薄膜形成技術
により形成するのに好適なマグネ)。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to magnetron sputtering electrodes, and in particular,
Magnet suitable for forming multilayer wiring films such as LSI using thin film formation technology using snow ivy.

ンスパツタ電極に関する。Related to sputter electrodes.

〔従来の技術〕[Conventional technology]

従来のマグネトロンスパッタ装置の成膜特性については
、ジャーナル オブ エレクトロケミカル ソサイエテ
イ、ソリッド ステート サイエンス アンド チクノ
ミジー、(1985年6月)第1466頁から第147
2頁(J、 Elgctrocham 。
Regarding the film formation characteristics of conventional magnetron sputtering equipment, see Journal of Electrochemical Society, Solid State Science and Chiknomy, (June 1985), pp. 1466 to 147.
2 pages (J, Elgctrocham.

SoC,:  5olicl−5tate  5cie
nce anti TechnologylJune 
1985、pp1a66−1472 )なる文献におい
て論じられている。
SoC,: 5olicl-5tate 5cie
nce anti TechnologyJune
1985, pp1a66-1472).

従来のスパッタ電極では、スパッタリング現象の本質的
な性質として、成膜材料であるターゲットから放出され
る粒子の放出分布がおおむね余弦則に従っているために
、上記文献に記載のように、アスペクト比の高〜1穴に
成膜する場合、大入口部にオーバハングができてしまい
、これが底膜粒子の穴底部や大側壁部への入射を妨害し
、穴部全体に十分な厚さの膜が形成できないという問題
があった。また、LSIの多1膜形成においては、コン
タクトホールやスルーホール等の微細穴だけでな(、隣
接する下地配線段差の間隔が狭くなるため、段差部での
膜被覆率の低下も問題となる(以下の説明では、この段
差部を含めて穴と称することにする。)。この対策とし
て、上記文献では、被膜基板にバイアス電圧を印加し、
スパッタエツチングしながら同時に膜形成を行う、いわ
ゆるバイアススパッタリング法が紹介されている。とこ
ろが、この方式によると、スパッタエツチング中に加速
されたアルゴンイオンが膜中に取り込まれ、膜質を劣化
させる欠点がある。また、LSIのデバイスによっては
、荷電粒子の入射によってデバイス特性が変動するため
、バイアススパッタリング法を適用できない場合もある
。この方式以外に、微細穴に膜を形成する方式としては
、リフトオフ法や、W選択CVD法等があるが、スパッ
タ法罠比べて工程数が多く、量産適用には問題がある。
In conventional sputter electrodes, the essential property of the sputtering phenomenon is that the emission distribution of particles emitted from the target, which is the film forming material, roughly follows the cosine law. ~When forming a film in one hole, an overhang is created at the large entrance, which obstructs the bottom film particles from entering the bottom of the hole and the large side wall, making it impossible to form a film of sufficient thickness over the entire hole. There was a problem. In addition, in the multi-film formation of LSI, not only micro holes such as contact holes and through holes (but also a decrease in film coverage at the step part because the distance between adjacent underlying wiring steps becomes narrower) become a problem. (In the following explanation, this stepped portion will be referred to as a hole.) As a countermeasure to this, in the above document, a bias voltage is applied to the coated substrate,
A so-called bias sputtering method, in which film formation is performed simultaneously while sputter etching, has been introduced. However, this method has the disadvantage that argon ions accelerated during sputter etching are incorporated into the film, degrading the film quality. Furthermore, depending on the LSI device, the bias sputtering method may not be applicable because the device characteristics vary due to the incidence of charged particles. In addition to this method, methods for forming a film in minute holes include the lift-off method and the W selective CVD method, but these methods involve a larger number of steps than the sputtering method and have problems in mass production applications.

なお、これらの技術については、書名:MO5LSI製
造技術、出版社二日経マグCウヒル社1985年なる文
献に詳しい。
These techniques are detailed in the document titled: MO5LSI Manufacturing Technology, published by Ninikkei Mag C Uhir Co., Ltd., 1985.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、従来のスパッタ電極は、被膜基板へ入射
する成膜材料粒子の入射角を制御することができないた
め、LSIの多層配線のようなアスペクト比の大きい穴
には十分な厚さの膜膜形成できないという問題があった
。また、この対策とされるバイアススパッタリング法で
は、膜質を劣化させる欠点があり、微細穴に膜す形成す
る他の方式であるす7トオフ法やF選択CVD法は、量
産には適しないという問題があった。
As mentioned above, conventional sputter electrodes cannot control the angle of incidence of film-forming material particles incident on the coated substrate, so it is necessary to use a sputter electrode with sufficient thickness for holes with large aspect ratios such as those in multilayer wiring of LSI. There was a problem that a film could not be formed. In addition, the bias sputtering method that is considered as a countermeasure for this problem has the disadvantage of degrading the film quality, and other methods for forming films in minute holes, such as the 7-off method and the F-selection CVD method, are not suitable for mass production. was there.

本発明の目的は、成膜対象である穴のアスペクト比に応
じて、被膜基板へ入射する成膜材料粒子の入射角を制御
し、穴の底部および9m壁邪に十分な厚さの膜を形成す
ることができるスパッタ電極を提供することにある。
The purpose of the present invention is to control the angle of incidence of film forming material particles incident on the coating substrate according to the aspect ratio of the hole to be film formed, and to form a film of sufficient thickness on the bottom of the hole and on the 9m wall. An object of the present invention is to provide a sputter electrode that can be formed.

〔問題を解決するための手段〕[Means to solve the problem]

上記目的は、被膜基板へ入射する成膜材料粒子の方向が
、ある限定された指向性の高い成膜材料粒子束と、指向
性の低い成膜材料粒子束とを組み合わせ、各粒子束の量
を制御し、全体とて成膜材料粒子に穴のアスペクト比和
最適な指向性を与えることによって、達成される。
The above purpose is to combine a film-forming material particle bundle with high directivity and a film-forming material particle bundle with low directivity in which the direction of the film-forming material particles incident on the coating substrate is limited, and to reduce the amount of each particle bundle. This is achieved by controlling the overall directionality of the deposition material particles and the aspect ratio of the holes.

〔作用〕[Effect]

スパッタリング現象の本質的な性質として、高運動エネ
ルギーをもった粒子をターゲットに膚突させると、ター
ゲットからおおむね余弦則く従ってターゲット材料が放
出される。よって、対向する被膜基板へ指向性をもたせ
て成膜するには、上記ターゲット上にフィルタ(ふるい
)を設け、所定方向を向いた成膜材料粒子だけを取り出
してやればよい。しかし、このままでは、指向性はフィ
ルタの形状のみで決まってしまうので、任意の指向性を
成膜材料粒子にもたせろことは困姦である。
The essential property of the sputtering phenomenon is that when particles with high kinetic energy impinge on a target, target material is ejected from the target in an approximately cosine-like manner. Therefore, in order to form a film with directionality on the opposing coating substrate, it is sufficient to provide a filter (sieve) on the target and take out only the particles of the film forming material oriented in a predetermined direction. However, as it is, the directivity is determined only by the shape of the filter, so it would be difficult to give the particles of the film-forming material any desired directivity.

そこで、このフィルタと被膜基板との間に第2のターゲ
ットを配置し、この第2のターゲットの面上にプラズマ
を形成させ、指向性の低い状態で膜形成を行う。このよ
うな構成で、指向性の高い底膜材料粒子と指向性の低い
成膜材料粒子とな同時に被膜基板に放出するとともに、
それぞれの放出量を各ターゲットへの投入電力により制
御することによりて、成膜材料粒子全体としての被膜基
板への入射角を制御することができる。
Therefore, a second target is placed between the filter and the coated substrate, and plasma is formed on the surface of the second target to form a film with low directivity. With such a configuration, highly directional bottom film material particles and low directional film forming material particles are simultaneously released onto the coating substrate, and
By controlling the amount of each emission by the power applied to each target, the angle of incidence of the film forming material particles as a whole onto the coating substrate can be controlled.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。図に
おいて、断面がE形状の回転体形のヨーク1にコイル2
が巻かれており、断面がくし形状の@転体形の第1のタ
ーゲット3は、該ヨーク1のE形部にはめ込まれている
。ヨーク1の上面には、多数の穴4のあいたフィルタ5
を設けており、該フィルタ5の上面には、第2のターゲ
ット6を配置している。纂1のターゲット3と嘱2のタ
ーゲット乙には、それぞれ個別に直流間圧電源または扁
圧高周阪電源(図示せず)が接伏されており、各ターゲ
ットへの供給電力を制御できる構成となっている。各タ
ーゲット5.6およびコイル2は、発熱による焼損や品
質劣化を防止するため水冷している。符’jt 12 
f’!水冷管を示す。電極全体は、アースシールド7に
よって取り囲んでいる。
An embodiment of the present invention will be described below with reference to FIG. In the figure, a coil 2 is attached to a rotating body-shaped yoke 1 with an E-shaped cross section.
A first target 3 having a comb-shaped cross section and a rolling body shape is fitted into the E-shaped portion of the yoke 1. A filter 5 with a large number of holes 4 is provided on the top surface of the yoke 1.
A second target 6 is arranged on the upper surface of the filter 5. Target 3 in series 1 and target B in series 2 are each individually connected with a direct current voltage power supply or flat pressure high frequency power supply (not shown), and are configured to be able to control the power supplied to each target. It becomes. Each target 5.6 and coil 2 are water-cooled to prevent burnout and quality deterioration due to heat generation. sign 'jt 12
f'! Water-cooled pipes are shown. The entire electrode is surrounded by an earth shield 7.

次に、動作を説明する。第1のターゲット3はヨーク1
のE形部にはめ込まれているので、該ターゲットの底部
に平行な磁界8が形成されろ。このため、第1のターゲ
ットsVc高電圧を印加すると、該ターゲットの底部全
面にプラズマ9が形成される。この第1のターゲット3
は(し形状になっているため、プラズマ9が半径方向へ
流出するのが防止され、高密度プラズマが得られろよう
になっている。この第1のターゲット3の面から放出さ
れる成膜材料粒子の放出分布は指向性の低いものである
が、第1のターゲット3の上面に設けたフィルタ5によ
って指向性をもたせている。この指向性は、フィルタ5
に設けた穴4の径によって、ある程度制御可能である。
Next, the operation will be explained. 1st target 3 is yoke 1
Since it is fitted into the E-shaped part of the target, a magnetic field 8 parallel to the bottom of the target is formed. Therefore, when a high voltage sVc is applied to the first target, plasma 9 is formed on the entire bottom surface of the target. This first target 3
Because it has a square shape, the plasma 9 is prevented from flowing out in the radial direction, and high-density plasma can be obtained. Although the emission distribution of material particles has low directivity, it is given directivity by the filter 5 provided on the upper surface of the first target 3.
It can be controlled to some extent by the diameter of the hole 4 provided in the hole 4.

フィルタ5の上面に配室された第2のターゲット6には
、フィルタ5に設けた穴4と同じ位置く、穴4′かあげ
てあり、第1のターゲット3からの成膜材料粒子が飛び
抜けられるようにしである。第2のターゲット6の面に
は、従来のプレーナマグネトロン電極と同様に、トンネ
ル状の磁界10が形成されており、第2のターゲット6
に高電圧を印加することにより、ドーナツ状のプラズマ
11が形成されろ。このように、第1のターゲット50
面と第2のターゲット6の面く同時罠プラズマ9.11
を形成し、成膜を行う。
The second target 6 arranged on the upper surface of the filter 5 has a hole 4' raised at the same position as the hole 4 provided in the filter 5, so that particles of the film forming material from the first target 3 can pass through. It is designed so that it can be used. Similar to a conventional planar magnetron electrode, a tunnel-shaped magnetic field 10 is formed on the surface of the second target 6.
A donut-shaped plasma 11 is formed by applying a high voltage to the plasma. In this way, the first target 50
Simultaneous trap plasma of the surface and the second target 6 9.11
is formed and film is formed.

第2図、第5図は、それぞれ指向性の高い成膜と指向性
の低い成膜の成膜材料粒子の放出分布を示したものであ
る。図中、第2のターゲット6の面から穴を通って放出
される@1のターゲット3の成膜材料粒子の放出分布を
長円13で、第2のターゲット6の成膜材料粒子の放出
分布を円14で示し、投入パワーの違いによる放出量の
違いを長円の長径と円の直径により表わしている。全体
としては、破線で示すような指向性を有する成膜となり
ている。このよ5に、各ターゲットへの投入パワーを変
化させることにより、指向性制御を行うことが可能であ
る。
FIG. 2 and FIG. 5 show the release distribution of film-forming material particles for film formation with high directivity and film formation with low directivity, respectively. In the figure, an ellipse 13 represents the release distribution of the film-forming material particles of the second target 6 emitted from the surface of the second target 6 through the hole, and the release distribution of the film-forming material particles of the second target 6 is indicated by an ellipse 13. is shown by a circle 14, and the difference in emitted amount due to the difference in input power is represented by the major axis of the ellipse and the diameter of the circle. Overall, the film was formed with a directivity as shown by the broken line. In this manner, directivity control can be performed by changing the input power to each target.

以上述べた作用の結果、本実施例によれば、被膜基板の
穴のアスペクト比に応じて指向性制御を行って成膜する
ことにより、穴の底部や側壁部にも十分な膜形成を行う
ことができる。
As a result of the above-mentioned effects, according to this example, by controlling the directionality and forming the film according to the aspect ratio of the hole in the coating substrate, a sufficient film can be formed even on the bottom and sidewalls of the hole. be able to.

さらに、本実施例において、第1のターゲット5と第2
のターゲット6の材質は異なっていてもよい。例えば、
LSIのコンタクトホールへの配線膜形成において、第
1のターゲット3としてタングステン(F)を用い、第
2のターゲット6としてアルミニウムCAI)もしくは
アルミニウム合金等を用いろと、穴の底部にはタングス
テンに富んだ膜が形成され、いわゆるバリアメタルとし
ての機能を有する。−方、穴の11壁部はアルミニウム
に富んだ膜となり、穴底部よりも抵抗率の低い膜を形成
することができるので、たとえ穴@壁部に穴底部よりも
薄い膜しか形成することができなくても、層全体の抵抗
を低く保つことができる。
Furthermore, in this embodiment, the first target 5 and the second target
The materials of the targets 6 may be different. for example,
When forming a wiring film in a contact hole of an LSI, use tungsten (F) as the first target 3 and use aluminum (CAI) or an aluminum alloy as the second target 6, because the bottom of the hole is rich in tungsten. A membrane is formed and functions as a so-called barrier metal. - On the other hand, the 11 wall of the hole becomes an aluminum-rich film, and it is possible to form a film with lower resistivity than the bottom of the hole, so even if only a thinner film is formed on the wall of the hole than on the bottom of the hole. Even if this is not possible, the resistance of the entire layer can be kept low.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スパッタ成膜に際し、被膜基板に入射
する成膜材料粒子の指向性を制御することができるので
、基板の穴のアスペクト比に応じた最適の指向性で成膜
ができ、穴の底部および側壁部に十分な厚さの膜を形成
することができろ。
According to the present invention, it is possible to control the directivity of the film forming material particles incident on the coating substrate during sputter film formation, so that film formation can be performed with the optimum directivity according to the aspect ratio of the hole in the substrate. A film of sufficient thickness can be formed on the bottom and side walls of the hole.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のマグネトロンスパツタ電極
の縦断面図、第2図および第3図はそれぞれ指向性の高
い成膜と指向性の低い成膜の成膜材料粒子の放出分布を
示す図である。 符号の説明 1・・・ヨーク、      2・・・コイル。 3・・・第1のターゲット、4.4’・・・穴。 5・・・フィルタ、     6・・・第2のターゲッ
ト。 7・・・アースシールド、   8.10・・・日立。 9.11・・・プラズマ、12・・・水冷′i?。 13・・・指向性の高い粒子放出分布。 14・・・指向性の低い粒子放出分布。 蘭1図 閉2図
Figure 1 is a longitudinal cross-sectional view of a magnetron sputter electrode according to an embodiment of the present invention, and Figures 2 and 3 are release distributions of film forming material particles for highly directional and low directional film formation, respectively. FIG. Explanation of symbols 1...Yoke, 2...Coil. 3...first target, 4.4'...hole. 5... Filter, 6... Second target. 7...Earth Shield, 8.10...Hitachi. 9.11...Plasma, 12...Water cooling'i? . 13... Highly directional particle emission distribution. 14...Particle emission distribution with low directionality. Orchid 1 illustration closed 2 illustrations

Claims (1)

【特許請求の範囲】 1、成膜材料であるターゲットと被膜基板とを対向させ
て成膜するマグネトロンスパツタ装置を構成するマグネ
トロンスパツタ電極において、ターゲット面にほぼ平行
な磁界を形成するようになされた第1のターゲットを有
し、該第1のターゲットと被膜基板との間に、多数の穴
を穿設した平板を配置し、さらに該平板と前記被膜基板
との間に、該平板の穴と同位置に穴を穿設した第2のタ
ーゲットを設け、該第2のターゲットの面上には、第2
のターゲット面から出て再び第2のターゲット面に入る
磁力線で表わされる磁界を形成しており、前記第1およ
び第2のターゲットにそれぞれ独立して電力を投入でき
る構成としたことを特徴とするマグネトロンスパッタ電
極。 2、特許請求の範囲第1項に記載のマグネトロンスパッ
タ電極において、第1のターゲットと第2のターゲット
とが互いに異なる材料からなることを特徴とするマグネ
トロンスパッタ電極。
[Claims] 1. In a magnetron sputter electrode constituting a magnetron sputter device that forms a film by placing a target, which is a film forming material, and a coating substrate facing each other to form a film, a magnetic field approximately parallel to the target surface is formed. A flat plate with a large number of holes is arranged between the first target and the coated substrate, and further between the flat plate and the coated substrate, A second target with a hole drilled at the same position as the hole is provided, and a second target is provided on the surface of the second target.
A magnetic field is formed that is represented by lines of magnetic force that exit from the target surface and reenter the second target surface, and the structure is such that electric power can be applied to each of the first and second targets independently. Magnetron sputter electrode. 2. The magnetron sputtering electrode according to claim 1, wherein the first target and the second target are made of different materials.
JP14686086A 1986-06-25 1986-06-25 Magnetron sputtering electrode Pending JPS634061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14686086A JPS634061A (en) 1986-06-25 1986-06-25 Magnetron sputtering electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14686086A JPS634061A (en) 1986-06-25 1986-06-25 Magnetron sputtering electrode

Publications (1)

Publication Number Publication Date
JPS634061A true JPS634061A (en) 1988-01-09

Family

ID=15417197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14686086A Pending JPS634061A (en) 1986-06-25 1986-06-25 Magnetron sputtering electrode

Country Status (1)

Country Link
JP (1) JPS634061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520594A (en) * 1994-02-07 1996-05-28 Nippondenso Co., Ltd. Control system for automotive vehicle equipped with automatic transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520594A (en) * 1994-02-07 1996-05-28 Nippondenso Co., Ltd. Control system for automotive vehicle equipped with automatic transmission

Similar Documents

Publication Publication Date Title
US4724060A (en) Sputtering apparatus with film forming directivity
EP0529321B1 (en) Metallic material deposition method for integrated circuit manufacturing
JP2515731B2 (en) Thin film forming apparatus and thin film forming method
US5658438A (en) Sputter deposition method for improved bottom and side wall coverage of high aspect ratio features
JPH01272765A (en) Sputtering coating apparatus and method
JPS61183467A (en) Sputtering electrode
TW201329270A (en) Magnetron sputtering apparatus and method
JPS63310965A (en) Sputtering device
JP3535305B2 (en) Planar magnetron sputtering system
KR20110033184A (en) Sputtering apparatus and sputtering method
JPH10152774A (en) Sputtering system
KR20100040855A (en) Multitarget sputter source and method for the deposition of multi-layers
KR100503609B1 (en) Ionization film-forming method and apparatus
JPS5816068A (en) Target electrode structure for planer magnetron system spattering device
JP2005530919A (en) Oriented laminating equipment for vapor deposition materials on substrates
JPS634061A (en) Magnetron sputtering electrode
JP3336421B2 (en) Sputtering equipment
JPS6128029B2 (en)
JPS583976A (en) Method and device for formation of film by sputtering
JPH034620B2 (en)
JPS62119907A (en) Sputtering device for formation of magnetic thin film
JPH01116068A (en) Bias sputtering device
JP2746292B2 (en) Sputtering equipment
KR100205682B1 (en) Planar magnetron sputtering source prodcing improved coating thickness uniformity step coverage and step coverage uniformity
JPH01319671A (en) Multielement sputtering device