JPS6340408B2 - - Google Patents

Info

Publication number
JPS6340408B2
JPS6340408B2 JP56097843A JP9784381A JPS6340408B2 JP S6340408 B2 JPS6340408 B2 JP S6340408B2 JP 56097843 A JP56097843 A JP 56097843A JP 9784381 A JP9784381 A JP 9784381A JP S6340408 B2 JPS6340408 B2 JP S6340408B2
Authority
JP
Japan
Prior art keywords
formula
tetrahydronaphthalene
optically active
racemic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56097843A
Other languages
Japanese (ja)
Other versions
JPS57212125A (en
Inventor
Takeo Suzukamo
Yoji Sakito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP56097843A priority Critical patent/JPS57212125A/en
Priority to EP82105071A priority patent/EP0071006B1/en
Priority to DE8282105071T priority patent/DE3266350D1/en
Publication of JPS57212125A publication Critical patent/JPS57212125A/en
Priority to US06/902,063 priority patent/US4767882A/en
Publication of JPS6340408B2 publication Critical patent/JPS6340408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は式()で示される光学活性またはラ
セミのテトラヒドロナフタレン誘導体の製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an optically active or racemic tetrahydronaphthalene derivative represented by formula ().

(式中、Rは水素またはアルキル基を表わす) 式()で示されるテトラリン誘導体は医薬
品、香料等の中間原料として有用な化合物であ
る。例えば、式()で示される化合物をアセチ
ル化した化合物は原料として重要である。それら
の中で、7−アセチル−1,1,3,4,4,6
−ヘキサメチル−1,2,3,4−テトラヒドロ
ナフタレン(商品名「トナリツド」あるいは「ベ
リトン」)は香料の領域において価値あるじや香
様の香りを有し、香粧品香料として重要な位置を
占めている。式()で示される化合物のうち、
Rがメチル基のものを用いればこの化合物へ誘導
できる。特筆すべきことは式()で示される光
学活性テトラヒドロナフタレン誘導体はこれまで
全く知られておらなかつたばかりでなく、既知の
方法では本願発明の光学活性体を得ることは不可
能である。ここで香料の光学活性に着目してみる
と、多くの興味深い報告がなされている。即ち、
臭覚は生体作用の一つであるため分子の持つキラ
リテイーにより異なつた匂いとして知覚されてい
ることである。例を挙げるとカルボンについての
詳細な研究では右旋性のものはヒメウイキヨウの
匂い、左旋性のものはハツカの匂いを有すると報
告されている(J.Agr.Food Chem.,19、785
(1971)。従つて現在ラセミ体でしか製造されてい
ない香料について、光学活性体を製造すれば新規
な価値を有する香料が得られることとなり、式
()で示される光学活性体は重要な化合物を形
成する。
(In the formula, R represents hydrogen or an alkyl group.) The tetralin derivative represented by the formula () is a compound useful as an intermediate raw material for pharmaceuticals, fragrances, and the like. For example, acetylated compounds of formula () are important as raw materials. Among them, 7-acetyl-1,1,3,4,4,6
-Hexamethyl-1,2,3,4-tetrahydronaphthalene (trade name: ``Tonaritsudo'' or ``Beritone'') has a sycamore-like aroma that is valuable in the field of perfumery, and occupies an important position as a perfumery for cosmetics. There is. Among the compounds represented by formula (),
If R is a methyl group, this compound can be derived. What is noteworthy is that not only is the optically active tetrahydronaphthalene derivative represented by the formula () not known at all, but it is impossible to obtain the optically active derivative of the present invention using known methods. If we focus on the optical activity of fragrances, many interesting reports have been made. That is,
Since the sense of smell is one of the biological functions, different smells are perceived depending on the chirality of molecules. For example, in a detailed study of carvone, it has been reported that the dextrorotatory carvone has the odor of carvone, while the levorotary carvone has the odor of carvone (J.Agr.Food Chem., 19, 785
(1971). Therefore, for fragrances that are currently produced only in racemic form, if optically active forms are produced, fragrances with new value will be obtained, and the optically active forms represented by formula () form important compounds.

本発明者らは先に4−(2−メチル−プロペニ
ル)−5,5−ジメチル−テトラヒドロ−2−フ
ラノン通称パイロシンと芳香族炭化水素をフリー
デルクラフツ触媒の存在下に反応させるか、もし
くは前記パイロシンを芳香族炭化水素に酸触媒で
アルキル化した後、フリーデルクラフツ触媒の存
在下処理することによつて式()で示される光
学活性またはラセミのテトラヒドロナフチル酢酸
誘導体を製造する方法を開発した。
The present inventors first reacted 4-(2-methyl-propenyl)-5,5-dimethyl-tetrahydro-2-furanone, commonly known as pyrosine, with an aromatic hydrocarbon in the presence of a Friedel-Crafts catalyst, or We have developed a method for producing optically active or racemic tetrahydronaphthylacetic acid derivatives represented by formula () by alkylating pyrosine to aromatic hydrocarbons with an acid catalyst and then treating it in the presence of a Friedel-Crafts catalyst. .

(式中、Rは水素またはアルキル基を表わす。) 本発明者らはこの化合物をハロゲン化脱炭酸す
ることにより、式()で示される光学活性また
はラセミの新規化合物を製造することができ、次
いでこれ等を水素化分解することにより、目的と
する光学活性またはラセミのテトラヒドロナフタ
レン誘導体()を製造できることを見出し、さ
らに種々の検討を加え本発明を完成した。
(In the formula, R represents hydrogen or an alkyl group.) By halogenating and decarboxylating this compound, the present inventors can produce a new optically active or racemic compound represented by the formula (), Next, the inventors discovered that the desired optically active or racemic tetrahydronaphthalene derivatives (2) could be produced by hydrogenolyzing them, and after further various studies, the present invention was completed.

(式中、Rは水素またはアルキル基を表わす) (式中、Rは前記と同じ意味であり、Xはハロゲ
ン原子を表わす) ハロゲン化脱炭酸の方法としては種々の方法がと
られるが、例えば四酢酸鉛とハロゲン化リチウム
とともに芳香族炭化水素やハロゲン化炭化水素な
どの溶媒中で加温すれば容易にハロゲン化脱炭酸
反応が進行して、式()で示される新規化合物
を得ることができる。こうして得られる式()
のハロゲン化物を水素化分解することにより式
()で示される光学活性またはラセミのテトラ
ヒドロナフタレン誘導体に導くことができる。
(In the formula, R represents hydrogen or an alkyl group) (In the formula, R has the same meaning as above, and X represents a halogen atom.) Various methods are used for halogenated decarboxylation, but for example, aromatic hydrocarbons, lead tetraacetate, lithium halide, etc. By heating in a solvent such as a halogenated hydrocarbon, the halogenation decarboxylation reaction easily proceeds, and a novel compound represented by the formula () can be obtained. The formula obtained in this way ()
By hydrogenolyzing the halide, an optically active or racemic tetrahydronaphthalene derivative represented by the formula () can be obtained.

水素化分解方法としては金属水素化物を用いる
方法や接触水素化分解等の方法があげられる。金
属水素化物としては水素化リチウムアルミニウム
や水素化リチウムと水素化リチウムアルミニウム
の組合せによる方法がある。この場合、前記式
()で示される化合物をテトラヒドロフラン等
のエーテル類に溶解し、水素化リチウムアルミニ
ウム等を加えて通常0℃から用いる溶媒の沸点下
で反応させればよい。
Examples of the hydrogenolysis method include methods using metal hydrides and catalytic hydrogenolysis. As the metal hydride, there is a method using lithium aluminum hydride or a combination of lithium hydride and lithium aluminum hydride. In this case, the compound represented by the above formula () may be dissolved in an ether such as tetrahydrofuran, lithium aluminum hydride, etc. may be added, and the reaction may be carried out usually from 0° C. to the boiling point of the solvent used.

用いる水素化リチウムアルミニウムの量は式
()のハロゲン化物1モルに対し、通常は1/4モ
ルから2モル、好ましくは1/2モルないし1モル
である。水素化リチウムと水素化リチウムアルミ
ニウムの組合せによる方法では式()のハロゲ
ン化物1モルに対し、水素化リチウムは1モルか
ら2モル、水素化リチウムアルミニウムは0.1か
ら0.5モルの組合せが好適に用いられる。
The amount of lithium aluminum hydride used is usually 1/4 mol to 2 mol, preferably 1/2 mol to 1 mol, per 1 mol of the halide of formula (). In the method using a combination of lithium hydride and lithium aluminum hydride, a combination of 1 to 2 moles of lithium hydride and 0.1 to 0.5 moles of lithium aluminum hydride is preferably used per 1 mole of the halide of formula (). .

反応の進行はガスクロマトグラフイー、薄層ク
ロマトグラフイー等の分析手段によつて知ること
ができる。
The progress of the reaction can be determined by analytical means such as gas chromatography and thin layer chromatography.

生成物はそのままでも高純度であるが、必要に
よつては蒸留等によりさらに精製することも可能
である。
The product has high purity as it is, but if necessary, it can be further purified by distillation or the like.

また、接触水素化分解法としてはパラジウム、
ニツケル等の触媒の存在下水素還元する方法があ
げられる。特にパラジウム系触媒を用いることに
より好適に反応は進行する。この場合、前記ハロ
ゲン化物に対して約当モルの塩基を存在させると
反応は円滑に進行する。塩基としてはアルカリ金
属の有機酸塩(酢酸ナトリウム、酢酸カリウム
等)、有機三級アミン(トリエチルアミン、ピリ
ジン等)あるいはアミド化合物(N,N−ジメチ
ルホルムアミド、N,N−ジエチルホルムアミド
等)が好適に用いられる。反応を行なうに際して
は本質的に本反応を阻害しない溶媒で任意に希釈
して行なうことが好ましく、このような溶媒とし
てはエタノール、イソプロパノール、第三級ブタ
ノールなどのアルコール類やベンゼン、トルエン
などの芳香族炭化水素、テトラヒドロフランやジ
オキサンなどのエーテル類が挙げられる。この還
元反応に用いられるパラジウム系触媒としては、
非担持型、担持型いずれも使用可能である。また
それらを粉末のまま使用してもよいし、適当な形
及び大きさに成形して用いてもよい。非担持型の
触媒としてはたとえばパラジウムブラツク、酸化
パラジウム、塩化パラジウムなどが用いられる。
担持型の触媒としては、たとえば種々の担持率の
パラジウム−炭、パラジウム−シリカ、パラジウ
ム−アルミナなどが用いられる。用いるパラジウ
ム触媒の量は特に限定されるものではないが、バ
ツチ反応の場合、原料ハロゲン化物1モルに対し
て0.001〜1当量、好ましくは0.01〜0.2当量であ
る。
In addition, as a catalytic hydrogenolysis method, palladium,
Examples include a method of hydrogen reduction in the presence of a catalyst such as nickel. In particular, the reaction proceeds suitably by using a palladium-based catalyst. In this case, the reaction will proceed smoothly if the base is present in about an equimolar amount to the halide. Suitable bases include organic acid salts of alkali metals (sodium acetate, potassium acetate, etc.), organic tertiary amines (triethylamine, pyridine, etc.), or amide compounds (N,N-dimethylformamide, N,N-diethylformamide, etc.). used. When carrying out the reaction, it is preferable to dilute the reaction as desired with a solvent that does not essentially inhibit the reaction. Examples of such solvents include alcohols such as ethanol, isopropanol, and tertiary butanol, and aromatic solvents such as benzene and toluene. and ethers such as tetrahydrofuran and dioxane. The palladium-based catalyst used for this reduction reaction is
Both non-supported and supported types can be used. Moreover, they may be used as powders, or may be molded into appropriate shapes and sizes. Examples of unsupported catalysts used include palladium black, palladium oxide, palladium chloride, and the like.
As the supported catalyst, for example, palladium-charcoal, palladium-silica, palladium-alumina, etc. with various supporting ratios are used. The amount of palladium catalyst used is not particularly limited, but in the case of a batch reaction, it is 0.001 to 1 equivalent, preferably 0.01 to 0.2 equivalent, per mole of raw material halide.

還元反応に用いる水素は通常市販のものでよ
く、その使用量は単に反応を完結させるという目
的のために、化学量論量以上あれば特に制限はな
く、その圧力も常圧でも反応は進行するが、反応
を促進するために加圧する方法もとられる。通常
は150気圧以下で充分である。還元反応温度は反
応を促進するために加温することが好ましいが、
副反応を抑制するためには100℃以下好ましくは
約10℃から80℃の範囲が適当である。
The hydrogen used in the reduction reaction is usually commercially available, and the amount used is not particularly limited as long as it is at least stoichiometric for the purpose of completing the reaction, and the reaction will proceed even at normal pressure. However, a method of applying pressure is also used to promote the reaction. Normally, 150 atmospheres or less is sufficient. The reduction reaction temperature is preferably heated to promote the reaction, but
In order to suppress side reactions, the temperature is preferably 100°C or less, preferably in the range of about 10°C to 80°C.

以下、実施例をもつて本発明の化合物及び方法
を説明する。
The compounds and methods of the present invention will be illustrated below with examples.

実施例 1 窒素中水素化リチウムアルミニウム9.56g
(0.252mol)をTHF70mlに懸濁させ(S)−3−
(クロロメチル)−1,1,4,4,6−ペンタメ
チル−1,2,3,4−テトラヒドロナフタレン
(〔α〕546+26.2゜(C1、n−ヘキサン))62.9g
(0.251mol)のTHF溶液を滴下した。15時間加熱
還流後、窒素水含水THFで反応液を処理後5%
塩酸600mlを加え、n−ヘキサンで抽出した。抽
出液を飽和食塩水で洗浄後、乾燥、濃縮、蒸留
し、46.0g(0.213mol、85%)の(S)−1,1,
3,4,4,6−ヘキサメチル−1,2,3,4
−テトラヒドロナフタレンを得た。
Example 1 9.56 g of lithium aluminum hydride in nitrogen
(0.252 mol) was suspended in 70 ml of THF (S)-3-
(Chloromethyl)-1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene ([α] 546 +26.2° (C1, n-hexane)) 62.9g
(0.251 mol) of THF solution was added dropwise. After heating under reflux for 15 hours, the reaction solution was treated with nitrogen water-containing THF to reduce the concentration to 5%.
600 ml of hydrochloric acid was added and extracted with n-hexane. The extract was washed with saturated saline, dried, concentrated, and distilled to yield 46.0 g (0.213 mol, 85%) of (S)-1,1,
3,4,4,6-hexamethyl-1,2,3,4
-Tetrahydronaphthalene was obtained.

〔α〕546−49.1゜(C1、クロロホルム) bp05=91℃ NMR(CCl4)δ(ppm)=0.96(3H、d)、1.03
(3H、s)、1.21(3H、s)、1.24(3H、
s)、1.28(3H、s)、1.34〜1.86(3H、
m)、2.25(3H、s)、6.71〜7.14(3H、
m) 実施例 2 (R)−(3−クロロメチル)−1,1,4,4,
6−ペンタメチル−1,2,3,4−テトラヒド
ロナフタレン(〔α〕546−26.1゜(C1、n−ヘキサ
ン))を用いて実施例1と同様に行ない(R)−
1,1,3,4,4,6−ヘキサメチル−1,
2,3,4−テトラヒドロナフタレンを得た。
[α] 546 −49.1° (C1, chloroform) bp 05 = 91°C NMR (CCl 4 ) δ (ppm) = 0.96 (3H, d), 1.03
(3H, s), 1.21 (3H, s), 1.24 (3H,
s), 1.28 (3H, s), 1.34-1.86 (3H,
m), 2.25 (3H, s), 6.71~7.14 (3H,
m) Example 2 (R)-(3-chloromethyl)-1,1,4,4,
Produced in the same manner as in Example 1 using 6-pentamethyl-1,2,3,4-tetrahydronaphthalene ([α] 546 -26.1° (C1, n-hexane)) (R)-
1,1,3,4,4,6-hexamethyl-1,
2,3,4-tetrahydronaphthalene was obtained.

〔α〕546−+48.9゜(C1、クロロホルム)bp、
NMRスペクトルは実施例1のものと同じであつ
た。
[α] 546 −+48.9゜(C1, chloroform) bp,
The NMR spectrum was the same as that of Example 1.

実施例 3 窒素中、水素化リチウム4.52g(0.569mol)、
水素化リチウムアルミニウム1.81g(0.048mol)
をTHFに懸濁させ、3−(クロロメチル)−1,
1,4,4,6−ペンタメチル−1,2,3,4
−テトラヒドロナフタレン94.69g(0.378mol)
のTHF溶液を滴下し36時間加熱還流した。希塩
酸で反応液を処理し、n−ヘキサンで抽出した。
飽和食塩水で洗浄後、乾燥、濃縮、蒸留して59.7
g(0.276mol、73%)の1,1,3,4,6−
ヘキサメチル−1,2,3,4−テトラヒドロナ
フタレンを得た。
Example 3 4.52 g (0.569 mol) of lithium hydride in nitrogen,
Lithium aluminum hydride 1.81g (0.048mol)
was suspended in THF, and 3-(chloromethyl)-1,
1,4,4,6-pentamethyl-1,2,3,4
-Tetrahydronaphthalene 94.69g (0.378mol)
A THF solution of was added dropwise to the mixture, and the mixture was heated under reflux for 36 hours. The reaction solution was treated with dilute hydrochloric acid and extracted with n-hexane.
After washing with saturated saline, drying, concentrating and distilling to 59.7
g (0.276mol, 73%) of 1,1,3,4,6-
Hexamethyl-1,2,3,4-tetrahydronaphthalene was obtained.

実施例 4 オートクレーブ中に、3−(クロロメチル)−
1,1,4,4,6−ペンタメチル−1,2,
3,4−テトラヒドロナフタレン200mg
(0.798mmol)のイソプロパノール溶液(10ml)、
酢酸ソーダ・3水和物120mg(0.882mmol)、10%
Pd−C160mgを入れ、80Kg/cm2の水素圧をかけ、50
℃で12時間撹拌した。冷却後、Pd−Cを濾別し、
水を加え、n−ヘキサンで抽出した。飽和炭酸水
素ナトリウム溶液で洗浄後、乾燥、濃縮し172mg
(0.796mmol)の1,1,3,4,4,6−ヘキ
サメチル−1,2,3,4−テトラヒドロナフタ
レンを得た。
Example 4 In an autoclave, 3-(chloromethyl)-
1,1,4,4,6-pentamethyl-1,2,
3,4-tetrahydronaphthalene 200mg
(0.798mmol) in isopropanol solution (10ml),
Sodium acetate trihydrate 120mg (0.882mmol), 10%
Add 160 mg of Pd-C, apply hydrogen pressure of 80 Kg/cm 2 , and
Stirred at ℃ for 12 hours. After cooling, Pd-C is filtered out,
Water was added and extracted with n-hexane. After washing with saturated sodium bicarbonate solution, dry and concentrate to 172 mg.
(0.796 mmol) of 1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene was obtained.

実施例 5 (1−1) (S)−4−(2−メチルプロペニル)−5,5
−ジメチルテトラヒドロ−2−フラノン(〔α〕D
−62.5゜(C0.5、エタノール))2.50g(14.9mmol)
を30mlのトルエンに溶解し、無水塩化アルミニウ
ム2.10g(15.8mmol)を加え、10℃で5時間撹
拌した。18%塩酸10mlを加え分液後、希塩酸で洗
浄した。トルエン層を5%アンモニア水で抽出
し、50%硫酸で酸析し、トルエンで抽出した。飽
和食塩水で洗浄後、芒硝で乾燥し、減圧下トルエ
ンを留去し3.79gの生成物を得た。(〔α〕546
23.8゜(C1、ベンゼン))生成物を加熱n−ヘキサ
ンに溶解後、冷却し析出した結晶を濾別し、濾液
を濃縮して3.42g(18.2mmol、88%)の(R)−
3−(カルボキシメチル)−1,1,4,4,6−
ペンタメチル−1,2,3,4−テトラヒドロナ
フタレンを得た。
Example 5 (1-1) (S)-4-(2-methylpropenyl)-5,5
-dimethyltetrahydro-2-furanone ([α] D
-62.5゜(C0.5, ethanol)) 2.50g (14.9mmol)
was dissolved in 30 ml of toluene, 2.10 g (15.8 mmol) of anhydrous aluminum chloride was added, and the mixture was stirred at 10°C for 5 hours. After adding 10 ml of 18% hydrochloric acid to separate the layers, the mixture was washed with diluted hydrochloric acid. The toluene layer was extracted with 5% aqueous ammonia, acid-precipitated with 50% sulfuric acid, and extracted with toluene. After washing with saturated brine, it was dried over Glauber's salt, and toluene was distilled off under reduced pressure to obtain 3.79 g of product. ([α] 546
The 23.8° (C1, benzene) product was dissolved in heated n-hexane, cooled, the precipitated crystals were filtered off, and the filtrate was concentrated to give 3.42 g (18.2 mmol, 88%) of (R)-
3-(carboxymethyl)-1,1,4,4,6-
Pentamethyl-1,2,3,4-tetrahydronaphthalene was obtained.

〔α〕546−26.2゜(C1、ベンゼン) NMR(CDCl3)δ(ppm)=1.10(3H、s)、1.28
(6H、s)、1.34(3H、s)、2.30(3H、
s)、1.54〜2.83(5H、m)、6.86〜7.31
(3H、m)、12.17(1H、s) IR(cm-1) 1705(C=0) (1−2) (R)−4−(2−メチルプロペニル)−5,5
−ジメチルテトラヒドロ−2−フラノン(〔α〕D
+62.0゜(C0.54、エタノール))0.35g
(2.08mmol)をトルエン10mlに溶解し0.3mlの濃
硫酸を加え、室温で1時間撹拌した。トルエン層
を水酸化ナトリウム水溶液で洗浄し、芒硝で乾燥
後、減圧下溶媒を留去し0.27g(1.05mmol、50
%)の(S)−5,5−ジメチル−4−(2−メチ
ル−2−p−トリルプロピル)−テトラヒドロ−
2−フラノンを得た。
[α] 546 −26.2° (C1, benzene) NMR (CDCl 3 ) δ (ppm) = 1.10 (3H, s), 1.28
(6H, s), 1.34 (3H, s), 2.30 (3H,
s), 1.54-2.83 (5H, m), 6.86-7.31
(3H, m), 12.17 (1H, s) IR (cm -1 ) 1705 (C=0) (1-2) (R)-4-(2-methylpropenyl)-5,5
-dimethyltetrahydro-2-furanone ([α] D
+62.0゜(C0.54, ethanol)) 0.35g
(2.08 mmol) was dissolved in 10 ml of toluene, 0.3 ml of concentrated sulfuric acid was added, and the mixture was stirred at room temperature for 1 hour. The toluene layer was washed with an aqueous sodium hydroxide solution, dried over sodium sulfate, and the solvent was distilled off under reduced pressure to give 0.27 g (1.05 mmol, 50
%) of (S)-5,5-dimethyl-4-(2-methyl-2-p-tolylpropyl)-tetrahydro-
2-furanone was obtained.

mp73.8゜〔α〕546+32.5゜(C1、ベンゼン) NMR(CDCl3)δ(ppm)=1.16(3H、s)、1.29
(3H、s)、1.30(6H、s)、1.60〜
1.85(5H、m)、2.28(3H、s)、7.04
(4H、s) IR(cm-1) 1760 (1−3) (S)−5,5−ジメチル−4−(2−メチル−
2−p−トリルプロピル)−テトラヒドロ−2−
フラノン100mgを10mlのトルエンに溶解し、130mg
の無水塩化アルミニウムを加え、70℃で30分間撹
拌した。反応液を希塩酸で洗浄後、乾燥、濃縮し
て単離すると95mgの(S)−3−(カルボキシメチ
ル)−1,1,4,4,6−ペンタメチル−1,
2,3,4−テトラヒドロナフタレンを得た。
mp73.8゜〔α〕 546 +32.5゜ (C1, benzene) NMR (CDCl 3 ) δ (ppm) = 1.16 (3H, s), 1.29
(3H, s), 1.30 (6H, s), 1.60~
1.85 (5H, m), 2.28 (3H, s), 7.04
(4H, s) IR (cm -1 ) 1760 (1-3) (S)-5,5-dimethyl-4-(2-methyl-
2-p-tolylpropyl)-tetrahydro-2-
Dissolve 100mg of furanone in 10ml of toluene to obtain 130mg
of anhydrous aluminum chloride was added, and the mixture was stirred at 70°C for 30 minutes. The reaction solution was washed with dilute hydrochloric acid, dried, concentrated, and isolated to yield 95 mg of (S)-3-(carboxymethyl)-1,1,4,4,6-pentamethyl-1,
2,3,4-tetrahydronaphthalene was obtained.

NMR(CCl4)δ(ppm)=1.08(3H、s)、1.25.
(6H、s)、1.34(3H、s)、2.26(3H、
s)、1.52〜2.79(5H、m)、6.75〜7.15
(3H、m)、12.17(1H、s) IR(cm-1) 1705 〔α〕546+26.3゜ (C1、ベンゼン) (2−1) (R)−3−(カルボキシメチル)−1,1,4,
4,6−ペンタメチル−1,2,3,4−テトラ
ヒドロナフタレン(〔α〕546−23.8゜(C1、ベンゼ
ン))2.00g(7.69mmol)を30mlのベンゼンに溶
解し四酢酸鉛4.00g(9.02mmol)無水塩化リチ
ウム0.80g(18.9mmol)を加え、6時間加熱還
流した。反応液を水、次いで希塩酸で洗浄後、6
%アンモニア水で未反応カルボン酸を除去した。
ベンゼン層を乾燥、濃縮後カラムクロマトグラフ
イーで精製し1.22g(4.87mmol)の(S)−3−
(クロロメチル)−1,1,4,4,6−ペンタメ
チル−1,2,3,4−テトラヒドロナフタレン
を得た。アンモニア水層から0.35g(1,
34mmol)の未反応カルボン酸を回収した。収率
は消費カルボン酸あたり77%であつた。
NMR (CCl 4 ) δ (ppm) = 1.08 (3H, s), 1.25.
(6H, s), 1.34 (3H, s), 2.26 (3H,
s), 1.52-2.79 (5H, m), 6.75-7.15
(3H, m), 12.17 (1H, s) IR (cm -1 ) 1705 [α] 546 +26.3゜ (C1, benzene) (2-1) (R)-3-(carboxymethyl)-1, 1, 4,
Dissolve 2.00 g (7.69 mmol) of 4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene ([α] 546 -23.8° (C1, benzene)) in 30 ml of benzene and dissolve 4.00 g (9.02 mmol) of lead tetraacetate. 0.80 g (18.9 mmol) of anhydrous lithium chloride was added, and the mixture was heated under reflux for 6 hours. After washing the reaction solution with water and then diluted hydrochloric acid,
% aqueous ammonia to remove unreacted carboxylic acid.
The benzene layer was dried, concentrated, and purified by column chromatography to obtain 1.22 g (4.87 mmol) of (S)-3-
(Chloromethyl)-1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene was obtained. 0.35g (1,
34 mmol) of unreacted carboxylic acid was recovered. The yield was 77% based on consumed carboxylic acid.

〔α〕546+26.1゜ (C1、n−ヘキサン) NMR(CCl4)δ(ppm)=1.08(3H、s)、1.24
(3H、s)、1.32(3H、s)、1.39(3H、
s)、1.48〜1.95(3H、m)、3.23(1H、
t)、3.87(1H、dd)、6.77〜7.20(3H、
m) (2−2) (S)−3−(カルボキシメチル)−1,1,4,
4,6−ペンタメチル−1,2,3,4−テトラ
ヒドロナフタレン(〔α〕546+23.8゜(C1、ベンゼ
ン))を用いて参考例4と同様に行ない(R)−3
−(クロロメチル)−1,1,4,4,6−ペンタ
メチル−1,2,3,4−テトラヒドロナフタレ
ンを得た。
[α] 546 +26.1゜ (C1, n-hexane) NMR (CCl 4 ) δ (ppm) = 1.08 (3H, s), 1.24
(3H, s), 1.32 (3H, s), 1.39 (3H,
s), 1.48-1.95 (3H, m), 3.23 (1H,
t), 3.87 (1H, dd), 6.77-7.20 (3H,
m) (2-2) (S)-3-(carboxymethyl)-1,1,4,
(R)-3 was carried out in the same manner as in Reference Example 4 using 4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene ([α] 546 +23.8° (C1, benzene)).
-(chloromethyl)-1,1,4,4,6-pentamethyl-1,2,3,4-tetrahydronaphthalene was obtained.

〔α〕546−26.2゜(C1、n−ヘキサン)、 NMRスペクトルは(2−1)のものと同じであ
つた。
[α] 546 −26.2° (C1, n-hexane), the NMR spectrum was the same as that of (2-1).

参考例 1 (S)−1,1,3,4,4,6−ヘキサメチ
ル−1,2,3,4−テトラヒドロナフタレン
(〔α〕546−49.1゜(C1、n−ヘキサン))100.0g
(0.463mol)を300gの1,2−ジクロロエタン
に溶解し38.0g(0.484mol)の塩化アセチルと
71.0g(0.533mol)の無水塩化アルミニウムを加
え、20℃で1時間撹拌した。反応液を300mlの10
%塩酸で処理した後、分液した。有機層を希塩酸
次いで飽和炭酸ソーダ水溶液で洗浄後、乾燥、濃
縮蒸留し、107.5g(0.417mol、90%)の(S)−
7−アセチル−1,1,3,4,4,6−ヘキサ
メチル−1,2,3,4−テトラヒドロナフタレ
ンを得た。
Reference example 1 (S)-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene ([α] 546 -49.1° (C1, n-hexane)) 100.0 g
(0.463mol) in 300g of 1,2-dichloroethane and 38.0g (0.484mol) of acetyl chloride.
71.0g (0.533mol) of anhydrous aluminum chloride was added and stirred at 20°C for 1 hour. 300ml of reaction solution 10
After treatment with % hydrochloric acid, the layers were separated. The organic layer was washed with dilute hydrochloric acid and then with a saturated aqueous sodium carbonate solution, dried, concentrated and distilled to give 107.5 g (0.417 mol, 90%) of (S)-
7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene was obtained.

bp0 bp 0

Claims (1)

【特許請求の範囲】 1 光学活性またはラセミの4−(2−メチル−
プロペニル)−5,5−ジメチル−テトラヒドロ
−2−フラノンとアルキルベンゼンとをフリーデ
ルクラフツ触媒の存在に反応させる、もしくは酸
触媒の存在下に反応させた後フリーデルクラフツ
触媒の反応に環化させることによつて式() (式中、Rは水素またはアルキル基を表わす。) で示される光学活性またはラセミのテトラヒドロ
ナフチル酢酸誘導体を得、次でこれをハロゲン化
脱炭酸することによつて式() (式中、Rは前記と同じ意味を、Xはハロゲン原
子を表わす。) で示される光学活性またはセラミのテトラヒドロ
ナフタレン誘導体のハロゲン化物を得、しかる後
にこれを水素化分解することを特徴とする式
() (式中、Rは前記と同じ意味を表わす。) で示される光学活性またはラセミのテトラヒドロ
ナフタレン誘導体の製造法。 2 水素化分解法として金属水素化物またはパラ
ジウム系触媒で水素還元することを特徴とする特
許請求の範囲第1項記載のテトラヒドロナフタレ
ン誘導体の製造法。
[Claims] 1. Optically active or racemic 4-(2-methyl-
(propenyl)-5,5-dimethyl-tetrahydro-2-furanone and an alkylbenzene in the presence of a Friedel-Crafts catalyst, or in the presence of an acid catalyst followed by cyclization in the presence of a Friedel-Crafts catalyst. By expression () (In the formula, R represents hydrogen or an alkyl group.) An optically active or racemic tetrahydronaphthyl acetic acid derivative represented by the formula is obtained, and then this is halogenated and decarboxylated to obtain the formula () (In the formula, R has the same meaning as above, and X represents a halogen atom.) It is characterized by obtaining a halide of an optically active or cerami tetrahydronaphthalene derivative represented by the formula, and then hydrogenolyzing this. formula() (In the formula, R represents the same meaning as above.) A method for producing an optically active or racemic tetrahydronaphthalene derivative represented by the following. 2. The method for producing a tetrahydronaphthalene derivative according to claim 1, wherein hydrogen reduction is carried out using a metal hydride or a palladium-based catalyst as the hydrogenolysis method.
JP56097843A 1981-06-11 1981-06-23 Tetrahydronaphthalene derivative and its preparation Granted JPS57212125A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56097843A JPS57212125A (en) 1981-06-23 1981-06-23 Tetrahydronaphthalene derivative and its preparation
EP82105071A EP0071006B1 (en) 1981-06-11 1982-06-09 Tetrahydronaphthalene derivatives and their production
DE8282105071T DE3266350D1 (en) 1981-06-11 1982-06-09 Tetrahydronaphthalene derivatives and their production
US06/902,063 US4767882A (en) 1981-06-11 1986-08-26 Tetrahydronaphthalene derivatives and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56097843A JPS57212125A (en) 1981-06-23 1981-06-23 Tetrahydronaphthalene derivative and its preparation

Publications (2)

Publication Number Publication Date
JPS57212125A JPS57212125A (en) 1982-12-27
JPS6340408B2 true JPS6340408B2 (en) 1988-08-11

Family

ID=14202993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56097843A Granted JPS57212125A (en) 1981-06-11 1981-06-23 Tetrahydronaphthalene derivative and its preparation

Country Status (1)

Country Link
JP (1) JPS57212125A (en)

Also Published As

Publication number Publication date
JPS57212125A (en) 1982-12-27

Similar Documents

Publication Publication Date Title
CN111201212B (en) Synthesis method of feloxicib and intermediate thereof
CH648314A5 (en) PROCESS FOR THE PREPARATION OF TRANS-5-ARYL-2,3,4,4A, 5,9B-HEXAHYDRO-1H-PYRIDO (4,3-B) -INDOLES SUBSTITUTED IN POSITION 2 AND COMPOUNDS FOR OBTAINING THEM.
CN108610351B (en) 11- substituted benzyl -3,1- benzoxazine and Pyrazinones compound and its preparation method and application
JPH0231704B2 (en)
JPS58189132A (en) Manufacture of butene derivative
WO2023246836A1 (en) Novel five-membered heterocycle substituted styrene derivative, and preparation method therefor and use thereof
JP2008533033A (en) Novel crystalline forms of antidiabetic compounds
JPS6340408B2 (en)
JPS629098B2 (en)
CN111056890A (en) Method for preparing aryl ketone by free radical-free radical coupling reaction of ketoacid decarboxylation and fatty aldehyde decarbonylation based on iron catalysis
CA3085475A1 (en) A process for the preparation of crisaborole
JPH0511110B2 (en)
KR900004144B1 (en) A process for producing 1,2,5,6-tetrahydro-4h-pyrrols (3,2,1-ij)-quinoline -4-one
JPS6338975B2 (en)
JPS6310934B2 (en)
JPS6251941B2 (en)
JP3387723B2 (en) Method for producing 2-nitroiminohexahydro-1,3,5-triazines
WO2008044702A1 (en) Process for production of azabicycloalkanol derivative
JPS6316365B2 (en)
JP2564141B2 (en) Method for producing alkylbenzothiazoles
Bennetau et al. Synthesis of 3-Benzoylcyclohexanone, A key Intermediate for the Synthesis of Ketoprofen
JPS61191649A (en) Manufacture of alpha-hydroxy acid
JPS6312461B2 (en)
JP2003137835A (en) Method for producing (r)-3-hydroxy-3-(2-phenyl)hexanoic acid
JP2535419B2 (en) Sulfide ketone derivative and method for producing the same