JPS6340259A - Manufacture of electrode base material for battery - Google Patents

Manufacture of electrode base material for battery

Info

Publication number
JPS6340259A
JPS6340259A JP61089879A JP8987986A JPS6340259A JP S6340259 A JPS6340259 A JP S6340259A JP 61089879 A JP61089879 A JP 61089879A JP 8987986 A JP8987986 A JP 8987986A JP S6340259 A JPS6340259 A JP S6340259A
Authority
JP
Japan
Prior art keywords
fiber
base material
knit
flame
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61089879A
Other languages
Japanese (ja)
Inventor
Kinoo Miwa
輝之男 三輪
Shinzo Nishizumi
西角 真三
Kazuharu Shimizu
一治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61089879A priority Critical patent/JPS6340259A/en
Publication of JPS6340259A publication Critical patent/JPS6340259A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To make it possible to manufacture electrode base material which is bulky and has good performance by forming a knit with fire resistant multifilament, and heating the fire resistant knit to obtain the carbon fiber knit for electrode base material. CONSTITUTION:Multifilament of fire resistant fiber which is the precursor of carbon fiber is prepared. The multifilament is obtained by heating raw multifilament, capable of forming carbon fiber through fire resistant and carbonizing treatment, such as polyacrylic fiber, cellulose fiber, pitch fiber in an oxydizing atmosphere at 150-400 deg.C without catching fire. The fire resistant multifilament obtained is used to form a knit by conventional process. The fire resistant knit is heated in an inactive atmosphere such as nitrogen atmosphere at 950-3000 deg.C and carbonized or graphitized to obtain carbon fiber knit. By this process, an electrode base material can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は電池用種基材の製造方法に関し、ざらに詳し
くは、レドックスフロー型電池や、亜鉛−臭素電池等の
金属−ハロゲン電池などの電解液循環型二次電池や、ナ
トリウム−硫黄電池などの電極、バイポーラ板などに使
用する、炭素繊維編物からなる種基材を製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing a seed base material for a battery, and more specifically, it relates to an electrolyte solution for a redox flow type battery, a metal-halogen battery such as a zinc-bromine battery, etc. The present invention relates to a method for manufacturing a seed base material made of carbon fiber knitted fabric, which is used for circulating secondary batteries, electrodes of sodium-sulfur batteries, bipolar plates, etc.

従来の技術 たとえば、電解液循環型二次電池における極板やバイポ
ーラ板などに使用する種基材においては、導電性が高い
こと、電解液に対して耐蝕性を有すること、電解液の流
動抵抗が小ざいこと、電解液との接触面積、つまり反応
面積が大きいことなど、いろいろな特性が要求されてい
る。ナトリウム−硫黄電池の電極においても、導電性が
高いことなどが要求されている。そのため、炭素繊維編
物が注目されている。
Conventional technology For example, seed base materials used for electrode plates and bipolar plates in electrolyte circulation type secondary batteries must have high conductivity, corrosion resistance to electrolyte, and flow resistance of electrolyte. Various characteristics are required, such as a small size and a large contact area with the electrolyte, that is, a large reaction area. Electrodes for sodium-sulfur batteries are also required to have high conductivity. Therefore, carbon fiber knitted fabrics are attracting attention.

そのような、炭素繊維編物からなる種基材を製造する方
法としては、従来、特開昭59−119680号公報に
記載されている方法が知られている。この方法は、炭素
繊維の原料繊維たる、たとえばポリアクリロニトリル繊
維の繊維束(マルチフィラメント)を使用して編物を作
り、次いでその編物を酸化性雰囲気中で熱処理して耐炎
化繊維編物となし、ざらにその耐炎化繊維編物を非酸化
性雰囲気中で熱処理して炭素繊維編物種基材とするもの
である。原料繊維の段階で編物形態とするのは、炭素繊
維は結節強力が極めて小さいために、炭素繊維とした後
では編めないからである。ところが、この方法には、以
下において述べるような欠点がある。
As a method for producing such a seed base material made of a carbon fiber knitted fabric, the method described in Japanese Patent Application Laid-open No. 119680/1983 is known. In this method, a knitted fabric is made using fiber bundles (multifilaments) of polyacrylonitrile fibers, which are raw material fibers of carbon fibers, and then the knitted fabric is heat-treated in an oxidizing atmosphere to make a flame-resistant fiber knitted fabric. Then, the flame-resistant knitted fabric is heat-treated in a non-oxidizing atmosphere to form a carbon fiber knitted fabric seed base material. The reason why carbon fibers are made into a knitted fabric at the stage of raw material fibers is that carbon fibers have extremely low knot strength and cannot be knitted after being made into carbon fibers. However, this method has drawbacks as described below.

すなわち、耐炎化工程においては、原料繊維を発火させ
ないで熱処理することが必要で、そのための条件制御が
もともと大変やっかいで必るという事情があるが、編物
は嵩が大きく、したがって一度に相当量の原料繊維を熱
処理することになるため、相当緩慢な熱処理を行っても
内部に大量の熱が蓄積されやすく、一般に暴走反応と呼
ばれる、原料繊維が一気に燃え上がってしまう現象を起
こしやすい。かかる暴走反応は、原料繊維束を編まない
でそのまま耐炎化処理する場合でも起こり1qるのであ
るが、繊維束は大変細く、したがって一度に処理される
繊維量は少なく、熱の蓄積も少ないから、条件制御は比
較的容易なのである。しかして、暴走反応が起こると、
編物はその形態保持さえ困難になってしまう。
In other words, in the flame-retardant process, it is necessary to heat-treat the raw fibers without igniting them, and controlling the conditions for this is inherently very difficult. Since the raw material fibers are heat-treated, a large amount of heat tends to accumulate inside even if the heat treatment is performed at a very slow rate, and this tends to cause a phenomenon generally called a runaway reaction, where the raw fibers burst into flames all at once. Such a runaway reaction occurs even when raw fiber bundles are subjected to flame-retardant treatment without being knitted, but since the fiber bundles are very thin, the amount of fiber processed at one time is small, and there is little heat accumulation. , it is relatively easy to control the conditions. However, when a runaway reaction occurs,
It becomes difficult for knitted fabrics to even maintain their shape.

また、従来の方法は、上)ホした暴走反応を防止するた
めに、耐炎化処理をより一層緩慢に行う必要があり、生
産性が低い。
In addition, in the conventional method, in order to prevent the runaway reaction described in (a) above, it is necessary to carry out flameproofing treatment even more slowly, resulting in low productivity.

ざらに、種基材は、反応面積を大きくとる必要から嵩高
であるのが好ましいが、原料繊維は耐炎化処理に伴って
数十%も大きく収縮し、一方、一般の編機ではそう嵩高
な原お1繊維編物が用意できるわけでもないので、厚み
のおる、嵩高な71へ基材が得にくいという問題もある
In general, it is preferable for the seed base material to be bulky because it is necessary to have a large reaction area, but raw material fibers shrink significantly by several tens of percent when subjected to flame-retardant treatment. There is also the problem that it is difficult to obtain a base material for the thick and bulky 71 because it is not possible to prepare a raw or single-fiber knitted fabric.

発明が解決しようとする問題点 この発明の目的は、従来の方法の上記欠点を解決し、嵩
高で、特性の優れた電池用炭素繊維編物種基材を簡単に
製造する方法を提供するにおる。
Problems to be Solved by the Invention It is an object of the present invention to solve the above-mentioned drawbacks of the conventional methods and to provide a method for easily manufacturing a bulky carbon fiber knitted material for batteries with excellent characteristics. .

問題点を解決するための手段 上記目的を達成するためぬこの発明は、炭素繊維の前駆
体繊維たる耐炎化繊維の繊維束を使用して編物を作り、
次いでその編物を非酸化性雰囲気中で熱処理して炭化す
る電池月極基材の製造方法を特徴とするものである。こ
の発明において炭素繊維とは、一般に黒鉛繊維と呼ばれ
るものも含むものとする。
Means for Solving the Problems In order to achieve the above objects, the present invention uses a fiber bundle of flame-resistant fibers, which are precursor fibers of carbon fibers, to make a knitted fabric,
The present invention is characterized by a method for manufacturing a battery monthly electrode base material, in which the knitted fabric is then heat-treated in a non-oxidizing atmosphere to carbonize it. In this invention, carbon fiber includes what is generally called graphite fiber.

この発明をざらに詳細に説明するに、この発明において
は、まず、炭素繊維の前駆体繊維たる耐炎化繊維のw4
維束を用意する。この製造は、炭素繊維の製造における
周知の方法によればよい。すなわち、たとえばポリアク
リルニトリル繊維、セルロース繊維、ピッチ繊維など、
耐炎化工程と炭化工程を経て炭素繊維とすることができ
る原料繊維束を、酸化性雰囲気中で、かつ発火させない
で150〜400’Cで熱処理し、耐炎化する。この耐
炎化に際して、上)ホした蓄熱現象がやはり起こるが、
原料繊維が繊維束の状態にあるために編物の場合はど大
量の蓄熱はなく、暴走反応は極めて容易に抑制すること
ができる。なお、原料繊維束としては、最終的に得られ
る種基材において電解液の流動抵抗がより低くなり、ま
た電解液との接触効率がより向上するように、単糸径が
3〜20μmで、かつ単糸数が1000〜24000本
であり、しかも1インチあたりの撚数が綿糸換算番手の
平方根を4倍した値の5〜50%でおるようなものを使
用するのが好ましい。撚は、多いほど編みやすく、また
電解液の流動抵抗を少なくすることができるが、電解液
との接触効率は悪くなるので、上記範囲にするのが好ま
しい。
To explain this invention in detail, first, in this invention, w4 of flame resistant fiber which is a precursor fiber of carbon fiber is
Prepare the fibers. This production may be performed by a well-known method for producing carbon fibers. That is, for example, polyacrylonitrile fibers, cellulose fibers, pitch fibers, etc.
A raw fiber bundle that can be made into carbon fiber through a flameproofing process and a carbonization process is heat treated at 150 to 400'C in an oxidizing atmosphere without igniting to make it flameproof. When making this flame resistant, the heat storage phenomenon mentioned above still occurs,
Since the raw material fibers are in the form of fiber bundles, knitted fabrics do not accumulate a large amount of heat, and runaway reactions can be suppressed very easily. In addition, the raw material fiber bundle has a single fiber diameter of 3 to 20 μm, so that the flow resistance of the electrolyte in the final seed base material obtained is lower and the contact efficiency with the electrolyte is further improved. In addition, it is preferable to use a yarn having a number of single yarns of 1,000 to 24,000, and a number of twists per inch of 5 to 50% of the square root of the cotton yarn equivalent count multiplied by 4. The larger the number of twists, the easier it is to knit, and the flow resistance of the electrolyte can be reduced, but the contact efficiency with the electrolyte becomes poor, so it is preferable to keep the twist within the above range.

上記耐炎化工程は、次式で与えられる、耐炎化の程度を
表わすL OI IIが20〜40%になるように行う
のが好ましい。
The above-mentioned flame-retardant step is preferably carried out so that L OI II, which represents the degree of flame-retardant given by the following formula, is 20 to 40%.

LOI値=[耐炎化繊維が燃え続けるのに必要な酸素量
/(耐炎化繊維が燃え続け るのに必要な醒素量半窒素の量)] X100(%) 上記LOI値は、JIS  K7201に規定される方
法に準じ、次のようにして測定する。
LOI value = [Amount of oxygen required for the flame resistant fiber to continue burning/(Amount of half-nitrogen required for the flame resistant fiber to continue burning)] X100 (%) The above LOI value is specified in JIS K7201. It is measured as follows according to the method described in

すなわち、直径が約Q、3mmの針金に、耐炎化繊維を
直径が約7mmになるように巻き付けて試験片を作り、
その試験片を燃焼筒内に配置する。
That is, a test piece was made by winding a flame-resistant fiber around a wire with a diameter of about Q, 3 mm to a diameter of about 7 mm.
The test piece is placed inside the combustion tube.

次に、燃焼筒内に酸素と窒素の混合ガスを流し、試験片
の上端に点火し、試験片が少なくとも3分燃え続けるか
、または少なくとも50mmの長さにわたって燃え続け
るのに必要な最低酸素量と、そのときの窒素量を決定す
る。それから、上式によって計算する。
Next, a mixture of oxygen and nitrogen is flowed into the combustion tube and ignited at the top of the specimen, with the minimum amount of oxygen required to keep the specimen burning for at least 3 minutes or for a length of at least 50 mm. and determine the amount of nitrogen at that time. Then, calculate according to the above formula.

LOI値を20〜40%の範囲にするのが好ましいのは
、次のような理由による。すなわち、この発明において
は、次に、上記のようにして得た耐炎化繊維束で編物を
作るわけでおるが、耐炎化繊維は原料繊維はど結節強力
か高いわけではなく、したがって上述した従来の方法に
よる場合はど編みやすくはない。しかしながら、LOI
値を20〜40%としておくと、編操作が比較的容易に
なる。
The reason why it is preferable to set the LOI value in the range of 20 to 40% is as follows. That is, in this invention, next, a knitted fabric is made from the flame-resistant fiber bundles obtained as described above, but the flame-resistant fibers do not have a high knot strength or high knot strength. If you use the above method, it is not easy to knit. However, the LOI
When the value is set to 20 to 40%, the knitting operation becomes relatively easy.

さて、この発明においては、上記のようにして得た耐炎
化繊維束を使用し、周知の方法によって編物とする。こ
のとき、反応面積を大きくとることができるように、目
付が少なくとも200C]/m2になるように編むのが
好ましい。また、繊維束と編針との接触摩擦抵抗を少な
くするため、耐炎化繊維にポリエチレングリコール等の
油剤を1〜10ffi量%付看させることも好ましいこ
とである。
Now, in this invention, the flame-resistant fiber bundle obtained as described above is used and knitted by a well-known method. At this time, it is preferable to knit so that the fabric weight is at least 200 C]/m2 so that a large reaction area can be obtained. Furthermore, in order to reduce the contact frictional resistance between the fiber bundle and the knitting needles, it is also preferable to add 1 to 10 ffi of an oil agent such as polyethylene glycol to the flame-resistant fibers.

編組織は、平編、ゴム編、パール編、タック編、浮き編
、両面編、テレコ編、トリコット編、ラッセル編、ジャ
ガード編、デンビー編、ハーフ編など、いかなる組織で
あってもよいものである。なかでも、ゴム編は、形成さ
れるリブが電解液の流路として作用して電解液が流れや
すくなり、したがって反応効率か向上するようになるの
で好ましい。
The knitting structure may be any structure such as flat knitting, rubber knitting, pearl knitting, tuck knitting, floating knitting, double-sided knitting, telecoding knitting, tricot knitting, russell knitting, jacquard knitting, denby knitting, half knitting, etc. be. Among these, rubber knitting is preferable because the formed ribs act as flow paths for the electrolytic solution, making it easier for the electrolytic solution to flow, thereby improving reaction efficiency.

この発明においては、次に上記耐炎化繊維編物を、不活
性雰囲気、たとえば窒素雰囲気中で950〜3000 
’Cで熱処理し、炭化または黒鉛化して炭素繊維編物と
する。このとき、耐炎化繊維はわずかに収縮するが、原
料繊維を耐炎化するときほどではない。かくして、この
発明の種基材を1qる。
In this invention, the above-mentioned flame-resistant fiber knitted fabric is then heated to a temperature of 950 to 3000 in an inert atmosphere, for example, a nitrogen atmosphere.
It is heat treated with 'C and carbonized or graphitized to make a carbon fiber knitted fabric. At this time, the flame resistant fibers shrink slightly, but not as much as when flame resistant raw material fibers are made. Thus, 1 q of seed substrate of this invention is prepared.

電池反応における活性を向上させるために、炭素繊維編
物種基材を、空気や硝酸によって酸化処理したり、ハロ
ゲン化処理してもよい。空気による醸化処理は、100
tor0以上の酸素分圧の酸素雰囲気下に、400〜1
500’Cで、かつ炭素繊維の小量収率が65〜99%
になるようにして行う。硝酸による酸化処理は、種基材
を100〜500’Cの温度で硝酸蒸気と接触させたり
、あるいは種基材に硝酸を付着させた後100〜500
′Cで熱処理することによって行う。ハロゲン化処理は
、種基材を400〜1500’Cで塩素ガスと接触させ
るなどして行う。もつとも、これらの処理は、耐炎化繊
維編物を炭化または黒鉛化するのと同時に行ってもよい
ものである。
In order to improve the activity in battery reactions, the carbon fiber knitted fabric seed base material may be oxidized with air or nitric acid, or halogenated. Brewing treatment with air is 100
400 to 1 in an oxygen atmosphere with an oxygen partial pressure of tor0 or more.
500'C and small yield of carbon fiber 65-99%
Do it so that it becomes. Oxidation treatment with nitric acid can be carried out by contacting the seed substrate with nitric acid vapor at a temperature of 100 to 500'C, or by attaching nitric acid to the seed substrate and then heating the seed substrate at a temperature of 100 to 500'C.
This is done by heat treatment at 'C. The halogenation treatment is performed by, for example, bringing the seed base material into contact with chlorine gas at 400 to 1500'C. However, these treatments may be performed at the same time as carbonizing or graphitizing the flame-resistant fiber knitted fabric.

種基材は、電解液との接触面積をより大きくするため、
次式で示す炭素繊維束の伸び率E(%)が、100〜5
00%であるのが好ましい。ざらに好ましい伸び率は、
150〜500%で必る。
The seed base material increases the contact area with the electrolyte,
The elongation rate E (%) of the carbon fiber bundle shown by the following formula is 100 to 5.
00% is preferable. The roughly preferred elongation rate is
Must be 150-500%.

E=[(D、−Q□>/rLo]X1000o:吊した
状態における炭素繊維束の長さで、約200mmになる
ように調整す る。
E=[(D, -Q□>/rLo]X1000o: The length of the carbon fiber bundle in a suspended state, which is adjusted to about 200 mm.

0、:上記用した炭素繊維束を真っ直ぐに引き伸ばした
ときの長さくmm) また、種基材は、それと、たとえば集電板との接触電気
抵抗を向上させるため、次式による圧縮率P(%)が5
〜60%になるようにするのが好ましい。ざらに好まし
い圧縮率は、5〜50%である。
0: Length when the carbon fiber bundle used above is stretched straight (mm) In addition, in order to improve the contact electrical resistance between the seed base material and, for example, a current collector plate, the compression ratio P ( %) is 5
It is preferable to set it to 60%. A generally preferred compression ratio is 5 to 50%.

P=[(to−t)/l□]x100 t□ : 100mmx100mmの種基材を硬い平板
上に戎買し、その上に重ざ30 Ωの別の硬い平板を置いたときの両手 板間の間隔(mm) t :上側の平板上にざらに3にΩの荷重を付加したと
きの両手板間の間隔 以下、実施例に基いてこの発明をざらに詳細に説明する
P=[(to-t)/l□]x100 t□: The distance between both hands when a 100mm x 100mm seed base material is placed on a hard flat plate and another hard flat plate with a weight of 30 Ω is placed on top of it. Distance (mm) t: Distance between both hand plates when a load of approximately 3 to Ω is applied to the upper flat plate Below, the present invention will be roughly described in detail based on examples.

実施例 東し株式会社製炭素繊維T300の前駆体繊維で必る耐
炎化繊維の繊維束(単糸数: 6000本〉を用い、1
×1のゴム編組織の耐炎化繊維編物を得た。耐炎化繊維
の撚数は1m必たり20回でおる。
Example Using a fiber bundle (number of single yarns: 6,000) of flame-resistant fibers required as precursor fibers of carbon fiber T300 manufactured by Toshi Co., Ltd., 1
A flame-resistant fiber knitted fabric having a rubber knitted structure of ×1 was obtained. The number of twists of the flame-resistant fiber is 20 times per meter.

次に、上記耐炎化繊維編物を窒素雰囲気中にて’150
0’Cで30分熱処理して炭化し、炭素繊維編物からな
る種基材を得た。
Next, the above-mentioned flame-resistant fiber knitted fabric was heated to '150 in a nitrogen atmosphere.
It was heat-treated at 0'C for 30 minutes to carbonize, thereby obtaining a seed base material made of a carbon fiber knitted fabric.

この種基材を構成している炭素繊維の単糸径は7μmで
、ICm必たり2本のリブが形成され、目付は550q
/rn2であった。また、炭素繊維束の伸び率は210
%、種基材の圧縮率は36%であった。
The single fiber diameter of the carbon fibers constituting this type of base material is 7 μm, two ribs are formed per ICm, and the basis weight is 550q.
/rn2. In addition, the elongation rate of the carbon fiber bundle is 210
%, and the compression ratio of the seed substrate was 36%.

次に、上記種基材を電極とするレドックスフロー型電池
を組み立てた。すなわち、図面に示すように、種基材1
を支持したスペーサ2の一方の面にグラッシーカーボン
製東電板3が、また他方の面には陽イオン交換膜6が接
するように電池を組み立てた。スペーサ2には、電解液
の供給管4と排出管5を設けた。種基材1の面積は10
crn”であり、スペーサ2の厚みは1.5mmである
Next, a redox flow battery using the above seed base material as an electrode was assembled. That is, as shown in the drawing, the seed substrate 1
The battery was assembled in such a way that the glassy carbon Tokyo Electric board 3 was in contact with one side of the spacer 2 that supported the spacer 2, and the cation exchange membrane 6 was in contact with the other side. The spacer 2 was provided with an electrolyte supply pipe 4 and a discharge pipe 5. The area of seed substrate 1 is 10
crn'', and the thickness of the spacer 2 is 1.5 mm.

次に、正極用電解液として、Q度がそれぞれ1モル/1
である塩化第一鉄および塩化第二鉄の4N酸性塩酸水溶
液を用い、また負極用電解液として濃度が1モル/Qで
必る塩化第ニクロムの4N酸性塩酸水溶液を用い、通液
量を4.5mff/分とし、電流密度を40mA/cr
n2として、電流効率、電導度、流動抵抗を測定したと
ころ、それぞれ95%、0.563−cm   、0.
11Kq/Cm2であった。
Next, as the electrolyte for the positive electrode, the Q degree was 1 mol/1, respectively.
A 4N acidic hydrochloric acid aqueous solution of ferrous chloride and ferric chloride, which is .5mff/min, current density 40mA/cr
When the current efficiency, conductivity, and flow resistance were measured as n2, they were 95%, 0.563-cm, and 0.5%, respectively.
It was 11Kq/Cm2.

発明の効果 この発明は、耐炎化繊維束で編物を作り、その耐炎化繊
維編物を熱処理して炭素繊維編物種基材を得るものであ
るからして、原料繊維編物を熱処理して耐炎化繊維編物
とし、さらに熱処理して炭素繊維編物とする従来の方法
のように耐炎化処理中における暴走反応の心配が少なく
、生産性が向上するばかりか、耐炎化繊維束を、いわゆ
る出発原料とするために耐炎化処理時の収縮を考慮する
必要がほとんどなく、嵩高で、実施例にも示したように
特性の優れた種基材を製造することができる。
Effects of the Invention This invention is for making a knitted fabric from a flame-resistant fiber bundle and heat-treating the flame-resistant fiber knitted fabric to obtain a carbon fiber knitted fabric seed base material. Unlike the conventional method of making a knitted fabric and then heat-treating it to make a carbon fiber knitted fabric, there is less worry about runaway reactions during the flame-retardant treatment, which not only improves productivity, but also allows the flame-retardant fiber bundle to be used as a so-called starting material. There is almost no need to consider shrinkage during flame-retardant treatment, and it is possible to produce a seed base material that is bulky and has excellent properties as shown in the Examples.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、実施例において使用したレドックスフロー型電
池のRIII2!分解斜視図である。 1:種基材 2ニスペーサ 3:集電板 4:電解液の供給管 5:電解液の排出管 6二陽イオン交換膜
The drawing shows the RIII2! redox flow battery used in the examples. It is an exploded perspective view. 1: Seed base material 2 Spacer 3: Current collector plate 4: Electrolyte supply pipe 5: Electrolyte discharge pipe 6 Dication exchange membrane

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維の前駆体繊維たる耐炎化繊維の繊維束を使用し
て編物を作り、次いでその編物を非酸化性雰囲気中で熱
処理して炭化することを特徴とする電池用極基材の製造
方法。
1. A method for producing a battery electrode base material, which comprises making a knitted fabric using a fiber bundle of flame-resistant fiber, which is a precursor fiber of carbon fiber, and then heat-treating the knitted fabric in a non-oxidizing atmosphere to carbonize it.
JP61089879A 1986-04-21 1986-04-21 Manufacture of electrode base material for battery Pending JPS6340259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089879A JPS6340259A (en) 1986-04-21 1986-04-21 Manufacture of electrode base material for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089879A JPS6340259A (en) 1986-04-21 1986-04-21 Manufacture of electrode base material for battery

Publications (1)

Publication Number Publication Date
JPS6340259A true JPS6340259A (en) 1988-02-20

Family

ID=13983052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089879A Pending JPS6340259A (en) 1986-04-21 1986-04-21 Manufacture of electrode base material for battery

Country Status (1)

Country Link
JP (1) JPS6340259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266155A (en) * 1989-04-07 1990-10-30 Japan Electron Control Syst Co Ltd Advanced environment recognizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266155A (en) * 1989-04-07 1990-10-30 Japan Electron Control Syst Co Ltd Advanced environment recognizer

Similar Documents

Publication Publication Date Title
JP2001115369A (en) Production of carbon fiber felt
JP2017027918A (en) Electrode material for redox flow battery
JP2860834B2 (en) Linear carbonaceous fiber with improved stretchability
CN1443885A (en) Conductive carbon fibre fabric and solid polymer fuel cell
JPS6340259A (en) Manufacture of electrode base material for battery
JP4037943B2 (en) Method for producing carbon fiber felt
JPS6321755A (en) Manufacture of electrode substrate for cell
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
JPH06123050A (en) Carbon fiber felt and its production
JP3442061B2 (en) Flat carbon fiber spun yarn woven structural material
CN101578406A (en) Method for production of carbonized cloth, and carbonized cloth produced thereby
JPH01239767A (en) Electrode substrate and manufacture thereof
JP2008169491A (en) Method for producing carbonized fabric and carbonized fabric obtained by the method
JPS63233073A (en) Manufacture of electroconductive substrate
JPS61119716A (en) Carbon fiber having large surface area, production thereof, and catalyst carrier made of said carbon fiber
JP2004084136A (en) Method for producing carbonaceous fiber-woven fabric and gas diffusion layer material for solid polymer type fuel cell
JPS6321754A (en) Manufacture of electrode substrate for cell
JPH026629A (en) Production of carbon fiber
JPS59168129A (en) Production of carbon fiber
JP3150106U (en) Thermal insulation fabric
JP2007122951A (en) Carbon fiber felt for heating element, and its manufacturing method
JPS5976927A (en) Acrylonitrile-based flameproof fiber
JP4392435B2 (en) Method for producing carbonized fabric
JP2007039843A (en) Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber
JP3002698B2 (en) Manufacturing method of graphite fiber